
28

Using Relative Lines of Code to Guide Automated Test
Generation for Python

JOSIE HOLMES, School of Informatics, Computing & Cyber Systems, Northern Arizona University

IFTEKHAR AHMED, Donald Bren School of Information and Computer Sciences, University

of California, Irvine

CAIUS BRINDESCU, School of Electrical Engineering and Computer, Oregon State University

RAHUL GOPINATH, Center for IT-Security, Privacy and Accountability (CISPA), University

of Saarbrücken

HE ZHANG, School of Electrical Engineering and Computer, Oregon State University

ALEX GROCE, School of Informatics, Computing & Cyber Systems, Northern Arizona University

Raw lines of code (LOC) is a metric that does not, at first glance, seem extremely useful for automated test
generation. It is both highly language-dependent and not extremely meaningful, semantically, within a lan-
guage: one coder can produce the same effect with many fewer lines than another. However, relative LOC,
between components of the same project, turns out to be a highly useful metric for automated testing. In
this article, we make use of a heuristic based on LOC counts for tested functions to dramatically improve the
effectiveness of automated test generation. This approach is particularly valuable in languages where collect-
ing code coverage data to guide testing has a very high overhead. We apply the heuristic to property-based
Python testing using the TSTL (Template Scripting Testing Language) tool. In our experiments, the simple
LOC heuristic can improve branch and statement coverage by large margins (often more than 20%, up to 40%
or more) and improve fault detection by an even larger margin (usually more than 75% and up to 400% or
more). The LOC heuristic is also easy to combine with other approaches and is comparable to, and possibly
more effective than, two well-established approaches for guiding random testing.

CCS Concepts: • Software and its engineering → Software testing and debugging;

Additional Key Words and Phrases: Automated test generation, static code metrics, testing heuristics

ACM Reference format:

Josie Holmes, Iftekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce. 2020. Using
Relative Lines of Code to Guide Automated Test Generation for Python. ACM Trans. Softw. Eng. Methodol. 29,
4, Article 28 (September 2020), 38 pages.
https://doi.org/10.1145/3408896

Authors’ addresses: J. Holmes and A. Groce, School of Informatics and Computer Science, Northern Arizona University,
1295 Knoles Dr, Flagstaff, AZ 86011; emails: josie.holmes@nau.edu, agroce@gmail.com; I. Ahmed, Donald Bren School
of Information and Computer Sciences, University of California, Irvine, 5228 Donald Bren Hall, Irvine, CA 92697-3440;
email: iftekha@uci.edu; C. Brindescu and H. Zhang, School of Electrical Engineering and Computer Science, Oregon
State University, 1148 Kelley Engineering Center, 110 SW Park Terrace, Corvallis, OR 97331-5501; emails: {brindesc,
zhangh7}@oregonstate.edu; R. Gopinath, CISPA Helmholtz Center for Information Security, University of Saarbrücken,
Stuhlsatzenhaus 5, Saarland, Informatics Campus, 66123 Saarbrücken, Germany; email: rahul@gopinath.org.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
1049-331X/2020/09-ART28 $15.00
https://doi.org/10.1145/3408896

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

https://doi.org/10.1145/3408896
mailto:permissions@acm.org
https://doi.org/10.1145/3408896

28:2 J. Holmes et al.

1 INTRODUCTION

Lines of code (LOC) is an extremely simple way to measure the size or complexity of a software
system or component. It has clear disadvantages. First, unless care is taken, the measure itself is
ambiguous, in that “lines of code” may mean number of carriage returns or number of statements,
may include comments, and so forth. Second, lines of code are not comparable across languages:
10 lines of C and 10 lines of Haskell are not the same, which is evident even in the size of faults
in these languages [43]. Finally, even within the same language, two different programmers may
express the same functionality using different amounts of code; e.g., in a language like Python, the
same list may be constructed using a five LOC loop or a single LOC list comprehension. In some
cases, such differences in LOC for the same functionality will signify a difference in complexity,
but in other cases the conceptual and computational complexity will be identical, despite LOC
differences (e.g., chaining vs. sequential styles in DSLs, as discussed by Fowler [35]).

Is measuring lines of code, then, pointless, except for very coarse purposes such as establishing
the approximate size of software systems: e.g., Mac OS X at 50M LOC is much larger than Google
Chrome at 5M LOC, which is much larger than an AVL tree implementation at 300 LOC? We argue
that, to the contrary, counting LOC is the basis for a powerful heuristic for improving automated
test generation methods based on random testing. In particular, we show that measuring relative

LOC between components of a software system does provide useful information for test genera-
tion. By relative LOC, we mean that we are not so much concerned with the absolute LOC size of
a program element, but with whether one program element is larger or smaller than another, and
by how much. Our claim is that, while LOC is certainly imprecise as a measure of code complexity
or importance, the assumption that relatively larger functions are usually more complex, more
error-prone, and more critical for exploring system state is actionable: We show that using LOC
to bias random testing is an effective heuristic approach for generating tests for Python APIs.

1.1 Small-budget Automated Test Generation

QuickCheck [25] and other increasingly popular property-based testing tools [69, 89] offer very
rapid automatic testing of software, on the fly, based on random testing [10, 54]. For the Soft-
ware Under Test (SUT), a property-based testing tool allows a user to specify some correctness
properties (and usually includes some default properties, such as that executions do not throw
uncaught exceptions) and generates random input values for which the properties are checked.
Developers seem to expect such tools to conduct their testing within at most a minute to provide
rapid feedback on newly introduced faults during development, when the fault is easiest to identify
and fix. The claim that a minute is a typical expectation derives the default one-minute timeout
for the very widely adopted Python Hypothesis [69] testing tool (one of the most sophisticated
QuickCheck variants, used in more than 500 open source projects [73]) and the fact that the origi-
nal QuickCheck and many imitators such as ScalaCheck [82], PropEr [89], and the Racket version
of QuickCheck use a default of only 100 random tests, which will typically require far less than a
minute to perform. Tools for generating Java unit tests, such as EvoSuite [36] and Randoop [87],
also have default timeouts of one minute and 100 seconds per class to be tested, respectively. In
fact, to our knowledge, all automated testing tools in wide adoption use a default budget close to
60 seconds or 100 tests, with the exception of fuzzers like afl-fuzz [113], intended to detect subtle
security vulnerabilities. Testing with a limited budget is critical for using property-based testing
in a continuous integration setting, where testing time per-task on a large project is limited [24]
to ensure rapid feedback [55].

Unfortunately, one minute is often not enough time to effectively generate tests for an SUT
using pure random testing. It is unlikely that low-probability faults will be exposed. Moreover, for

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:3

techniques relying on genetic algorithms [80] or other machine-learning techniques [46, 47], the
overhead of learning, or lack of sufficient training data, may still result in poor coverage or fault
detection in a short testing run. Even if developers sometimes perform hour-long or overnight
automated testing runs, it is still desirable to find faults or cover code as quickly as possible; poor
60-second performance is in a sense equivalent in property-based testing to having a very slow
compiler in code development.

1.2 The High Cost of Code Coverage

A further key issue in lightweight automated test generation [47] is that many programmers use
languages that lack sophisticated or efficient coverage instrumentation [23, 111]. In Python, com-
puting coverage using the coverage.py [13] library (the only mature coverage tool for the lan-
guage) to guide testing often adds a large overhead, despite its use of a low-level C tracing im-
plementation. Collecting coverage in Python often results in performing far less testing for the
same computational budget; in Section 3.5, we show that turning off code coverage often results
in performing at least 10% more, and up to 50 times as many test actions (e.g., method calls) in prac-
tice, with median improvement in SUTs we studied of 2.03× (and mean improvement of 6.12×).
Is the advantage of coverage-directed testing sufficient to overcome this cost? Even if the answer
is affirmative for C or Java, with fast coverage tools, the answer may often be “no” for languages
with higher overheads. Python is not even the worst case: A newly popular language may lack any
effective coverage tool at all; for a long time Rust lacked any convenient way to measure coverage
[96]. Even “good” coverage tools may not have a low enough overhead [2, 84, 105] or conveniently
provide fast enough access to on-the-fly coverage for efficient testing.

Moreover, testing methods that use coverage information, or even more expensive (and power-
ful) tools such as symbolic execution [20, 40], face an inherent limitation. As Böhme and Soumya
[15] argue, given even a perfect method for partitioning system behavior by faults, if the method
has a cost (over that of random testing), it will be less effective than random testing for some test
budgets. Real-world techniques are not perfect in their defect targeting and often impose con-
siderable costs—this is why performing symbolic execution only on seed tests, generated by some
other method, is now a popular approach in both standard automated test generation and security-
based fuzzing [41, 77, 90, 114]. Small-budget automated test generation, therefore, stands in need
of more methods that improve on pure random testing but require no additional computational
effort. Ideally, such methods should be able, like random testing, to work even without code cov-
erage support. How can we discover such methods? In a sense, we are searching for the testing
equivalent of a “credit score”—while less accurate than simply making a loan (that is, running a
test) to see how well it performs, it is also much less costly. The bound on the cost of computing
a credit score, or measuring LOC, is constant and proportionally much smaller than the cost of
making a (large) loan or performing extensive testing. A credit score or rough LOC count is also
likely more stable over time than the details of each proposed loan or set of test executions. In
essence, we want to equate examining program source code in simply ways with performing a
(fast, approximate) credit check.

The problem is most easily understood when simplified to its essence. Imagine that you have
two functions, f and g. Furthermore, imagine that you can only test one of these functions, once.
Which do you test? Knowing nothing further, you have no way to rationally choose. What might
you know about f and g that would allow you, in the sense of expected-value, to make a more
intelligent decision? You might, of course, wish to know things such as how calling f and g would
typically contribute to improving code coverage for the SUT, or which is more closely related to
critical aspects of the specification, or (most ideally) which one contains a bug. These are usually,
unfortunately, very expensive things to discover, and we have already stipulated that you have

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

28:4 J. Holmes et al.

very little time—only time to run one test of either f or g. If we can propose a very inexpensive-
to-compute heuristic for the “f or g?” question, we have a plausible way to bias small-budget
automated test generation. Of course, we will seldom be faced with testing onlyf or g, but we
will always face the question of which functions to test more often in such a setting, and we will
always have to choose some final function to test when our testing budget is about to run out.
Even techniques that are more complex than pure random testing, such as those used in EvoSuite
and Randoop, rely on the basic building block of choosing an arbitrary method to call.

1.3 Solution: Count Relative Lines of Code

The central proposal of this article is that, if you know only that f has more LOC than g, you should
prefer testing f to testing g. LOC allows you to approximate some kind of expectation (though not
a lower bound—it might be easy to cover most of g’s code and hard to cover more than a line or two
of f) of gain in code coverage, of course, but it should, more importantly, approximate complexity
and influence on program state. Not being a lower bound is useful here: We do not want to bias
against functions that have hard-to-cover code; they are precisely the functions we may we need
to test most.

Longer functions are generally more complex and presumably have more room for programmers
to make mistakes. This is assumed in, for example, mutation testing [8, 83], where the LOC size of a
function is strongly correlated with the number of mutants generated for that function. However,
even when a longer function does not have any faults, it is still, we claim, usually more important to
test. Longer functions, we expect, perform more computation. In stateful systems, longer functions
tend to modify system state more than shorter ones. Even if a modification is correct, it may cause
other, incorrect, functions to fail. Even for functions with no side effects, we hypothesize that
longer pure functions, on average, either take more complex data types as arguments or return
more complex data types as results than shorter ones. In fact, very short functions in many cases
are getters and setters. These need to be tested and sometimes need to be called to detect faults in
more complex code, but are seldom, we suspect, themselves faulty.

Of course, other than the general correlation detected in various studies between defects and
LOC at the function, module, or file level [5, 34, 85, 86, 115], it is difficult to know to what pre-
cise extent length matters. However, if our f/g answer is reasonable, it follows that biasing the
probabilities for calling functions/methods in random testing based on the relative LOC in those
functions/methods should improve the effectiveness of random testing for most SUTs. Some cau-
tion is required: If a function f is itself short, but always or almost always calls h, which is long and
complex, then in practice perhaps f is a “long” function. Or, one may argue that, since f is longer,
it also likely takes more time to run than g, making it “correct” to choose f, but a different prob-
lem than selecting a next action in random testing. The alternative to f may not be testing g, but
perhaps testing g three times, or testing g, h, and i, all of which are much shorter than f. Whether
our proposed bias is actually useful in practice is an empirical question, despite having a sound
analytical basis, thanks to these confounding factors, and can be resolved only by experimentation.

The experiments in this article, based on a simple linear bias in favor of test actions with rela-
tively more LOC, demonstrate that our proposed solution to the “f or g?” question is a useful one
in that it often improves both coverage and fault detection. We also thus demonstrate the general
method of moving from a plausible answer to the “f or g?” question to improving the effectiveness
of automated test generation.

In fact, we show that for many Python SUTs we examined, the LOC heuristic, despite not using
expensive coverage information, is better than a coverage-based approach and has better mean
coverage over all SUTs, even though we impose the (unnecessary) cost of collecting coverage on LOC-

guided testing; further, incorporating the LOC heuristic into the coverage-based approach improves

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:5

results over using coverage alone for a large majority of SUTs. The basic technique is very simple:
We first run (pure, unguided) random testing on the SUT once, for a short period (two minutes,
in our experiments) and, for each function or set of function calls that constitute a single testing
action, compute the mean total LOC in all SUT functions and methods executed while taking
that type of test action. Note that this is not the same as measuring coverage: We measure (only
counting each function once) how large each function executed is, in total LOC, even if the majority

of the code is not executed. The “sizes” in LOC are then used to bias probabilities for selecting test
actions so actions with higher LOC counts are chosen more often in all future testing. Unlike
dynamic code coverage-based methods, these sizes do not need to be recomputed for each test
run; we show that the technique is robust to even very outdated LOC estimates.

1.4 Contributions

We propose a novel and powerful heuristic for use in (small-budget) automated generation of
property-based Python unit tests, based on counting lines of code in functions under test. We
evaluate the heuristic (and its combination with other testing methods) across a set of 14 Python
libraries, including widely used real-world systems. Overall, the LOC heuristic improves testing
effectiveness for most subjects. The LOC heuristic also combines well with other test generation
heuristics to increase their effectiveness. It is often more effective than unbiased random testing
by a large margin (20%–40% or more improvement in branch/statement coverage, 30%–400% or
more gain in fault detection rates). The LOC heuristic, or a combination of the LOC heuristic
and another approach, is the best method for testing more SUTs than any non-LOC approaches
and is worse than random testing for fewer SUTs than the other two (established and widely
used) test generation methods we tried. Even if the overhead for coverage were negligible, a user
would be best off using the LOC heuristic or the LOC heuristic plus a coverage-guided genetic
algorithm for most SUTs. Our results also present a strong argument for exploring the use of
simple, almost static (thus available without learning cost at testing time) metrics of source code
to guide small-budget automated test generation, especially in languages such as Python, where
coverage instrumentation is either very costly or unavailable.

2 LOC-BASED HEURISTICS

We present our basic approach in the context of the TSTL [49, 58] tool for property-based unit
testing of Python programs for several reasons. First, Python is a language with expensive (and
coarse-grained: there is no support for path coverage or coverage counts) code coverage tools.
Second, TSTL is the only tool, to our knowledge, that is focused on generating unit tests (sequences
of value choices, method/function calls, and assertions) yet is essentially a property-based testing
tool [25], where users are expected to provide guidance as to what aspects of an interface are to
be tested and frequently define custom generators or implement complex properties, in exchange
for fast random testing to quickly detect semantic faults in code. A property-based testing tool is
seldom seen as a test suite generator (unlike Randoop or EvoSuite), even though most property-
based tools can also be used to produce test suites. QuickCheck, Hypothesis, PROPER, or TSTL
is usually executed to generate new tests after every code change. It is in this setting—where
generating new, effective tests within a small test budget is a frequently performed task—that the
need for better heuristics is largest.

Before proceeding to the detailed Python implementation, we define the general class of LOC-
based heuristics: a LOC-based heuristic biases the probability of method or function call

choices in random testing proportionally to the measured lines of code in the method(s)

or function(s) called. In this article, we present one instantiation of this general idea, tuned to
Python test generation.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

28:6 J. Holmes et al.

Fig. 1. TSTL harness for AVL trees.

2.1 General LOC Heuristic Definition

The general algorithm for LOC heuristics is most easily described by understanding how it changes
the selection of a test action. Assume that test actions {a1 . . . an } are normally chosen with uniform
probability, i.e., P (a) = 1

n
. Using LOC, instead, the probabilities are determined based on both an

action set a1 . . . an and a LOC-mapping,m : a ∈ {a1 . . . an } ⇒ k , wherem(a) is a measure (possibly
approximate) of the lines of code potentially (rather than actually) covered by executing a. If a is
a simple function f that calls no other functions, then m(a) should be the number of lines in the
implementation of the function f . Givenm, when using LOC, P (a) = h(m(a)) where h should be a
monotonically increasing function, except in the special case thatm(a) = 0, as discussed below. It is
the monotonically increasing nature of h that produces the desired bias. In this article, we consider
only the case where h is a simple linear mapping.

2.2 Python Implementation

In TSTL, tests are composed of a series of actions. An action is a fragment of Python code, usually
either an assignment to a pool value [7] (variables assigned during the test to store either input
values for testing or objects under test), or a function or method call, or an assertion. Actions
basically correspond to what one might expect to see in a single line of a unit test. Constructing
a test in TSTL is essentially a matter of choosing the lines that will appear in a constructed unit
test. Actions are grouped into action classes, defined in one line of a TSTL test harness [45] file.
Figure 1 shows part of a simple TSTL harness for testing an AVL tree (with no properties beyond
that the tree is balanced and does not throw any exceptions). The line of TSTL code <int> :=
<[1..20]> defines an action class that includes many actions: int0 = 2, int1 = 3, and int3 =
10, and so forth. The AVL harness defines four action classes (one for each line after the property).
Of these, the first calls no SUT code (hencem(a) would be 0), while the other three call the AVLTree
constructor or an AVLTree object method, andm(a) would be based on the code in those methods.
The same (top-level) method is called for each action in an action class in most, but not all, cases;
we examined our SUTs for cases where this was not the case and found that the top-level method
called could vary in about 20% of all actions. Our heuristic is simple and operates in two phases:
first, a measure of LOC for each action class (a construction ofm(a)) is needed, and then the LOC
measures must be transformed into probabilities for action classes to bias random testing in favor
of actions with higher LOC values (a function h is defined).

2.2.1 Estimating LOC in Test Actions. To bias probabilities by LOC, we need to collect a mapping
from action classes to the LOC in SUT code called by the actions in the class. In theory, this could
be based on static analysis of the call graph; however, in Python determining an accurate call
graph can be very difficult, due to the extremely dynamic nature of the language. Moreover, we
are generally interested only in functions that have a non-negligible chance of being called during
short-budget testing; calling some functions may not even be possible given the test harness and
input ranges used. Our efforts to collect reliable information statically, based on matching the
textual names in actions to a static list of function sizes generated using Python’s inspection tools,

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:7

Fig. 2. Portion of code for LOC measurement tracing in Python.

produced a large improvement in testing for one SUT, but it was generally not very helpful, and
sometimes greatly reduced the effectiveness of testing compared to pure random testing; we report
on this in more detail below. The primary cause was simple inaccuracy, e.g., if an action class varies
which method or function it calls depending on the type of an object in a pool (a fairly common
pattern in TSTL), then the tool simply counted LOC for the wrong code. The dynamic nature of
Python, which is exploited heavily in TSTL harnesses, simply defeats a purely static approach.

Inspecting the incorrect results also helped us see that simply counting LOC in a top-level func-
tion is inappropriate for TSTL/Python. TSTL harnesses seldom include all methods of a class;
instead the testing is focused on the high-level APIs actually used by users, not other functions,
and these are often very small wrappers that dispatch to a more complex method. In TSTL, most
coverage can only be obtained indirectly [37].

We therefore used Python’s system tracing and introspection modules to collect a one-time
estimate1 of “total LOC” for each action class for each SUT by detecting function calls during
actions and then measuring LOC reported by Python’s getsourcelines for every such function,
using Python’s settrace feature, as shown in Figure 2; comments in the code describe the
algorithm and some implementation details. It is important to understand that this does not

measure code coverage—it simply collects the total LOC (as counted by Python’s notion of code
lines, which includes blank spaces and comments2) for any Python function or method entered

during execution of a test action, even if almost none of the code for that function/method is
executed. The value recorded for an action is the sum of function/method LOCs, with each one
only counting once (e.g., if f has 30 LOC and is called 40 times by an action, it only adds 30 to
the LOC count for that action). The tracing function is installed with sys.settrace before each
action is executed. To ensure that all action classes are measured, the sampling tool always selects
any enabled actions whose class has not yet been sampled at least once. After each action class
is sampled once, sampling is random until a fixed time limit is reached. The value recorded for

each action class’s LOC count is the mean of all samples:m(a) =
∑

s∈samples LOC (s)

|samples | , where samples is

1In Section 3.8, we show that the one-time aspect is likely not important; results appear to be robust even to large code
changes, and thus certainly to mere sample variance.
2Including comments and blank lines is not a problem for our basic hypothesis: We also expect that code with more
comments (or even more blank lines) is, all things being equal, more interesting to test.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

28:8 J. Holmes et al.

the set of all values computed using traceLOC for that action class. Taking the mean is required
because, again, due to the highly dynamic nature of TSTL test harnesses, the same action class
may not even be calling the same top-level method in every case. Since we cannot distinguish
such cases statically, we want to know on average “how big” each action class is in terms of LOC.
All action classes could be sampled effectively, multiple times, with 120 seconds of sampling for
all of our experimental subjects. Any action classes that cannot be sampled within 120 seconds,
using a strong bias in favor of unsampled classes, are highly unlikely to ever be covered during
small-budget testing, in any case. After one such sampling run, the probabilities can be used in
any number of future testing runs, as we show below.

2.2.2 Biasing Probabilities for Action Classes. Given this one-time mapping from action classes
to LOC counts, we need to produce a biased probability distribution for action classes to be selected
in future random testing. Additionally, there must be some way to handle action classes that do not
cover any SUT LOC. These action classes cannot be excluded from testing: most harnesses need to
generate simple input data, such as integers or Booleans, where generating data does not cover any
code under test. Our solution is simple: We evenly distribute 20% of the probability distribution
among all action classes that do not call any SUT code (where the LOC value is 0). The remaining
80% is distributed to action classes with a non-zero LOC count in proportion to their share of the
total LOC count for all action classes. This means that our heuristic does not care about absolute
LOC at all, only relative LOC: It does not matter how long a function is, only how much longer (or
shorter) it is than other functions to be tested. The core idea of our heuristic is this linear bias in
favor of test choices proportional to their share of total LOC count. Formally, we define:

M0 = |a ∈ {a1 . . . an } : m(a) = 0|,

M1 =
∑

a∈{a1 ...an }:m (a)>0

m(a).

That is, M0 is the number of actions (or, here, action classes) with 0 measured LOC, and M1 is
the total sum of all LOC measures for actions/action classes whose LOC estimate is non-zero (of
course, sincem(a) = 0 in these cases, we could also include them in the total).

We can then defineh, for the special case of zero-LOC action classes and for other action classes,
thus:

h(0) =
0.2

M0
,

h(c > 0) =
0.8c

M1
.

For example, consider a TSTL harness with only three action classes: <int> := <[1..20]>,
f(<int>), and g(<int>). The first action class does not call any SUT code: it simply assigns a
value to be used in later testing. Assume that f calls no functions, but has 30 LOC, and g has 6
LOC itself and always calls h, which has 14 LOC, twice. Using the (mean) LOC counts of 0, 30,
and 20, respectively, we get the following probabilities for the action classes, according to the LOC
heuristic:

Action class Mean LOC Formula P(class)
<int> := <[1..20]> 0 0.20

1 0.20
f(<int>) 30 30

50 × 0.80 0.48

g(<int>) 20 6+14
50 × 0.80 0.32

If we add another action class that does not call any code, and a direct call to h (with 14 LOC),
the probabilities change to:

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:9

Action class Mean LOC Formula P(class)
<int> := <[1..20]> 0 0.20

2 0.100
<ch> := <[’r’,’w’]> 0 0.20

2 0.100
f(<int>) 30 30

64 × 0.80 0.375

g(<int>) 20 6+14
64 × 0.80 0.250

h(<ch>) 14 14
64 × 0.80 0.175

One objection to this sampling approach is that it pays a non-negligible measurement cost, un-
like purely static measurement. This is true, but in another sense there is a fundamental difference
between essentially constant-time approaches (measuring LOC in source or fixed-time LOC sam-
pling) and, e.g., coverage instrumentation that imposes a cost that will always be (at best) linear
in the number of test actions executed. Even so, why not simply run for 120 seconds and measure
code coverage instead of LOC and use that measure? There are two answers. First, the general
LOC idea remains static; in a less dynamic language than Python, it should even be possible to
statically measure the LOC count for a method and the methods it calls, though this would lose
the probability of calling non-top-level methods. Second, and more importantly, using coverage
is worse, for our purposes, than using LOC: Any single short run is likely to only cover a small
part of the code for any complex function with many hard-to-take branches. LOC is a much bet-
ter way to estimate maximum possible coverage, since most runs will not cover the interesting
(hard-to-cover) part of a function. Of course, biasing exploration by coverage is a very useful test-
generation method; however, coverage is so dependent on actual test sequence and values, unlike
LOC, that it is only effective in an approach, such as the Genetic Algorithm (GA) we compare with
below, using runtime context and online instrumentation. To clarify the point, consider using our
sampling approach to determine a “size” for a function f that takes a list s as an argument. Even
if the function is very complex and lengthy, in a single short test run, most calls to it may be made
with an empty list as an argument. That is, if the function looks like:

if len(s) == 0:
return 0

...
40 lines of complex destructuring and tabulation of the list,

then the mean coverage for the action calling f will be very low, but the LOC count will reflect
the fact that when called with a non-empty list the function will perform complex computation,
even if the sampling never calls the function with a non-empty list. Traditional coverage-driven
test generation using, e.g., a GA, relies on the context of a test with a non-empty list to identify
the action calling f as interesting; in fact, such methods usually do not identify a single action
as interesting itself, but only a test as interesting. The price to be paid, however, is that coverage
must be collected for every test at runtime. Our approach only instruments test execution during
a one-time sampling phase and thereafter uses that data to bias test generation. However, as we
show, such a contextless LOC-based overapproximation of size is often—even ignoring this price—
a better way to bias testing than a GA for small test budgets.

3 EXPERIMENTAL EVALUATION

3.1 Research Questions

Our primary research questions concern the utility of the LOC heuristic.

• RQ1: How does test generation for 60-second budgets using the LOC heuristic compare to
random testing in terms of fault detection and code coverage?

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

28:10 J. Holmes et al.

• RQ2: How does test generation for 60-second budgets using the LOC heuristic compare to
coverage-guided testing using a Genetic Algorithm (GA) approach in the style of EvoSuite
[36], or to swarm testing [52], for fault detection and code coverage?

• RQ3: How does combining orthogonal generation approaches (e.g., a Genetic Algo-
rithm (GA), but using the LOC heuristic) for 60-second budgets compare to using only one
test generation heuristic for fault detection and code coverage? Is biasing a more sophisti-
cated heuristic by also applying the LOC heuristic useful?

Our hypothesis is that using LOC to guide testing will be useful, outperforming—in terms of
increased code coverage and/or fault detection for a fixed, small, testing budget—random test-
ing alone for over 60% of SUTs and outperforming (by the same measure) established heuris-
tics/methods for at least 50% of SUTs studied. Further, combining LOC with compatible heuristics
will frequently provide additional benefits, improving code coverage and/or fault detection for a
given budget.

We also provide limited, exploratory, experimental results to supplement these primary results,
covering a set of related issues; in particular:

• What is the typical cost of measuring code coverage in Python using the best known tool,
the coverage.py library?

• How does test generation for 60-second budgets using the LOC heuristic compare to using
afl-fuzz [113] via the python-afl module?

• Can the LOC heuristic improve the effectiveness (as measured by code coverage) of
feedback-directed random testing [87] in Java?

• What is the impact of using outdated dynamic estimates of lines of code on the performance
of the LOC heuristic?

• Do the coverage advantages provided by the LOC heuristic over random testing persist over
time or are they limited to small budget testing?

3.2 Experimental Setup and Methodology

All experiments were performed on a Macbook Pro 2015 15′′model with 16 GB of RAM and 2.8 GHz
Quad-core Intel Core i7, running OS X 10.10 and Python 2.7; experiments only used one core.

3.2.1 Evaluation Measures. We report results for both coverage and fault detection for our core
question: small (default) budget test generation effectiveness. The reasons for the use of two core
measures are simple. Fault detection essentially needs no justification: It is the end-goal of software
testing, in that a test effort that fails to detect a fault in its scope has failed at its primary task.
However, it is important to also measure code coverage for a number of reasons. First, small budget
testing aims to detect just-introduced problems, and in a setting where simply covering all code
is difficult, the best way to determine which defects will be detected will often be code coverage:
The kinds of bugs detected in this way may not ever make it into committed/released software
and thus not be represented by defects in externally visible code. Given this context, developers
performing small budget testing are plausibly interested in simply covering as much of the code
under test as possible as quickly as possible. For property-based testing, furthermore, developers
often have sufficiently strong oracles (e.g., differential [48, 79] ones) that mere coverage is more
often sufficient for fault detection [102], especially for just-introduced faults, which are often easy
to trigger, we suspect. Previous work on weaknesses of automatically generated tests showed that
failure to cover the faulty code is often a critical problem: 36.7% of non-detected faults were simply
never covered by any test [97].

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:11

A second reason it is dangerous to rely on only fault detection for evaluation is that defect
sets are unfortunately typically quite small (e.g., Defects4J [64] covers just six projects and about
400 bugs), and, more importantly for our purposes, are heavily biased towards bugs that lasted
long enough to appear in bug databases and usually only contain Java or C programs. As Dwyer
et al. [27] showed, using a small set of defects can produce unreliable evaluations of testing meth-
ods, since so much depends on the exact faults used. Where there are significant differences in
branch or statement coverage, correlation with fault detection for (what we use in every case)
fixed-size test suites is known to be strong. Even work questioning the value of coverage [63] tends
to confirm the relationship for suites of the same fixed size, with Kendall τ usually 0.46 or better,
often 0.70 or better [62]; i.e., higher coverage is highly likely to indicate higher bug/mutant detec-
tion [38, 42]. We therefore demonstrate effectiveness using both coverage and limited fault-based
evaluations.

BugSwarm [106] does provide a larger number of faults and includes (unlike other data-sets)
Python examples. Unfortunately, when we examined the BugSwarm defects, the subjects and bug
types were seldom easily translatable to a property-driven test harness unless we were to un-
dertake to essentially use our knowledge of the bug to carve out a portion of the Python API to
test and properties to check. This does not accurately reflect typical use of property-based testing
and would inevitably introduce bias. Using general-purpose harnesses for testing the libraries, de-
veloped without bug knowledge (and with developer input in some cases), is more realistic. The
TSTL harnesses used in this article were all, first and foremost, designed to reflect typical use of
property-based testing, rather than to detect a specific bug or for use as experimental subjects.
These are all realistic test harnesses a developer might produce, in our opinion.

That is, while (mostly) written by authors of this article, these harnesses were written (A) to
focus on important parts of API, to find bugs, not automatically generated with no understanding
of the likely usage of the methods and (B) with manually constructed, but simple, oracles, sim-
ilar in style and power to those found throughout both the literature of property-based testing
and real-world usage. The pyfakefs harness has benefited from considerably commentary and
examination by the pyfakefs developers, who made contributions to the TSTL code to support
better TSTL testing of pyfakefs. Feedback from SymPy developers contributed in a lesser way
to tuning that harness. We also examined a large number of real-world Hypothesis test harnesses
to better understand real-world developer uses of property-based testing in Python. Furthermore,
one of the authors originally used TSTL as a developer/tester only, not a researcher, in the course
of pursuing an MS in Geographic Information Systems, focusing on testing the widely used ArcPy
library for GIS, and either contributed to harnesses or vetted them as similar to her own efforts in
a purely QA/development role.

Following the advice of Arcuri and Briand [9], we do not assume that statistical distributions
involved in random testing are normal, and thus use the Mann-Whitney test for determining sig-
nificance of non-paired comparisons (e.g., within-SUT runs) and the Wilcoxon test for determining
significance of paired comparisons (per-SUT overall results, where the matching by SUT is impor-
tant). We believe the 100 runs used for all experiments are (more than) sufficient sample size to
effectively compare the impacts of various test generation methods for each SUT. The large sample
size of runs per SUT, relative to significant but not unbounded variance in results we observed,
allows us to detect, with very high probability, any differences between generation methods and
their effect size and direction—in short, the expected distributions of coverage and fault detection
results for each SUT/method pair—unless the differences are very small.

We measured code coverage, both in our core experiments and in measures of the overhead of
code coverage, using version 4.5.2 of the widely used, essentially standard, coverage.py Python

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

28:12 J. Holmes et al.

Table 1. Python SUTs

SUT Size Source Stars/Uses

arrow 2,707 https://github.com/crsmithdev/arrow 5,900/10,400

AVL 225 TSTL example [107] N/A

heap 56 Hypothesis example [70] N/A

pyfakefs 2,788 https://github.com/jmcgeheeiv/pyfakefs 281/398

sortedcontainers 2,017 http://www.grantjenks.com/docs/sortedcontainers/ 1,600/Not reported

SymPy 227,959 http://www.sympy.org/en/index.html 6,500/14,600

bidict 569 http://pythonhosted.org/bidict/home.html 535/Not reported

biopython 81,386 https://github.com/biopython/biopython.github.io/ 2,000/3,500

C Parser 5,033 https://github.com/albertz/PyCParser 1,900/Not reported

python-rsa 1,597 https://github.com/sybrenstuvel/python-rsa 219/Not reported

redis-py 2,722 https://github.com/andymccurdy/redis-py 8,200/62,900

simplejson 2,811 https://simplejson.readthedocs.io/en/latest/ 1,200/35,400

TensorFlow 193,374 https://github.com/tensorflow/tensorflow 140,000/60,100

z3 10,501 https://github.com/Z3Prover/z3 5,000/20

Size is lines of code as measured using cloc. Stars/Uses reports GitHub repo stars and the GitHub “Used by” statistic,
a rough measure of popularity. GitHub does not always report the “Used by” statistic.

module.3 To our knowledge, coverage.py is practically the only Python coverage library used
in practice, and is at least as low-overhead and efficient as any other Python coverage tool. Ver-
sion 4.5.2 is not the most recent coverage.py release, but the changes in the two most recent 4.5
releases only concern packaging metadata and multiprocessing support in Python 3.8, neither of
which affects overhead or is relevant to this article’s concerns (https://coverage.readthedocs.io/
en/coverage-5.0/changes.html). The 5.0 release similarly does not appreciably change measured
overheads. All versions we used are based on a fast native C tracing implementation.

3.2.2 Experimental Subjects. We applied the LOC heuristic, pure random testing, and two es-
tablished test generation heuristics (a coverage-driven Genetic Algorithm (GA) and swarm testing)
discussed below, to testing a set of Python libraries (Table 1) with test harnesses provided in the
TSTL GitHub repository [50]. Two of our SUTs (AVL and heap) are toy programs with hard-to-
detect faults used in TSTL or Hypothesis documentation and benchmarking; the remaining pro-
grams are popular Python libraries, with many GitHub stars indicating popularity. We could have
omitted the “toy” examples as unrealistic, but included them because, while not of real-world code,
both are extremely similar to property-based harnesses for real-world containers, which are fre-
quently the target of property-based testing efforts. Moreover, the relatively small APIs in both
cases made understanding the differences between test generation method performance easier
(and thus made it easier to construct hypotheses about causes of method effectiveness for more
complex SUTs).

Table 2 provides information on the faults in SUTs for which we investigated fault detection.
Most faults in this table were detected by at least one of our core experimental runs. The exception
is for SymPy, where the most faults detected by any single run was 2, and there were only 14
detected faults for our core experiments. We know of 12 additional detectable faults not found
by any of the core experimental runs, as well; the set of 26 noted in the table is for all saved
TSTL output for that version of SymPy, e.g., including our hour-long experimental runs. A single

3GitHub reports that over 80,000 Python projects use coverage.py.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

https://github.com/crsmithdev/arrow
https://github.com/jmcgeheeiv/pyfakefs
http://www.grantjenks.com/docs/sortedcontainers/
http://www.sympy.org/en/index.html
http://pythonhosted.org/bidict/home.html
https://github.com/biopython/biopython.github.io/
https://github.com/albertz/PyCParser
https://github.com/sybrenstuvel/python-rsa
https://github.com/andymccurdy/redis-py
https://simplejson.readthedocs.io/en/latest/
https://github.com/tensorflow/tensorflow
https://github.com/Z3Prover/z3
https://coverage.readthedocs.io/en/coverage-5.0/changes.html
https://coverage.readthedocs.io/en/coverage-5.0/changes.html

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:13

Table 2. Fault Information

SUT # Faults Description of Faults or Link to GitHub Issues

arrow 3 https://github.com/crsmithdev/arrow/issues/492 plus two other ValueErrors
for unusual inputs, fixed since discovered.

AVL 1 Change of rotation direction produced improperly balanced trees.

heap 1 Implementation bears little resemblance to a real heap, yet can pass many
simple tests.

pyfakefs 6 https://github.com/jmcgeheeiv/pyfakefs/issues/256

https://github.com/jmcgeheeiv/pyfakefs/issues/272

https://github.com/jmcgeheeiv/pyfakefs/issues/284

https://github.com/jmcgeheeiv/pyfakefs/issues/299

https://github.com/jmcgeheeiv/pyfakefs/issues/370

https://github.com/jmcgeheeiv/pyfakefs/issues/381

sortedcontainers 2 https://github.com/grantjenks/python-sortedcontainers/issues/55

https://github.com/grantjenks/python-sortedcontainers/issues/61

SymPy 26 https://github.com/sympy/sympy/issues/11,151

https://github.com/sympy/sympy/issues/11,157

https://github.com/sympy/sympy/issues/11,159

23 additional problems identified by unique Exception structure, not reported
due to being fixed before above, reported issues were resolved.

recursion-depth error accounted for the largest fraction of detected faults, about half of all
detections. Many faults were detected only three times out of 1,250 experimental runs.

To avoid bias, we attempted to apply our approach to all of the example test harnesses included

with the TSTL distribution at the time we performed our experiments, omitting only those where
the experiments would be meaningless or give our approach an unfair advantage. Reasons for
omission were limited to:

(1) Python is almost completely an interface to underlying C code or an executable (e.g.,
gmpy2, eval), and so LOC of Python functions contains no useful information.

(2) The SUT consistently enters an infinite loop (which makes it impossible to perform our
60-second budget experiments, since TSTL locks up and does not produce coverage sum-
maries).

(3) The minimum reasonable budget for testing is much longer than 60 seconds (e.g., for ESRI
ArcPy, simple GIS operations often take more time than the entire test budget).

(4) The harness is clearly a toy, without any real testing functionality (e.g., an implementation
of a puzzle or a tool for producing random turtle art), relevant coverage targets, or any
(even fake) bugs.

(5) All methods consistently completely saturate coverage within 60 seconds and detect all
faults.

(6) Either no actions call SUT code (possible when all SUT interactions are via the property),
or only one action calls SUT code (which would usually give an unfair advantage to our
approach, which would automatically give that call 80% of the test budget).

Table 3 explains the reason for omission for every harness in the TSTL examples directory at the
time we performed our experiments for which we did not report results; in some cases several
of the above reasons apply. Obviously, harnesses introduced after we performed our experiments
were not included (and most would be rejected for other reasons as well).

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

https://github.com/crsmithdev/arrow/issues/492
https://github.com/jmcgeheeiv/pyfakefs/issues/256
https://github.com/jmcgeheeiv/pyfakefs/issues/272
https://github.com/jmcgeheeiv/pyfakefs/issues/284
https://github.com/jmcgeheeiv/pyfakefs/issues/299
https://github.com/jmcgeheeiv/pyfakefs/issues/370
https://github.com/jmcgeheeiv/pyfakefs/issues/381
https://github.com/grantjenks/python-sortedcontainers/issues/55
https://github.com/grantjenks/python-sortedcontainers/issues/61
https://github.com/sympy/sympy/issues/11,151
https://github.com/sympy/sympy/issues/11,157
https://github.com/sympy/sympy/issues/11,159

28:14 J. Holmes et al.

Table 3. Omitted Subjects

XML Tests consistently hit exponential case or bug causing loop; TSTL does not support
action timeouts, so this makes experiments impossible to perform.

arcpy Each test action requires more than 60 seconds on average to perform; also most
code under test is compiled C++ without coverage instrumentation and only
available on Windows.

bintrees Harness detects bug that consistently causes timeout; also, development stopped and
replaced by sortedcontainers.

danluuexample Toy example, with only one function to call.

datarray_inference Coverage saturates in 60 seconds, and bug is only detectable using nondeterminism
checks.

dateutil Bug consistently causes timeout.

eval Actual test of SUT is via subprocess execution, so coverage not possible, also only
one test function.

gmpy2 Code under test is almost entirely C code, not Python code.

kwic Toy example from the classic Parnas problem, used in a software engineering class.
Coverage saturates easily in 60 seconds with random testing, and there are no bugs.

maze Toy example with only one function to call.

microjson Only call to SUT is in a property.

numpy Average test action requires more than 60 seconds to run, and timeouts exceeding
test budget are extremely frequent, along with crashes due to memory consumption.

nutshell Toy example for TSTL Readme, with no actual code to test.

oldAVL This is simply a less-readable version of the AVL harness included in our SUTs.

perfsort Only calls one SUT function.

pysplay Bug consistently causes timeout.

pystan Only calls one SUT function (essentially a compiler test).

solc Only calls one SUT function (essentially a compiler test).

stringh Code under test is C code, not Python.

tictactoe Toy example, code of interest only in property, and saturates coverage/detection of
“fault” in 60 seconds.

trivial Toy/contrived examples to test corner cases of test reduction. Saturates
coverage/detection of “fault” in 60 seconds.

turtle Toy example, no “testing” involved but an effort to produce interesting random art
using test generation.

water Toy example, no actual function calls at all.

TSTL has been used to report real faults (later corrected by the developers) for pyfakefs, SymPy,
and sortedcontainers. The pyfakefs effort is ongoing, with more than 80 detected and corrected
defects to date, and one error discovered not in pyfakefs but in Apple’s OS X implementation of
POSIX rename. Note that LOC for each SUT is usually much greater than coverage below. This
is in part due to our focus on 60-second testing, in part due to the coverage tool not considering
function/class definition code (e.g., def or class lines) as covered, and in part due to a more
complex cause: Most of the test harnesses only focus on easily specified, high-criticality interface
functions and omit functions whose output cannot effectively be checked for correctness, that
are very infrequently used in practice, or that are easily completely verified by simple unit tests.
These harnesses, for the portion of each SUT’s API tested, usually provide considerable oracle
strength beyond that offered by Randoop or EvoSuite style test generation. The AVL, pyfakefs,
bidict, and sortedcontainers harnesses provide complete differential testing with respect to a

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:15

Table 4. Gain or Loss in Coverage/Faults Detected vs. Random Testing

SUT branch stmt faults =branch

with detectable faults
arrow −6.47% −5.20% +75.9% 9.5
AVL +2.95% +3.30% +37.5% 98.2

heap 0.00% 0.00% +190.0% 60.0

pyfakefs +0.09% +0.13% +403.7% 95.2

sortedcontainers +33.03% +33.34% +INF*% 186.6

SymPy +25.28% +24.87% −15.4% 216.5

* using older version of sortedcontainers with two faults;
random testing never detected these faults; hence % gain INF;
LOC produced 0.1 mean faults/60s

without detectable faults
bidict −6.18% −7.21% N/A 8.8
biopython −13.52% −13.66% N/A 9.9
C Parser +41.17% +40.35% N/A 1108.9

python-rsa +0.40% +0.41% N/A 66.1

redis-py +16.95% +15.52% N/A 237.0

simplejson −15.45% −13.81% N/A 19.4
sortedcontainers +35.43% +35.27% N/A 268.7

TensorFlow +7.71% +7.26% N/A 121.5

z3 +11.20% +8.48% N/A 979.9

reference implementation in the standard Python library or the operating system, and the heap,
SymPy, python-rsa, and simplejson harnesses provide round-trip or other semantic correctness
properties.

A full implementation of the LOC heuristic approach evaluated in this article has been avail-
able in the release version of TSTL since 2017, using the --generateLOC and --biasLOC options.
In general, to reproduce our results, no special replication package is needed; using the current
release of TSTL plus appropriate versions of tested Python modules is all that is required; ex-
periments were performed on Mac OS X, but should work in any Unix-like environment. The
GitHub repository https://github.com/agroce/LOCtests contains our raw TSTL output files used
for all analysis in this article, and the exact configuration of TSTL used can be extracted by exam-
ining the first line of those files, plus version information to help with installation of appropriate
versions of SUT libraries. The scripts directory in this repository contains our analysis scripts,
though we warn the user that these are tuned to a local TSTL install and Python environment
and were not developed to be re-usable. The state of the code means that using your own analy-
sis scripts may be more useful; they do show how to parse TSTL output, however. Note that the
swarm dependency computation recently changed (https://blog.regehr.org/archives/1700), so the
--noSwarmForceParent option must be used to match the older swarm results.

3.3 Results Comparing Test Generation Methods Supported by TSTL (RQs 1, 2, and 3)

We ran each test generation method 100 times for 60 seconds on each SUT and used those runs as
a basis for evaluation. Table 4 gives an overall picture of the difference between unguided random
testing and LOC heuristic-guided testing, divided between SUTs with detectable faults and those
without. The second and third columns show mean changes in coverage. For those SUTs with

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

https://github.com/agroce/LOCtests
https://blog.regehr.org/archives/1700

28:16 J. Holmes et al.

faults detectable by the test harness, the faults column shows changes in number of faults de-
tected. The final column, =branch, shows the time required to obtain the mean 60-second branch
coverage achieved using LOC using pure random testing. Very roughly speaking, 60 seconds of
testing with the LOC heuristic is as effective (at least in terms of branch coverage) as this amount of
pure random testing. This is computed by taking the LOC coverage, then repeatedly running ran-
dom testing until it reaches the same coverage and taking the mean of the runtimes over 30 runs.
This value is more informative than the simple percent improvement in coverage, since different
branches are not equally hard to cover: For many SUTs 60%–80% or more of all branches covered
by any test are covered in the first few seconds of every test, but covering all branches covered by
any test may take more than an hour, even with the most effective methods. For example, while
z3 has one of the smaller percent improvements in coverage, it takes more than 16 minutes on

average for random testing to cover the missing 11% of branches. For all columns, values in italics
indicate differences that were not statistically significant (by Mann-Whitney U test [9]); values
in bold indicate a statistically significant improvement over random testing, and SUTs in bold in-
dicate that all significant changes for that SUT were improvements. There are two versions of
sortedcontainers; the latest, and an older version before TSTL testing, with two very hard-to-
detect faults (first detected by hours of random testing).

For 11 of the 15 SUTs and 9 of the 13 non-toy SUTs, all statistically significant differences from
random testing were improvements and often very large improvements (RQ1). In every case where
there was a significant change in fault detection rate, there was an improvement, and the improve-
ments were all larger than the single (not significant) negative change. Note that because of the
time taken to process failing tests, when LOC improves fault detection, it pays a price in coverage
proportional to the gain.

We also tried using the purely static method for estimating LOC discussed above. While this
still often improved on random testing, it was statistically significantly much worse (by over 1K
branches/statements, and a large corresponding decrease in fault detection) than random testing
for pyfakefs and statistically significantly worse (but in a less dramatic fashion) than the dynamic
sampling approach for both kinds of coverage for all other SUTs except redis-py. For redis-py,
the static method was actually better than the dynamic approach, perhaps because there is almost
no dynamic element to the types in the harness and the interesting code is primarily in top-level
wrappers; inspection suggests that it also may simply be that an inaccurate estimate here has a
beneficial effect due to the dependencies between methods. Such a result for static LOC is, we see,
unusual, at least among our SUTs, and the cost of dynamic sampling seems acceptable, given the
benefits for all but one SUT.

Figures 3 and 4 show more detailed results for applying the LOC heuristic, with each graphic
structured to show pairs of methods, with the LOC-biased version in the second (right) position of
each pair, to visualize results for RQ1-RQ3.4 We omit statement coverage results, as the graphs are
essentially not distinguishable from branch coverage results.5 The leftmost pair (random and LOC)
corresponds to the data in Table 4. Coverage results in Figure 4 are normalized to % of maximum
coverage obtained in any run, while faults are shown as actual number of faults detected. For fault
detection, we added a dashed green line showing mean, since the small range of values (0–3) for
most subjects produces similar median values even when results are quite different. In addition
to pure random testing, these graphs show results for combining LOC with two other heuristics
provided by TSTL. Because the LOC heuristic simply biases the actions chosen by the core random
selection mechanism, it can be combined with many other testing methods, so long as they do not

4The odd graph for Figure 4(c) means all runs always hit 100% branch coverage.
5The graph for heap is difficult to read, because all methods always obtain 100% coverage.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:17

Fig. 3. Fault detection results. Caption indicates total # of distinct faults detected over all runs.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

28:18 J. Holmes et al.

Fig. 4. Branch coverage results for individual Python SUTs, plus summary.

require setting action (class) probabilities. The middle and rightmost comparisons are for without
and with LOC bias:

• Swarm [52], before each test, randomly disables a set of action classes (with 50% probability)
for each test. The TSTL swarm testing implementation also uses dependencies between
action classes to improve the performance of swarm testing over the previously published
method.

• GA is a typical coverage-driven genetic algorithm [1, 36, 80], mixing 20% random gener-
ation with mutation, crossover, and extension of high-fitness (as measured by code cov-
erage, without branch distances) tests. It allows us to directly compare with search-based
testing/mutational fuzzing driven by dynamic coverage measures. The TSTL GA implemen-
tation is tuned to small-budget testing: 20% of the time, or if there are no high-fitness tests
in the population, it generates a new random test instead of choosing a test from the pool

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:19

and can extend a test rather than mutating it. This mixes initial population selection with
population refinement and allows the system to escape local minima.

All three methods (LOC, swarm, and GA) are useful; it is never best to stick to pure random test-
ing. Swarm often made testing worse,6 but when it was effective, it was highly effective, for three
of the most difficult-to-test SUTs: the C parser, redis-py, and z3 (swarm’s origins in compiler test-
ing show in that it helps with constructing structured, program-like inputs). However, in all three
cases, also using LOC makes swarm perform even better, so swarm is never “the best” method.

For fault detection, all methods detected all faults in at least one run for arrow, AVL, heap, and
pyfakefs. For pyfakefs, note that while every method found every fault at least once, only LOC-
based methods were reliably able to detect most faults, and only LOC alone consistently found
most of the faults, most of the time (see Figure 3(d)). Using LOC alone is statistically significantly
better than all other methods (all differences with LOC and with random are significant, with
p < 1.0 × 10−5), detecting a mean of 4.07 faults per run. The next-best method, the GA with LOC,
only detected a mean of 3.6 faults/run. No method not using LOC detected more than 2.3 of the
faults per run, on average. Random testing and swarm without LOC detected less than one fault,
on average.

Using LOC also made detection rates and mean number of faults found higher for arrow, AVL,
and heap, but in a less dramatic fashion (see Figure 3). For all subjects with detectable faults, except
SymPy, the method detecting the most faults was either the LOC heuristic or a combination of the
LOC heuristic with the GA, and the difference in fault detection rates for SymPywas not statistically
significant between methods (RQ2–3).

For sortedcontainers and sympy total fault detection results were more interesting. Pure ran-
dom testing never discovered either fault in sortedcontainers. LOC alone discovered one fault
only, 30 times out of all runs; GA discovered only the other fault, and only 3 times; swarm testing
found both faults, but detected a fault at all about half as often as LOC (6 detections for the fault
the GA found, and 12 for the fault LOC found). Combining methods, swarm with the LOC found
the fault LOC detected 66 times, and using the GA with LOC also found that same fault 66 times
and additionally detected the fault detected by GA 3 times. The story for SymPy was even more
complex. Pure random testing found the most diverse fault set, but still only 7 of the 14 total de-
tected faults. The LOC heuristic only found 3 different faults, but two of these were ones not found
using pure random testing; one was not detected by any other approach. The GA found 4 different
faults, two of which were not found using pure random testing, and one of which only it detected.
Swarm testing found 4 different faults, again including one not found by random testing, but none
unique among methods. Combining the GA with LOC made it possible to detect 5 faults, none
of which were unique to that approach, and combining swarm with LOC found 3 different faults,
of which one was unique. These results suggest that for finding faults, diversity of approach may
be critical, a generalization of the reasoning behind swarm testing and swarm verification [61],
but these overall detection results are not statistically validated in any sense: Lumping all runs
together essentially produces one large run.

Absolute differences in coverage varied for RQ1, but were often large. The mean mean gain
in branches covered, for LOC vs. pure random testing, was 219.1 branches, with a median mean
gain of 146.1 branches; mean loss when LOC was ineffective was only 27.9 branches (mean) or
29 branches (median). For 8 of 11 branch coverage improvements the gain was more than 80
branches.

6This is because swarm testing increases test diversity, which may make individual tests less effective and not pay off in
only 60 seconds.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

28:20 J. Holmes et al.

Table 5. Best Methods

random LOC GA GA+LOC swarm swarm+LOC
branch coverage 0 1 5 7 0 2
statement coverage 0 2 4 7 0 2
fault detection 0 2 1 3 0 0

Perhaps the simplest way to compare methods for all of RQ1–RQ3 is to ask, “For how many
SUTs was a particular method the best approach for coverage?” and “For how many SUTs was a
particular method the best approach for fault detection?” ignoring statistical significance. Table 5
shows the results. This analysis also reflects probabilites that, based on trial runs, a user would
select each method for use in testing, an important point we consider further in Section 4.3. The
combination of a GA with the LOC heuristic is clearly the best method, but we should always recall
that this imposes the costly overhead of collecting coverage; below, we attempt to estimate how
the methods would compare if LOC were given the advantage of not having to compute coverage.
Moreover, when LOC improved on random testing, it almost always improved GA and swarm to
use LOC as well (RQ3). The exceptions were that for branch coverage, adding LOC did not improve
on GA for the C parser, did not improve on swarm for the buggy version of sortedcontainers, and
did not improve either GA or swarm for python-rsa. For python-rsa, however, all values were
so similar that this disagreement was not statistically significant. For fault detection, improvement
over random was always accompanied by improvement when added to GA and swarm. It is clear
that the LOC heuristic is a low-cost way to improve the performance of a GA in most cases and
that, ignoring the cost of code coverage, combining methods is often very useful.

We summarize the answers to RQ1–RQ3 in terms of individual SUTs more succinctly in
Section 4.1 below, as a prelude to discussing the overall meaning and possible causes for our
results.

3.4 Analysis Combining All Subjects (RQ1–RQ3)

Using normalized coverage data allows analysis of all subjects together, both those where LOC
helped and those where it was harmful (Figure 4(p), which includes subjects with and without
faults). Considering the impact of LOC on each SUT and how often it was helpful is generally a
more important way to understand the results, but the combined analysis provides some additional
insights into the effect sizes for the various heuristics and makes the comparison with pure random
testing (RQ1) even clearer. The means for LOC were 83.0% of maximum branch coverage and 83.2%
of maximum statement coverage. The means for pure random testing were 79.3% branch coverage
and 79.6% statement coverage (RQ1). All differences were significant by Wilcoxon test atp < 1.0 ×
10−18. LOC was also better for branch and statement coverage than GA (80.2% branch coverage,
80.4% statement coverage, p < 1.0 × 10−23) (RQ2). This is particularly notable: Despite also paying
the (unnecessary) overhead of coverage, using random testing with the LOC bias outperformed a
GA using code coverage results to drive testing. Combining the GA and LOC (RQ3) produced mean
branch coverage of 84.2% and mean statement coverage of 84.5%. It is not clear that combining LOC
and GA would even improve on LOC if LOC did not pay the (high) overhead of code coverage; that
is, the advantage of adding the GA may be overwhelmed by coverage costs for many SUTs. Swarm
without LOC had the best coverage means (85.2% for both kinds), despite never being the method
for best branch or statement coverage for any SUT (RQ2). Swarm with LOC performed slightly
better than LOC alone in terms of coverage (83.2% branch coverage, 83.4% statement coverage)
(RQ3). Again, we emphasize that for the very subjects where swarm testing was necessary for

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:21

Table 6. Gain in Test Operations When Executing

without Coverage Instrumentation

SUT Actions without coverage
Actions with coverage

Actions without coverage
Actions with coverage

(tests executed with pypy)

arrow 1.00 1.01
AVL 6.41 4.66
heap 4.98 5.07
pyfakefs 2.03 2.11
sortedcontainers 1.09 1.17
SymPy 2.30 1.88
bidict 1.48 1.24
biopython 50.07 2.16
C Parser 1.04 1.02
python-rsa 1.14 1.22
redis-py 1.02 1.06
simplejson 1.47 1.09
TensorFlow 9.54 9.62
z3 2.14 2.11

Mean 6.12 2.53
Median 2.03 1.56

producing good results, swarm with LOC was always better than swarm alone (RQ3). Swarm’s
higher mean is entirely due to the very poor performance of LOC (or swarm with LOC) on a few
subjects, and for these subjects swarm was also always less effective than GA (RQ2).

We similarly normalized fault detection by counting failed tests (hence probability of detecting
any faults at all) and using the maximum number of failed tests as 100% (RQ1–RQ3). Swarm test-
ing had the worst fault detection results by a large margin, with a mean of only 5.8% of maximum
failures, faring badly compared to LOC (20.1%), GA (11.1%), LOC+GA (24.8%), and even pure ran-
dom testing (6.3%). Presumably, this is partly because our faulty SUTs and “compiler-like” SUTs did
not overlap. Swarm with LOC improved this, but only to 10.6%. LOC and LOC+GA, with 11.1% and
21.6%, respectively, were the only methods with median values better than 0.0%, i.e., with median
detection of any faults (RQ1–RQ3).

There was not a compelling correlation between SUT size and either branch coverage (R2 = 0.01)
or fault detection (R2 = 0.22) effectiveness for LOC compared to random testing. The directions of
correlations are also opposite (positive for coverage, negative for faults). Using maximum state-
ment coverage to measure “effective size of tested surface” instead of actual SUT LOC produced
similar results (R2 = 0.11, R2 = 0.17).

3.5 The Cost of Coverage

A key assumption of this article (and factor in choosing Python as the target language) is that,
despite Python’s popularity and years of work on testing tools for Python, such as unit testing
libraries, the overhead of collecting coverage information in Python is large.

Table 6 shows a simple measure of the cost of coverage: For each SUT, we ran 60 seconds of
testing with and without coverage instrumentation, provided by the state-of-the-art coverage.py
tool, for the same random seeds, 10 times, and recorded the total number of test actions taken
in each case. The table shows the average ratio between total actions without coverage and

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

28:22 J. Holmes et al.

total actions with coverage. The cost ranges from negligible (arrow) to exorbitant (biopython).
Improving Python coverage costs is non-trivial, as discussions of the issues (and the fact that
these overheads persist despite years of development on coverage.py) suggest [71, 72].

The second column of results in Table 6 is for execution using the Python JIT (Just-In-Time
compiler) pypy. Overhead for coverage is similar, except for biopython, where the cost is still sig-
nificant at well over 2×more test operations when running without coverage instrumentation; it is
merely reasonable compared to the exorbitant 50× fewer test operations with coverage when not
using the JIT. The mean is considerably reduced, due to biopython, but median cost is similar. We
attempted to investigate why the overhead for biopython is so extreme when running without a
JIT but were unable to determine what the source of the problem is based on profiler information.
Dropping it as an outlier, considering only median overheads, it seems safe to say that with or
without a JIT, in Python, measuring code coverage will usually effectively reduce the test bud-
get considerably. We also tried re-running our experiments with the just-released (Dec 14, 2019)
stable non-alpha coverage.py 5.0, though none of the changes seemed likely to be relevant. As
expected, results were within 10% of those for version 4.5.2, with no consistent improvement (or
degradation). It is difficult to say what the cost of coverage would be using the most sophisticated
methods available in the literature; some are not appropriate, in that coverage-driven methods
need to check every test executed for at least lower-frequency targets and are likely to tolerate
even infrequent “misses” poorly. Furthermore, given the popularity and development effort in-
volved in coverage.py, including effort spent reducing overhead, we do not expect to see any less
costly approaches available in Python for the forseeable future. The dynamic nature of the lan-
guage, even under a JIT (as shown above), may preclude reaching the low overheads sometimes
seen for C and Java code.

It is important to note that GA is the only method in our experiments that actually requires
measuring code coverage during testing. However, to report coverage results as an evaluation, all
methods were run with code coverage collection turned on. Again, we emphasize that, in practice,
a user interested in actual testing would run without code coverage when not using GA, obtaining
higher test throughput. Determining the exact impact of coverage overhead is difficult; we can
record tests generated during execution without coverage instrumentation, and run the tests later
to determine what coverage they would have obtained; however, the cost of recording all tests is
itself very high, since some SUTs can generate thousands of tests in a minute, and storing those
tests is expensive. In this article, we simply compare results as if all testing methods were required
to collect coverage data, but this over-reports the effectiveness of GA compared to other methods,
including pure random testing. While we cannot effectively compare the LOC heuristic to GA for
code coverage, without measuring code coverage, we can examine fault detection. LOC already
detected significantly more faults than any other method for some SUTs (AVL, heap, and pyfakefs),
and allowing for more test actions by disabling coverage only increased the gap. When we re-ran
without code coverage, LOC also significantly (p = 0.04) outperformed all GA-based methods for
SymPy, detecting 0.24 mean faults per 60-second run, compared to 0.1 for the LOC+GA combination
or 0.15 for the GA alone (the best-performing method when coverage was collected). For arrow and
sortedcontainers, however, the cost of coverage was too low to enable LOC alone to outperform
the previously best-performing LOC+GA combination. The primary determination for whether it
is worth collecting code coverage in our experimental results seems to be the cost of coverage,
rather than the effectiveness of GA. That is, when coverage is very cheap to collect, it is worth
paying that cost to add GA to LOC; and when coverage is expensive, at least in our results, it
seems that “paying for GA” may not be a good idea, even if GA is—ignoring that cost—a useful
addition to LOC.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:23

3.6 Comparison with python-afl

American Fuzzy Lop (AFL), commonly known as afl-fuzz [113], is an extremely popular
coverage-driven fuzzer (essentially using a GA over path coverage). python-afl (https://github.
com/jwilk/python-afl) makes it possible to fuzz Python programs using AFL. Because TSTL sup-
ports generating tests using python-afl in place of TSTL itself, we were able to perform an ad-
ditional comparison with the AFL algorithm (and python-afl’s instrumentation, designed to be
low-overhead, with a C implementation) for test generation. TSTL in this setting is only used for
test execution and property checking, not for test generation. We know from past experience that
python-afl can find faults that TSTL cannot (e.g., https://github.com/jmcgeheeiv/pyfakefs/issues/
378).

Because AFL requires a corpus of initial inputs on which to base fuzzing (it is a mutational
fuzzer), we gave AFL 60 seconds to fuzz after using pure TSTL random testing for 20 seconds
to produce an initial corpus. This in theory gives python-afl a substantial advantage over our
TSTL-only tests.

Pure random testing with TSTL essentially always dramatically outperformed python-afl in
terms of branch coverage, even though python-afl had the advantage of incorporating results
from 20 seconds of TSTL random generation. For example, mean branch coverage for the simple
AVL example decreased by 11%, while it decreased by almost 15% for sortedcontainers and
nearly 80% for sympy. The path coverage-based GA of AFL did produce improvements over pure
random testing for some of the toy examples, e.g., improving fault detection rates by about 1% over
random testing for the AVL example and from 10% to 29% for hypothesis_heaps. However, this
was still much worse than the LOC heuristic fault detection rates of 99% and 71%, respectively.
Unsurprisingly, given the huge loss in code coverage, python-afl was unable to find the faults in
sortedcontainers and sympy.

Rather than elaborate on these results, we simply note that it is unfair to compare against
python-afl under our experimental settings and for the use case considered in this article. Mod-
ern mutation-based fuzzers are primarily intended to be used in runs of at least 24 hours [66]. They
are, despite very sophisticated algorithms, extensive tuning, and high-performance instrumenta-
tion, not useful for quick turnaround property-based testing. Random testing is, at least in the
Python setting, for this problem, a better baseline. As would be expected, given that LOC gener-
ally performs much better than random, it also outperforms python-afl, including in some cases
where it performs worse than pure random generation.

3.7 Comparison with Feedback-directed Random Testing

We would also like to compare to the feedback-directed random testing algorithm of Pacheco et al.
[87]. Unfortunately, perhaps due to reset or object equality overheads, it and related methods [112]
are known to perform poorly in Python [65]. We therefore performed a preliminary experiment
using the Randoop Java implementation.

The implementation was simple: We measured LOC (unlike with Python, only for non-comment,
non-blank lines) for each method in the Class Under Test (CUT) using the Understand [95] tool
and then used Randoop’s ability to take as input a list of methods to test to bias probabilities ac-
cordingly. That is, in place of simply listing all methods of the CUT, we duplicated each method in
the list a number of times equal to its LOC, thus biasing the probability in favor of larger methods
in exactly the same way as with the Python testing. Unlike with Python, there was no dynamic
sampling, consideration of additional methods called by a top-level method, or need to specify
probabilities for “actions” not calling CUT code. Simply measuring top-level method LOC is rea-
sonable in the Randoop context, since Randoop is not performing property-based testing with
complex actions, but testing at the method level.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

https://github.com/jwilk/python-afl
https://github.com/jwilk/python-afl
https://github.com/jmcgeheeiv/pyfakefs/issues/378
https://github.com/jmcgeheeiv/pyfakefs/issues/378

28:24 J. Holmes et al.

Fig. 5. Randoop coverage, default and with LOC heuristic.

For our experiments, we used a set of 1,177 Java classes taken from 27 projects hosted on GitHub
and used in previous work on measuring testedness [3].7 We randomly selected projects until we
had ≥ 1000 classes, then applied Randoop to all of each project’s classes, first using the standard
Randoop settings, and then again with no changes except use of LOC to bias method choice. Note
that here measurement of LOC is a purely static, nearly zero cost activity, and there is no coverage
measurement during test generation for any approach. Coverage was measured by instrumenting
and executing generated unit tests.

The results are, at a high level, similar to those for Python: The LOC heuristic is sometimes
harmful, but more often produces an improvement in test effectiveness. Using the LOC heuristic
increased mean branch coverage in unit tests for these classes produced by Randoop from 1,640.7
branches to 1,924.1 branches (a 17.3% improvement), and mean statement coverage from 16,010.8
statements to 18,241.4 statements (a 13.9% improvement). The changes in median coverage were
from 72.0 to 479.0 branches and from 234.0 to 6,963.0 statements. These results were significant
by Wilcoxon test [9], with p < 1.5 × 10−6. Figure 5 shows coverage, over all classes, normalized.
Normalization means that we consider the maximum coverage for either the default Randoop or
LOC heuristic suite to be “100% coverage.” This allows us to show results for very different class
sizes using a consistent scale. The graph makes it clear that, while there were many classes where
LOC was not useful, overall the effect was striking, with coverage much more tightly clustered
close to the maximum observed. Median coverage (both kinds) for LOC was 100%; default coverage
fell to 98.1% (branch) and 99.1% (statement). Mean branch coverage improved from 65.7% to 78.1%
using the LOC heuristic, and mean statement coverage from 67.5% to 81.3%. Normalized results
are significant with p < 1.5 × 10−11.

At the project level, coverage change was significant for only six projects (in part because most
projects do not have very many classes). For five of these projects, branch (+4.9%, +10.2%, +12.5%,
+33.0%, +112.6%) and statement coverage (+10.3%, +11.6%, +10.1%, +33.8%, +87.6%) both improved
significantly, and absolute gains were larger than a mean of 1K branches/statements (in one case
more than 10K statements) for all but one project. The other project had a significant decrease of
23.6% in branch coverage only, about 1K branches. The largest gain from using LOC at project level
was 200% improvement in mean branch and statement coverage. More than 47 individual classes
(across 11 different projects) had gains of 2000% or more, however.

7Thus, projects known to compile, pass all tests, and be analyzable by Understand.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:25

3.8 Using Outdated LOC Estimates

To estimate the impact of the quality of the LOC estimates, where a large impact would force pro-
grammers to frequently re-analyze their code, we ran the exact same experiment as for RQ1–RQ3,
except using probabilities sampled from older versions of the system, for all of the SUTs where
(1) the LOC heuristic was more effective than random testing and (2) there existed significantly
older versions of the code compatible with the test harness. In each case, we used as old a ver-
sion as was compatible with the API of the latest version of the system with respect to the test
harness.

For SymPy, we were able to revert all the way from the 1.0 release (2016-3-8) to the 0.7.6 re-
lease (2014-11-20); difference of 3,559 commits with total diff size, measured in lines, of 214,125).
For python-rsa, we based probabilities on version 3.1.1 (2012-06-18; 131 commits/diff size 6,338),
nearly four years older than the current version 3.4.2 (2016-03-29). With redis-py, we reverted
to version 2.10.0 (2014-06-01; 90 commits/diff size 1,380) in place of the current version, 2.10.5
(2015-11-2). Finally, for sortedcontainers, we only reverted to version 1.5.2 (2016-05-28; 21 com-
mits/diff size 1,090) in place of version 1.5.7 (2016-12-22); earlier versions removed a few interesting
functions to test, and we wanted to see if a somewhat closer-to-latest version changed results in
an obvious way. In all cases, the results were either very similar and statistically indistinguishable
(p > 0.05), or, for SymPy, superior to, results using recent, more accurate counts.

3.9 Using LOC with Larger Test Budgets

To check whether the LOC heuristic remains viable for longer test budgets, we also ran one hour
of testing on the SUTs where LOC was effective for small budgets, coverage is not close to 100%
at 60 seconds (and does not saturate reliably within two minutes, at least), and there are no faults.
Our expectation was that while LOC is generally useful for improving coverage of both code
and state-space, its tendency to focus on high-heuristic-value methods might eventually cause
those portions of the code to become saturated, and some low-LOC methods or functions (es-
pecially ones that have few LOC but can, under unusual circumstances, call high-LOC methods
not included in the dynamic estimate) to be under-covered. In all cases LOC continued to im-
prove on pure random testing for much larger test budgets. Figures 6(a)–6(e) show the results of
15 runs for both LOC and pure random testing, with 95% confidence intervals.8 In most cases,
even after an hour, LOC was better than pure random testing, often by a large, significant mar-
gin. With TensorFlow (Figure 6(d)) and z3 (Figure 6(e)), there was saturation, in that coverage
reliably reached the maximum obtained within a few minutes (10 for TensorFlow and 2 for z3);
however, random testing required more than 30 minutes to reliably hit the same set of branches.
Results for statement coverage were (except for absolute numbers) essentially identical to those for
branch coverage. For SymPy, not shown in the graphs, most one-hour runs encountered an infinite
loop fault, which may produce skewed results over completed runs; however, LOC covered 16,569
branches vs. random testing’s 11,038 branches, for the one successful run for each we eventually
collected.

We confirmed that after 20 minutes (and usually after less than 60 seconds), all action classes had
been chosen many times, so the differences here are not plausibly attributable to the low-hanging-
fruit nature of larger functions. Instead, these gains must be due to hard-to-cover branches being
more common in longer functions and the greater impact of longer functions on system state.

8To make the saturation points more visible, we cut off the bottom of the very first confidence interval for TensorFlow:
pure random can sometimes cover as few as 2,200 branches.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

28:26 J. Holmes et al.

Fig. 6. One-hour testing branch coverage results.

4 SUMMARY AND DISCUSSION

4.1 Core Research Questions

For our core research questions (RQ1–3), we generally found that the LOC heuristic was effective.
RQ1 could be clearly answered by saying that, in general, the LOC heuristic performs better than
random testing without use of the heuristic to bias probabilities. For five of the six SUTs with

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:27

faults, using the LOC heuristic significantly improved fault detection over pure random testing.
The LOC heuristic had a negative impact on fault detection for the remaining SUT, but the change
was not (unlike the improvements) statistically significant. The effect sizes in improvements were
large; ignoring the one case where only using LOC allowed detection of any faults, the mean
improvement was 176.8%. Using the LOC heuristic significantly improved branch coverage over
pure random testing for 8 of the 15 SUTs and significantly decreased it for 4 of the SUTs. The
mean significant improvement effect size (+21.7%) was more than twice than the mean significant
decrease (−10.4%). Using the LOC heuristic also significantly improved statement coverage for
10 of the 15 SUTs and significantly decreased it for 4 of the SUTs. Mean significant improvement
was 16.9%, compared to mean decrease of 10.0%. Our hypothesis was that LOC would outperform
random testing by either a code coverage or fault localization meeasure for 60% of SUTs; LOC
significantly improved on random testing by some measure for 80% of SUTs.

The results for comparing to more sophisticated strategies (RQ2) were also good. LOC was sig-
nificantly better for fault detection than the coverage-driven mutational GA for 4 SUTs and worse
for only 1 SUT, with mean effect sizes of +375.6% and −90%, respectively. LOC was significantly
better than GA for branch coverage for 8 of the SUTs and significantly worse for 6 of the SUTs,
with mean effect sizes of +17.4% and −11.0%, respectively. For statement coverage, LOC was sig-
nificantly better for 9 SUTs and worse for 5 SUTs, with mean significant effect sizes of +15.1% and
−12.9%, respectively. LOC was significantly better than swarm for fault detection for three SUTs
and worse for no SUTs, with mean effect size of +134.9%. LOC was significantly better than swarm
for branch coverage for 7 of the SUTs and significantly worse for 6 of the SUTs, with mean effect
sizes of +6.4% and −34.3%, respectively. For statement coverage, LOC was significantly better for
7 SUTs and worse for 6 SUTs, with mean significant effect sizes of +6.7% and −34.4%, respectively.

For GA, the comparison is clearly favorable for the LOC heuristic; it was better by some mea-
sure for more than 80% of SUTs. For swarm testing, LOC was better more often for all measures
(improving on some measure for 66% of SUTs), and swarm was not useful for finding the bugs
in our faulty SUTs, but, as noted above, when swarm is effective for coverage, it can be highly
effective, with a greater positive impact than LOC had.

As to why LOC performed better or worse than GA or swarm, the explanation can be divided
into two parts. For the SUTs where LOC is actually harmful—that is, worse than pure random
testing—it unsurprisingly is also worse than more effective testing methods than random testing.
We discuss possible causes for LOC performing worse than random testing below. This explains
most of the cases where LOC performs worse than GA and swarm, simply: It performs worse
when it is generally a bad idea to bias based on LOC, even compared to pure random testing.
That is, the best way to predict if LOC will be more or less useful than the other two methods is
to see if it is helpful compared to random testing. When LOC is worse than random, it is likely
to lose to methods that tend to do better than random. This point is not quite as tautological as
it might seem: The other two cases for worse branch coverage are explained by GA or swarm
providing a large benefit LOC cannot match, although LOC is useful. Swarm testing is, as noted,
very powerful for compiler-like SUTs, and a search-based mutational approach is sometimes the
only way to hit a hard-to-reach part of an SUT’s code, unsurprisingly. This is why these methods
are established; they provide substantial, hard-to-duplicate benefits in some cases. LOC could have
performed worse than GA and swarm in all cases, even if it was almost always a useful method,
because they are even more powerful methods in general. This was not what we observed; instead,
when LOC was helpful, it was often more helpful than the other methods, but LOC also has cases
where it is not helpful, even compared to a “bad” method such as pure random testing.

Finally, combining methods (RQ3) was often useful. The GA using the LOC heuristic was the
most effective method overall, for both branch coverage and fault detection, and swarm with LOC

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

28:28 J. Holmes et al.

was the best method for branch coverage twice, while swarm alone was never the best method
for any SUT. In particular, combining the GA and the LOC heuristic was significantly better than
LOC alone for 2 SUTs and worse for 1 for fault detection, and better than LOC alone for 6 SUTs
and worse for 1 for both branch and statement coverage. It was significantly better than the GA
alone for 3 SUTs and worse for 2 SUTs for fault detection, and significantly better for 11 SUTs
and worse for 3 SUTs for both branch and statement coverage. Combining with swarm testing
was less effective; it was significantly better than the LOC heuristic alone for 2 SUTs and worse
for 3 for fault detection, and significantly better for 3 SUTs and worse for 10 for both branch and
statement coverage. Similarly, it was significantly better than swarm alone for 1 SUT and worse
for 3 SUTs for fault detection, significantly better for 3 SUTs and worse for 7 SUTs for branch cov-
erage, and significantly better for only 2 SUTs and worse for 8 SUTs for statement coverage. Thus,
while swarm and LOC certainly can cooperate (recall that LOC improved swarm performance
for the 3 SUTS that were most improved by swarm, the C parser, redis-py, and z3), they often
do seem to work poorly together. We speculate that in some cases, LOC, by focusing testing on
high-LOC functions, frustrates the increased test diversity provided by swarm testing; that is, if a
configuration includes one high-LOC function, that function may consistently get the lion’s share
of testing, reducing the impact of swarm (tests look more alike, despite different configurations).
Swarm, however, frustrates LOC’s goal by often removing all high-LOC functions from the set
of available actions. However, given that LOC improved swarm performance for just those SUTs
where swarm was most useful, this negative effect may only matter when swarm testing itself is
not highly effective.

4.2 Supplemental and Exploratory Results

While these results are more exploratory than for our primary questions, we also can draw
some additional conclusions. First, we believe that using the current-state-of-the-art tool
(coverage.py)—even in its latest version and with a JIT—there is a substantial overhead for com-
puting dynamic coverage in Python. Not instrumenting for coverage allows a testing tool to per-
form more than half again as much testing (that is, to execute more test actions, by a factor of 1.5),
in the median case, even using a JIT. This is not a small advantage. Second, python-afl shows that
using an off-the-shelf fuzzer, even a sophisticated one, does not compete with even a pure random
tester for this type of short-budget property-based testing, at least without substantial additional
effort. The LOC heuristic also seems to be able to improve code coverage for Java testing as well,
when used to bias the Randoop tool’s generation method. Outdated LOC estimates seem to have
little (negative or positive) impact on effectiveness of results, even across fairly large code changes,
so long as the tested API itself is not altered. Finally, for some of our SUTs, the utility of the LOC
heuristic extends to much larger testing budgets.

4.3 Discussion

Is the LOC heuristic likely to be universally effective for improving testing in settings with ex-
pensive code coverage instrumentation? No; it yields worse results for some of our Python SUTs.
For large budget testing, this would be a real problem. In practice, few, if any, test generation
heuristics are close to universally effective, and the chance that a given, usually useful, heuristic
may prove harmful, which cannot be easily predicted or detected (since we may only have time
to run one technique) is frustrating with large test budgets. For instance, in our experiments, such
established methods as a coverage-driven GA and swarm testing both perform worse than pure
random testing in terms of branch coverage for 5 SUTs, and worse in terms of fault detection for 3
and 2 SUTs, respectively. This obviously does not mean these are “bad” methods, merely that they
are heuristic. We note that the corresponding “worse than random” numbers for the LOC heuristic

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:29

are 4 for branch coverage and 1 for fault detection, so a standard that would reject it would also
presumably dismiss other well-established test generation approaches.

An expert performing an automated code audit for security testing has strong incentive to
choose the most powerful fuzzing technique, but may have little way of knowing up front which
method will perform best on a previously untested SUT and lack resources to try multiple methods
with full effect. In contrast, if a heuristic is often effective for small test budgets, and if effective-
ness tends to be consistent for the same SUT over time, then it is easy to try several different
techniques, measure coverage for them all, and configure the testing to apply the best technique.
Our experimental results show that in such a setting the LOC heuristic would often be chosen,
either by itself or in combination with another method.

Moreover, we can sometimes predict when the LOC heuristic will not be effective. When we ex-
amined the simplejson harness, we predicted that LOC would not work well. There are only four
action classes that call any SUT code, and these four action classes only call two different meth-
ods, dumps and loads. The majority of the interesting behavior during testing is the generation
of Python values to be encoded as JSON. The simplejson harness includes a property that calls
both loads and dumps (to check that basic encoding and decoding work properly for all generated
Python values). Properties are checked after every action, ensuring that the important functions
to test are called. Actions call loads and dumps with various optional parameters, but LOC does
not help distinguish which of these are most important to test, since they all rely on the same
functions. When most testing of the SUT is accomplished by a property, not by actions, the LOC
heuristic is likely to be useless or even harmful.

However, bidict is very similar to sortedcontainers, except that sortedcontainers has
many more action classes (due to being larger and more complex). We do not know why the LOC
heuristic makes bidict testing less effective, but speculate that all of the high probability actions
calling the same function (via wrappers) may be responsible. The LOC heuristic thus concentrates
too much on the update method. The sortedcontainers high probability action classes are much
more diverse, including list slice and index modifications, the constructor for a SortedDict, a
copy method, set union, and dictionary keys counting. A similar problem may explain the poor
performance on biopython: More than 30% of the probability distribution is split between just two
action classes, both of which call complex (and potentially computationally expensive) algorithms
with no impact on object state, and both of which do not actually offer much in terms of coverage,
since the harness has trouble producing non-trivial inputs that satisfy their preconditions (most
inputs generated seem to be valid but uninteresting, the equivalent of empty lists). Finally, arrow
has worse performance for LOC, as far as we can tell, almost entirely due to the fault LOC finds so
much more frequently; unfortunately, due to the nature of the fault itself, it is hard to make TSTL
not slower, even if we ignore the failing tests (restarting testing due to these faults is costly).

A better question might be, why is the LOC heuristic so effective when it works? One possibility
is that during a 30- or 60-second test run, not all action classes are explored by pure random testing.
The LOC heuristic ensures that the action classes never chosen will usually be ones with a small
LOC count—if you cannot cover everything, at least cover the “big” actions. In some cases this is
critical; for example, in the C parser, making sure that every test run at least attempts to parse
a program is essential to effective testing and explains most of the difference between LOC and
pure random testing for 30–60-second budgets. Alternative methods for avoiding failing to cover
important action classes (such as the bias in our LOC sampling) are likely to impose a much larger
overhead on testing than the LOC heuristic.

However, this does not explain the results for every SUT and obviously does not explain the
continued utility of the LOC heuristic over longer runs as shown in Figures 6(a)–6(c). For redis-py
all action classes are easily covered after as little as five minutes of random testing, on average.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

28:30 J. Holmes et al.

The C parser’s actions (with the exception of one action that never calls any SUT code and appears
to only exist to reset uninteresting completed programs that do not contain any conditionals) are
similarly usually covered in 10 minutes or less. Only sortedcontainers poses a challenge for
random testing, in terms of action-class coverage, due to a very large number of action classes,
and even for it, 25 minutes of testing almost always suffices for complete action class coverage.
While the gap between pure random testing and the heuristic arguably closes somewhere near
the point when all classes have been tested, it does not disappear in any of these cases, and for
redis-py and sortedcontainers, the gap never disappears, even after an hour of testing.

We include the AVL and heap examples precisely because they feature extremely small inter-
faces, with only a few test actions, and saturate (or come close to saturating) coverage even during
a 60-second run. For the heap example, pure random testing executes the least-taken action class
about 40 times on average, during 30-second runs, and for AVL the only action class with a sig-
nificant probability of not being taken is the action of displaying an AVL tree (which is not in
any way helpful in detecting the fault); the next least-frequently executed action class is executed
about 10 times during 30 seconds of random testing. Why is LOC able to triple the fault detec-
tion rates for these simple SUTs? The best explanation we can propose is that our assumptions
discussed in the introduction to this article are frequently true for individual SUTs: Longer func-
tions modify system state more and perform more complex computation. All things being equal,
they contribute more to test effectiveness, and calling such functions more frequently helps detect
faults, both by modifying system state in more complex ways and performing complex computa-
tions that expose erroneous state. An alternative way of seeing the same effect is to observe that
the LOC heuristic decreases the frequency with which tests perform simple query actions, such
as AVL tree traversal, checking emptiness of a container, or drawing a random byte in a cryptog-
raphy library. And, indeed, when we investigate the details of the faults found much more easily
for sortedcontainers, arrow, pyfakefs, and the toy examples, the bugs are located in unusually
large functions that also have ways to execute very little code (conditions under which they do
very little), just as we would expect. Such code is probably quite common, in that “do nothing for
simple inputs (e.g., empty lists), do a lot for complex inputs (e.g., nested lists)” is a common pattern
in many algorithms. LOC seems to help hit the first case.

More generally, one overall take-away from this article should be that test generation heuris-
tics are not equally effective for all SUTs and test harnesses; rather, performance varies widely by
the structure of the input and state space. This is not a novel observation, of course [98, 99]. In a
sense, this goes with the territory of heuristics, vs. mathematically proven optimizations of testing
(alas, the latter are rarely possible) [47, 51]. Examining methods in isolation is also insufficient to
obtain maximally effective testing: While combining methods sometimes reduced effectiveness, a
combination of some method with LOC was often the most effective approach. Assuming effec-
tiveness ranking is stable for each SUT over time (at least over days or weeks, which seems highly
likely), we believe that projects seeking effective automated test generation should run simple ex-
periments to determine good test generation configurations once and then re-use those settings,
perhaps parameterized by test budget (e.g., different settings may be needed for testing during de-
velopment, 10-minute “coffee break” testing, “lunch-hour” testing, and overnight runs). Because it
is performed most frequently and is most useful for debugging (faults are easiest to fix just after
introduction), it is fortunate that tuning very small test budgets is quite easy. In our Python ex-
periments, we note that the most effective method seldom changed between results for as few as
10 tests and for the full 100-test experiments. Effect sizes that matter can be detected in less than
an hour.

We therefore propose a simple, one-time method for choosing a standard property-based testing
approach for an SUT under development/test. Run pure random testing, LOC alone, the GA, and

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:31

swarm, 10 times each, for 1 minute. This requires 40 minutes, a reasonable cost for a one-time
decision that can improve small-budget testing for a long development period. If LOC performs
worse than pure random testing, use whichever method is best (and perhaps combine GA and
swarm if both outperform pure random testing, though we have no experimental data on this
combination). If LOC is better than pure random testing, combine it with GA, or swarm, or perhaps
both, if they also improved on random testing. Finally, and critically, if the approach chosen does
not include use of the GA, run testing without coverage instrumentation to take advantage of the
higher throughput LOC and swarm allow.

Moreover, there is often no reason to find “the best method.” In modern security fuzzing,
there is a growing awareness that predicting the best method is difficult, and ensemble meth-
ods are highly effective [22]; tools from firms performing security audits are beginning to
reflect this wisdom (https://blog.trailofbits.com/2019/09/03/deepstate-now-supports-ensemble-
fuzzing/). Running LOC, GA, GA+LOC, and swarm+LOC for 15 seconds each might well be the
best use of 60 seconds of test budget for an SUT. Certainly for larger test budgets, this is likely to
be the case, due to the diversity effect seen in security fuzzing and in our fault detection results.
This diversity effect, after all, is the inspiration for highly successful swarm verification [61] and
testing [52] methods, themselves.

Finally, despite the wide variance of heuristic performance, our results for Python and Java were
surprisingly similar, given that we used the LOC heuristic in combination with quite different
underlying random testing methods, for different languages, different styles of testing (property-
based with a harness and more complex oracle vs. automatic unit test generation for classes), and
even different notions of LOC (dynamic sampling vs. purely static, and with comments/blank lines
vs. code only). We believe this provides a strong argument that LOC does provide a good, if rough,
measure of the ability of “test actions” (broadly conceived) to explore SUT/CUT behavior. In other
words, our results support our belief that, while there may be even better answers to the “f or
g?” question (though we suspect even these would take function size into account as one among a
number of factors), testing the function with more LOC is a good, and practically useful, approach.

5 THREATS TO VALIDITY

Internal Validity: For our SUTs, we believe the causal relationships for primary RQs are un-
likely to be spurious; we used 100 runs and compared results using appropriate statistical tests that
do not assume normality [9]. We do not claim that the LOC heuristic is uniformly effective, only
that, for the SUTs considered, it often improves fault detection, branch, and statement coverage by
a significant amount. The Java experiments are highly preliminary, essentially exploratory, since
they do not include fault detection results.

External Validity: The primary threats are to external validity. The Python results are based on
a limited set of programs with harnesses already existing in the TSTL repository when we began
this investigation. We did not modify the harnesses and only used harnesses covering a realistic
subset of library behavior (test harnesses that might be used in practice and in three cases that
have been used to report real faults). Two of the subjects are essentially small toy examples. The
remaining SUTs are popular real-world Python libraries with a large number of GitHub stars or pip
downloads, but only three of the projects (SymPy, biopython, and TensorFlow) are extremely large.
However, in practice, property-based testing is usually focused on a smaller subset of a system,
and the 500–5,000 LOC size of most of the subjects (around 2KLOC for most) is likely a reasonable
approximation of the size of SUT where small budget testing is likely to be highly effective (and
reflects the size of many important Python libraries with subtle behaviors: Python is a highly com-
pact language with similarities to Haskell in terms of density [43]). The Java projects were chosen
[3, 64, 97] to be representative open source Java projects, but may be subject to bias due to GitHub’s

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

https://blog.trailofbits.com/2019/09/03/deepstate-now-supports-ensemble-fuzzing/
https://blog.trailofbits.com/2019/09/03/deepstate-now-supports-ensemble-fuzzing/

28:32 J. Holmes et al.

unknown selection methods. While the exact cross-method comparisons are unlikely to be pre-
served, we think it is highly unlikely that LOC is not at least frequently a useful bias to impose on
any test method that chooses from a random set of actions representing method or function calls.

Construct Validity: The test generation methods use a common code base in TSTL and the
coverage.py tool for collecting Python coverage data. The threats to our results would arise from
either (1) an incorrect implementation of one of our test generation methods, meaning that we
evaluate a different testing approach than we claim to, or (2) an error in coverage.py that some-
how favors one method over another. We inspected the implementations of the testing methods
in TSTL carefully, and they have been tested on multiple SUTs, including simple ones where we
were able to follow the data structures used by approaches and compare to expected results and
tests. The coverage.py library is very widely used, and it is further unlikely that any subtle bugs
in it favor one testing approach more than another. However, it is possible that errors in these
implementations did bias our results. We welcome independent re-implementations to check for
the possibility of remaining consequential errors. The Java experiment relies only on the ability
of Understand to count LOC and Randoop to bias probabilities using a method list: Any errors in
Randoop itself would only change the context of the comparison, not the impact of using LOC.

6 RELATED WORK

There is a long line of work investigating relationships between static code measures such as LOC
and defects in code, though usually at the module or file level and never in the context of test
generation. Radjenović et al. [91] provide a detailed literature review of metrics used for fault
prediction. Zhang [115] showed that 20% of the largest modules studied contained 51%–63% of
the defects. Ostrand et al. [86] showed that the largest 20% of files contained between 59%–83%
of the faults. Koru et al. [67] and Syer et al. [103] reported that defect proneness increases with
module size, but at a slower rate. Other studies [5, 34, 85] also showed that LOC correlates with
the number of faults. In general, all of this work aims to advise developers to keep code small,
rather than to aid testing; it has never proven a highly useful method even for default prediction,
compared to less generic techniques [34, 44, 81, 119]. There are also a large number of metrics
designed specifically for object-oriented programs. Some (referred to as CBO, WMC, and RFC in
the relevant papers) have been proposed as useful predictors of pre-release faults [12, 18, 53, 85,
88], while other measures, such as LCOM, DIT, and NOC, did not perform well [53, 85, 85, 88,
118]. Olague et al. [85] claimed that the QMOOD metrics [11] were suitable for fault prediction,
while the MOOD suite of metrics [28, 29] was not. Cohesion metrics (LCC and TCC) [14] had
modest effectiveness for predicting future faults [18, 74], and coupling metrics, proposed by Briand
et al. [17] were good predictors of future faults [16–18, 31]. Our work, rather than demonstrating a
coarse, weak correlation between code entity size and defects detected, uses code size to drive test
generation, improving code coverage and fault detection. As discussed in the conclusion, it would
be interesting to use some of the above measures, or other (semi-)static measures, than LOC to
bias testing, or in combination with LOC, including ones not highly useful in isolation. Further
possible interesting measures to investigate include code changes/revision history [19, 30, 32, 39,
94, 108–110], source file [21, 57, 94, 108, 109], number of contributors [56], class dependencies
[100], component changes [116, 117], estimated execution time [101, 104], or filed-issue-related
metrics [32, 56, 75, 76, 110].

LOC has sometimes been used as a independent variable or as an objective function in search-
based-software engineering. Fatinegun et el. [33] looked at heuristics to reduce the size of program,
and Dolado et al. [26] proposed a technique to estimate the final LOC size of a program. Again,

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:33

the purposes of these uses (or estimations) of LOC are completely different than our proposed
heuristic to guide random test generation.

Previous approaches to tuning probabilities in random testing, such as Nighthawk [6] and ABP
[47] learned probabilities based on coverage feedback, rather than assigning fixed probabilities
based on a simple (and essentially static) metric of the tested code, the core novel concept pre-
sented in this article. Randoop [87] and other feedback-based approaches [112] arguably obtain
part of their effectiveness from an indirect avoidance of short functions that do not modify state,
but pay the cost of determining if a call produces no state change. To our knowledge the size of
functions/methods has never been used as even a factor in the decision of which API calls to make
in automated test generation. Arguably, an approach such as that taken by VUzzer [92], a fuzzer
where code regions with “deep” and “interesting” paths are prioritized based on static analysis of
control features, bears some abstract, high-level resemblance to our method, but the actual heuris-
tics used and settings are utterly different. The methods with which we compare in this article,
a genetic algorithm-based approach, and the swarm approach, are based on alternative proposed
methods for guiding this type of random testing, in particular evolutionary approaches such as
EvoSuite [36] and the swarm testing concept of configuration diversity [52], which was originally
inspired by the use of diverse searches in model checking [59–61]. The swarm notion of diversity
also informed our decision to evaluate combinations of orthogonal heuristics, under the assump-
tion that no single method for guiding testing is likely to be best in all, or even most, cases.

7 CONCLUSIONS AND FUTURE WORK

This article argues that simply counting the relative LOC of software components can provide
valuable information for use in automated test generation. We show that biasing random testing
probabilities by the LOC counts of tested functions and methods can improve the effectiveness
of automated test generation for Python. The LOC heuristic often produces large, statistically
significant improvements in both code coverage and fault detection. As future work, we propose
to further investigate the LOC heuristic, including for larger test budgets, given the promise shown
in a few longer runs.

More generally, the LOC heuristic opens up a new approach to biased random test generation
based on the “f or g?” thought experiment. For instance, one promising next step is to modify the
heuristic to also bias testing towards executing code that has been the subject of a static analysis
tool warning, is less tested in existing tests, or is otherwise anomalous [93]; alternatively, we
can use cyclomatic complexity [68, 78] or another more “sophisticated” measure (e.g., number
of mutants) in place of simple LOC or use various measures discussed in Section 6 to refine the
LOC estimate of desirability of a test action. For instance, for what is perhaps property-based unit
testing’s most important goal—detecting errors newly introduced into code during development—
an integration with directed swarm testing [4] to target recently changed code is both feasible and
very promising.

REFERENCES

[1] Ali Aburas and Alex Groce. 2016. A method dependence relations guided genetic algorithm. In Proceedings of the

8th International Symposium Search Based Software Engineering (SSBSE’16). 267–273.
[2] Hiralal Agrawal. 1994. Dominators, super blocks, and program coverage. In Proceedings of the 21st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL’94). ACM, New York, NY, 25–34. DOI:
https://doi.org/10.1145/174675.175935

[3] Iftekhar Ahmed, Rahul Gopinath, Caius Brindescu, Alex Groce, and Carlos Jensen. 2016. Can testedness be effectively
measured? In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering

(FSE’16). ACM, New York, NY, 547–558. DOI:https://doi.org/10.1145/2950290.2950324

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

https://doi.org/10.1145/174675.175935
https://doi.org/10.1145/2950290.2950324

28:34 J. Holmes et al.

[4] Mohammad Amin Alipour, Alex Groce, Rahul Gopinath, and Arpit Christi. 2016. Generating focused random tests
using directed swarm testing. In Proceedings of the 25th International Symposium on Software Testing and Analysis

(ISSTA’16). ACM, New York, NY, 70–81. DOI:https://doi.org/10.1145/2931037.2931056
[5] C. Andersson and P. Runeson. 2007. A replicated quantitative analysis of fault distributions in complex software

systems. IEEE Trans. Softw. Eng. 33, 5 (May 2007), 273–286. DOI:https://doi.org/10.1109/TSE.2007.1005
[6] James Andrews, Felix Li, and Tim Menzies. 2007. Nighthawk: A two-level genetic-random unit test data generator.

In Proceedings of the ACM/IEEE International Conference on Automated Software Engineering. 144–153.
[7] Jamie Andrews, Yihao Ross Zhang, and Alex Groce. 2010. Comparing Automated Unit Testing Strategies. Technical

Report 736. Department of Computer Science, University of Western Ontario.
[8] James H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is mutation an appropriate tool for testing experiments? In

Proceedings of the International Conference on Software Engineering. 402–411.
[9] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests for assessing randomized algorithms

in software engineering. Softw. Test. Verif. Reliab. 24, 3 (2014), 219–250.
[10] Andrea Arcuri, Muhammad Zohaib Z. Iqbal, and Lionel C. Briand. 2010. Formal analysis of the effectiveness and

predictability of random testing. In Proceedings of the International Symposium on Software Testing and Analysis.
219–230.

[11] J. Bansiya and C. G. Davis. 2002. A hierarchical model for object-oriented design quality assessment. IEEE Trans.

Softw. Eng. 28, 1 (Jan. 2002), 4–17. DOI:https://doi.org/10.1109/32.979986
[12] V. R. Basili, L. C. Briand, and W. L. Melo. 1996. A validation of object-oriented design metrics as quality indicators.

IEEE Trans. Softw. Eng. 22, 10 (Oct. 1996), 751–761. DOI:https://doi.org/10.1109/32.544352
[13] Ned Batchelder. 2015. Coverage.py. Retrieved from https://coverage.readthedocs.org/en/coverage-4.0.1/.
[14] James M. Bieman and Byung-Kyoo Kang. 1995. Cohesion and reuse in an object-oriented system. SIGSOFT Softw.

Eng. Notes 20, SI (Aug. 1995), 259–262. DOI:https://doi.org/10.1145/223427.211856
[15] Marcel Böhme and Soumya Paul. 2014. On the efficiency of automated testing. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering (FSE’14). ACM, New York, NY, 632–642.
DOI:https://doi.org/10.1145/2635868.2635923

[16] Lionel C. Briand and Jürgen Wüst. 2002. Empirical studies of quality models in object-oriented systems. Advances

in Computers, Vol. 56. Elsevier, 97–166. DOI:https://doi.org/10.1016/S0065-2458(02)80005-5
[17] Lionel C. Briand, Jürgen Wüst, Stefan V. Ikonomovski, and Hakim Lounis. 1999. Investigating quality factors in

object-oriented designs: An industrial case study. In Proceedings of the 21st International Conference on Software

Engineering (ICSE’99). ACM, New York, NY, 345–354. DOI:https://doi.org/10.1145/302405.302654
[18] Lionel C. Briand, Jürgen Wüst, and Hakim Lounis. 2001. Replicated case studies for investigating quality factors in

object-oriented designs. Empir. Softw. Eng. 6, 1 (2001), 11–58. DOI:https://doi.org/10.1023/A:1009815306478
[19] G. Buchgeher, C. Ernstbrunner, R. Ramler, and M. Lusser. 2013. Towards tool-support for test case selection in

manual regression testing. In Proceedings of the IEEE 6th International Conference on Software Testing, Verification

and Validation Workshops. 74–79. DOI:https://doi.org/10.1109/ICSTW.2013.16
[20] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and automatic generation of high-

coverage tests for complex systems programs. In Proceedings of the Conference on Operating System Design and

Implementation. 209–224.
[21] R. Carlson, H. Do, and A. Denton. 2011. A clustering approach to improving test case prioritization: An industrial

case study. In Proceedings of the 27th IEEE International Conference on Software Maintenance (ICSM’11). 382–391.
DOI:https://doi.org/10.1109/ICSM.2011.6080805

[22] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou, Xun Jiao, and Zhuo Su. 2019. EnFuzz:
Ensemble fuzzing with seed synchronization among diverse fuzzers. In Proceedings of the 28th USENIX Security

Symposium (USENIX Security’19). 1967–1983.
[23] Kalyan-Ram Chilakamarri and Sebastian Elbaum. 2004. Reducing coverage collection overhead with disposable in-

strumentation. In Proceedings of the 15th International Symposium on Software Reliability Engineering (ISSRE’04).
IEEE, 233–244.

[24] Travis CI. 2012. Customizing the Build: Build Timeouts. Retrieved from https://docs.travis-ci.com/user/customizing-
the-build/#Build-Timeouts.

[25] Koen Claessen and John Hughes. 2000. QuickCheck: A lightweight tool for random testing of Haskell programs. In
Proceedings of the International Conference on Functional Programming (ICFP’00). 268–279.

[26] J. J. Dolado. 2000. A validation of the component-based method for software size estimation. IEEE Trans. Softw. Eng.

26, 10 (Oct. 2000), 1006–1021. DOI:https://doi.org/10.1109/32.879821
[27] Matthew B. Dwyer, Suzette Person, and Sebastian Elbaum. 2006. Controlling factors in evaluating path-sensitive

error detection techniques. In Proceedings of the Symposium on the Foundations of Software Engineering. 92–104.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

https://doi.org/10.1145/2931037.2931056
https://doi.org/10.1109/TSE.2007.1005
https://doi.org/10.1109/32.979986
https://doi.org/10.1109/32.544352
https://coverage.readthedocs.org/en/coverage-4.0.1/
https://doi.org/10.1145/223427.211856
https://doi.org/10.1145/2635868.2635923
https://doi.org/10.1016/S0065-2458(02)80005-5
https://doi.org/10.1145/302405.302654
https://doi.org/10.1023/A:1009815306478
https://doi.org/10.1109/ICSTW.2013.16
https://doi.org/10.1109/ICSM.2011.6080805
https://docs.travis-ci.com/user/customizing-the-build/#Build-Timeouts
https://docs.travis-ci.com/user/customizing-the-build/#Build-Timeouts
https://doi.org/10.1109/32.879821

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:35

[28] Fernando Brito e Abreu and Rogério Carapuça. 1994. Object-oriented software engineering: Measuring and control-
ling the development process. In Proceedings of the International Conference on Software Quality (QSIC’94).

[29] F. Brito e Abreu and W. Melo. 1996. Evaluating the impact of object-oriented design on software quality. In Proceed-

ings of the 3rd International Software Metrics Symposium. 90–99. DOI:https://doi.org/10.1109/METRIC.1996.492446
[30] E. D. Ekelund and E. Engström. 2015. Efficient regression testing based on test history: An industrial evaluation.

In Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME’15). 449–457.
DOI:https://doi.org/10.1109/ICSM.2015.7332496

[31] Kalhed El Emam, Saïda Benlarbi, Nishith Goel, and Shesh N. Rai. 2001. The confounding effect of class size on the
validity of object-oriented metrics. IEEE Trans. Softw. Eng. 27, 7 (July 2001), 630–650. DOI:https://doi.org/10.1109/
32.935855

[32] E. Engström, P. Runeson, and G. Wikstrand. 2010. An empirical evaluation of regression testing based on fix-cache
recommendations. In Proceedings of the 3rd International Conference on Software Testing, Verification and Validation.
75–78. DOI:https://doi.org/10.1109/ICST.2010.40

[33] D. Fatiregun, M. Harman, and R. M. Hierons. 2004. Evolving transformation sequences using genetic algorithms.
In Proceedings of the 4th IEEE International Workshop on Source Code Analysis and Manipulation. 65–74. DOI:
https://doi.org/10.1109/SCAM.2004.11

[34] N. E. Fenton and N. Ohlsson. 2000. Quantitative analysis of faults and failures in a complex software system. IEEE

Trans. Softw. Eng. 26, 8 (Aug. 2000), 797–814. DOI:https://doi.org/10.1109/32.879815
[35] M. Fowler. 2010. Domain-specific Languages. Addison-Wesley Professional.
[36] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic test suite generation for object-oriented software.

In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software

Engineering (ESEC/FSE’11). ACM, 416–419.
[37] Gregory Gay. 2018. To call, or not to call: Contrasting direct and indirect branch coverage in test generation. In

Proceedings of the 11th International Workshop on Search-Based Software Testing (SBST’18). ACM, New York, NY,
43–50. DOI:https://doi.org/10.1145/3194718.3194719

[38] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Amin Alipour, and Darko Marinov. 2013. Comparing
non-adequate test suites using coverage criteria. In Proceedings of the International Symposium on Software Testing

and Analysis. 302–313.
[39] Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. 2014. An empirical evaluation and comparison

of manual and automated test selection. In Proceedings of the 29th ACM/IEEE International Conference on Automated

Software Engineering (ASE’14). Association for Computing Machinery, New York, NY, 361–372. DOI:https://doi.org/
10.1145/2642937.2643019

[40] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random testing. In Proceedings

of the Conference on Programming Language Design and Implementation. 213–223.
[41] Peter Goodman. 2016. A fuzzer and a symbolic executor walk into a cloud. Retrieved from https://blog.trailofbits.

com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/.
[42] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code coverage for suite evaluation by developers. In Pro-

ceedings of the 36th International Conference on Software Engineering (ICSE’14). ACM, New York, NY, 72–82. DOI:
https://doi.org/10.1145/2568225.2568278

[43] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Mutations: How close are they to real faults? In Proceedings

of the International Symposium on Software Reliability Engineering. 189–200.
[44] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey Siy. 2000. Predicting fault incidence using software change

history. IEEE Trans. Softw. Eng. 26, 7 (July 2000), 653–661. DOI:https://doi.org/10.1109/32.859533
[45] Alex Groce and Martin Erwig. 2012. Finding common ground: Choose, assert, and assume. In Proceedings of the

International Workshop on Dynamic Analysis. 12–17.
[46] Alex Groce, Alan Fern, Martin Erwig, Jervis Pinto, Tim Bauer, and Amin Alipour. 2012. Learning-based test pro-

gramming for programmers. In Proceedings of the International Symposium on Leveraging Applications of Formal

Methods, Verification and Validation. 752–786.
[47] Alex Groce, Alan Fern, Jervis Pinto, Tim Bauer, Amin Alipour, Martin Erwig, and Camden Lopez. 2012. Lightweight

automated testing with adaptation-based programming. In Proceedings of the IEEE International Symposium on Soft-

ware Reliability Engineering. 161–170.
[48] Alex Groce, Gerard Holzmann, and Rajeev Joshi. 2007. Randomized differential testing as a prelude to formal veri-

fication. In Proceedings of the International Conference on Software Engineering. 621–631.
[49] Alex Groce and Jervis Pinto. 2015. A little language for testing. In Proceedings of the NASA Formal Methods Sympo-

sium. 204–218.
[50] Alex Groce, Jervis Pinto, Pooria Azimi, Pranjal Mittal, Josie Holmes, and Kevin Kellar. 2015. TSTL: The template

scripting testing language. Retrieved from https://github.com/agroce/tstl.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

https://doi.org/10.1109/METRIC.1996.492446
https://doi.org/10.1109/ICSM.2015.7332496
https://doi.org/10.1109/32.935855
https://doi.org/10.1109/32.935855
https://doi.org/10.1109/ICST.2010.40
https://doi.org/10.1109/SCAM.2004.11
https://doi.org/10.1109/32.879815
https://doi.org/10.1145/3194718.3194719
https://doi.org/10.1145/2642937.2643019
https://doi.org/10.1145/2642937.2643019
https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/
https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/
https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1109/32.859533
https://github.com/agroce/tstl

28:36 J. Holmes et al.

[51] Alex Groce and Willem Visser. 2004. Heuristics for model checking Java programs. Softw. Tools Technol. Transf. 6(4)
(2004), 260–276.

[52] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. 2012. Swarm testing. In Proceedings of the

International Symposium on Software Testing and Analysis. 78–88.
[53] T. Gyimothy, R. Ferenc, and I. Siket. 2005. Empirical validation of object-oriented metrics on open source software

for fault prediction. IEEE Trans. Softw. Eng. 31, 10 (Oct. 2005), 897–910. DOI:https://doi.org/10.1109/TSE.2005.112
[54] Richard Hamlet. 1994. Random testing. In Encyclopedia of Software Engineering. Wiley, 970–978.
[55] Mark Harman and Peter O’Hearn. 2018. From start-ups to scale-ups: Open problems, challenges and myths in static

and dynamic program analysis for testing and verification. In Proceedings of the IEEE International Working Confer-

ence on Source Code Analysis and Manipulation.
[56] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The art of testing less without sacrific-

ing quality. In Proceedings of the 37th International Conference on Software Engineering (ICSE’15), Vol. 1. IEEE Press,
483–493.

[57] Matthias Hirzel and Herbert Klaeren. 2016. Graph-walk-based selective regression testing of web applications cre-
ated with Google web toolkit. In Proceedings of the Gemeinsamer Tagungsband der Workshops der Tagung Software

Engineering (SE’16). 55–69. Retrieved from: http://ceur-ws.org/Vol-1559/paper05.pdf.
[58] Josie Holmes, Alex Groce, Jervis Pinto, Pranjal Mittal, Pooria Azimi, Kevin Kellar, and James O’Brien. 2018. TSTL:

The template scripting testing language. Int. J. Softw. Tools Technol. Transf. 20, 1 (2018), 57–78.
[59] Gerard Holzmann, Rajeev Joshi, and Alex Groce. 2008. Swarm verification. In Proceedings of the ACM/IEEE Interna-

tional Conference on Automated Software Engineering. 1–6.
[60] Gerard Holzmann, Rajeev Joshi, and Alex Groce. 2008. Tackling large verification problems with the swarm tool. In

Proceedings of the SPIN Workshop on Model Checking of Software. 134–143.
[61] Gerard Holzmann, Rajeev Joshi, and Alex Groce. 2011. Swarm verification techniques. IEEE Trans. Softw. Eng. 37, 6

(2011), 845–857.
[62] Laura Inozemtseva. [n.d.]. Supplemental results for “Coverage is not Correlated...”. DOI:http://inozemtseva.com/

research/2014/icse/coverage
[63] Laura Inozemtseva and Reid Holmes. 2014. Coverage is not strongly correlated with test suite effectiveness. In

Proceedings of the 36th International Conference on Software Engineering (ICSE’14). ACM, New York, NY, 435–445.
DOI:https://doi.org/10.1145/2568225.2568271

[64] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of existing faults to enable controlled
testing studies for Java programs. In Proceedings of the International Symposium on Software Testing and Analysis.
ACM, 437–440.

[65] Kazuki Kaneoka. 2017. Feedback-based Random Test Generator for TSTL. Technical Report MS thesis. Oregon State
University.

[66] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating fuzz testing. In Proceedings

of the ACM SIGSAC Conference on Computer and Communications Security (CCS’18). ACM, New York, NY, 2123–2138.
DOI:https://doi.org/10.1145/3243734.3243804

[67] A. G. Koru, D. Zhang, K. El Emam, and H. Liu. 2009. An investigation into the functional form of the size-defect
relationship for software modules. IEEE Trans. Softw. Eng. 35, 2 (Mar. 2009), 293–304. DOI:https://doi.org/10.1109/
TSE.2008.90

[68] Davy Landman, Alexander Serebrenik, Eric Bouwers, and Jurgen J. Vinju. 2016. Empirical analysis of the relationship
between CC and SLOC in a large corpus of Java methods and C functions. J. Software: Evol. Proc. 28, 7 (2016), 589–618.
DOI:https://doi.org/10.1002/smr.1760

[69] David R. MacIver. 2013. Hypothesis: Test faster, fix more. Retrieved from http://hypothesis.works/.
[70] David R. MacIver. 2016. Rule Based Stateful Testing. Retrieved from http://hypothesis.works/articles/rule-based-

stateful-testing/.
[71] David R. MacIver. 2017. Python Coverage could be fast. Retrieved from https://www.drmaciver.com/2017/09/

python-coverage-could-be-fast/.
[72] David R. MacIver. 2017. Coverage adds a lot of overhead when the base test is fast. Retrieved from https://github.

com/HypothesisWorks/hypothesis/issues/914.
[73] David R. MacIver and PyPI. 2015. Usage stats for hypothesis on PyPI. Retrieved from https://libraries.io/pypi/

hypothesis/usage.
[74] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. 2008. Using the conceptual cohesion of classes for fault

prediction in object-oriented systems. IEEE Trans. Softw. Eng. 34, 2 (Mar. 2008), 287–300. DOI:https://doi.org/10.1109/
TSE.2007.70768

[75] D. Marijan. 2015. Multi-perspective regression test prioritization for time-constrained environments. In Proceedings

of the IEEE International Conference on Software Quality, Reliability and Security. 157–162. DOI:https://doi.org/10.
1109/QRS.2015.31

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

https://doi.org/10.1109/TSE.2005.112
http://ceur-ws.org/Vol-1559/paper05.pdf
http://inozemtseva.com/research/2014/icse/coverage
http://inozemtseva.com/research/2014/icse/coverage
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/TSE.2008.90
https://doi.org/10.1109/TSE.2008.90
https://doi.org/10.1002/smr.1760
http://hypothesis.works/
http://hypothesis.works/articles/rule-based-stateful-testing/
http://hypothesis.works/articles/rule-based-stateful-testing/
https://www.drmaciver.com/2017/09/python-coverage-could-be-fast/
https://www.drmaciver.com/2017/09/python-coverage-could-be-fast/
https://github.com/HypothesisWorks/hypothesis/issues/914
https://github.com/HypothesisWorks/hypothesis/issues/914
https://libraries.io/pypi/hypothesis/usage
https://libraries.io/pypi/hypothesis/usage
https://doi.org/10.1109/TSE.2007.70768
https://doi.org/10.1109/TSE.2007.70768
https://doi.org/10.1109/QRS.2015.31
https://doi.org/10.1109/QRS.2015.31

Using Relative Lines of Code to Guide Automated Test Generation for Python 28:37

[76] D. Marijan, A. Gotlieb, and S. Sen. 2013. Test case prioritization for continuous regression testing: An industrial case
study. In Proceedings of the IEEE International Conference on Software Maintenance. 540–543. DOI:https://doi.org/10.
1109/ICSM.2013.91

[77] Paul Dan Marinescu and Cristian Cadar. 2012. make test-zesti: A symbolic execution solution for improving regres-
sion testing. In Proceedings of the International Conference on Software Engineering. 716–726.

[78] T. J. McCabe. 1976. A complexity measure. IEEE Trans. Softw. Eng. 2, 4 (July 1976), 308–320. DOI:https://doi.org/10.
1109/TSE.1976.233837

[79] William McKeeman. 1998. Differential testing for software. Dig. Tech. J. Dig. Equip. Corp. 10(1) (1998), 100–107.
[80] Phil McMinn. 2004. Search-based software test data generation: A survey. Softw. Test. Verif. Reliab. 14 (2004), 105–156.
[81] T. Menzies, J. S. Di Stefano, M. Chapman, and K. McGill. 2002. Metrics that matter. In Proceedings of the 27th NASA

Goddard/IEEE Software Engineering Workshop.51–57. DOI:https://doi.org/10.1109/SEW.2002.1199449
[82] Rickard Nilsson, Shane Auckland, Mark Sumner, and Sanjiv Sahayam. 2016. ScalaCheck User Guide. Retrieved from

https://github.com/rickynils/scalacheck/blob/master/doc/UserGuide.md.
[83] A. Jefferson Offutt and Roland H. Untch. 2001. Mutation 2000: Uniting the orthogonal. In Mutation Testing for the

New Century. Springer, 34–44.
[84] Peter Ohmann, David Bingham Brown, Naveen Neelakandan, Jeff Linderoth, and Ben Liblit. 2016. Optimizing cus-

tomized program coverage. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering (ASE’16). IEEE, 27–38.
[85] Hector M. Olague, Letha H. Etzkorn, Sampson Gholston, and Stephen Quattlebaum. 2007. Empirical validation of

three software metrics suites to predict fault-proneness of object-oriented classes developed using highly iterative
or agile software development processes. IEEE Trans. Softw. Eng. 33, 6 (June 2007), 402–419. DOI:https://doi.org/10.
1109/TSE.2007.1015

[86] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. 2005. Predicting the location and number of faults in large software
systems. IEEE Trans. Softw. Eng. 31, 4 (Apr. 2005), 340–355. DOI:https://doi.org/10.1109/TSE.2005.49

[87] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007. Feedback-directed random test gen-
eration. In Proceedings of the International Conference on Software Engineering. 75–84.

[88] G. J. Pai and J. Bechta Dugan. 2007. Empirical analysis of software fault content and fault proneness using Bayesian
methods. IEEE Trans. Softw. Eng. 33, 10 (Oct. 2007), 675–686. DOI:https://doi.org/10.1109/TSE.2007.70722

[89] Manolis Papadakis and Konstantinos Sagonas. 2011. A PropEr integration of types and function specifications
with property-based testing. In Proceedings of the ACM SIGPLAN Erlang Workshop. ACM Press, New York, NY,
39–50.

[90] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. 2011. Directed incremental symbolic execution.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’11).
504–515.

[91] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. 2013. Software fault prediction metrics. Inf.

Softw. Technol. 55, 8 (Aug. 2013), 1397–1418. DOI:https://doi.org/10.1016/j.infsof.2013.02.009
[92] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert Bos. 2017. VUzzer:

Application-aware evolutionary fuzzing. In Proceedings of the Network and Distributed Security Symposium

(NDSS’17).
[93] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bacchelli, and Premkumar Devanbu.

2016. On the “Naturalness” of buggy code. In Proceedings of the 38th International Conference on Software Engineering

(ICSE’16). ACM, New York, NY, 428–439. DOI:https://doi.org/10.1145/2884781.2884848
[94] Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015. An information retrieval approach

for regression test prioritization based on program changes. In Proceedings of the IEEE/ACM 37th IEEE International

Conference on Software Engineering, Vol. 1. IEEE, 268–279.
[95] Scientific Toolworks, Inc.2017. UnderstandTM Static Code Analysis Tool. Retrieved from https://scitools.com/.
[96] Kang Seonghoon. 2015. Tutorial: How to collect test coverages for Rust project. Retrieved from https://users.rust-

lang.org/t/tutorial-how-to-collect-test-coverages-for-rust-project/650.
[97] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and Andrea Arcuri. 2015. Do automati-

cally generated unit tests find real faults? An empirical study of effectiveness and challenges (T). In Proceedings of

the 30th IEEE/ACM International Conference on Automated Software Engineering (ASE’15). IEEE, 201–211.
[98] Sina Shamshiri, José Miguel Rojas, Gordon Fraser, and Phil McMinn. 2015. Random or genetic algorithm search

for object-oriented test suite generation? In Proceedings of the Conference on Genetic and Evolutionary Computa-

tion (GECCO’15). Association for Computing Machinery, New York, NY, 1367–1374. DOI:https://doi.org/10.1145/
2739480.2754696

[99] Sina Shamshiri, José Miguel Rojas, Luca Gazzola, Gordon Fraser, Phil McMinn, Leonardo Mariani, and Andrea Ar-
curi. 2018. Random or evolutionary search for object-oriented test suite generation?Softw. Test. Verif. Reliab. 28, 4
(2018), e1660.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

https://doi.org/10.1109/ICSM.2013.91
https://doi.org/10.1109/ICSM.2013.91
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/SEW.2002.1199449
https://github.com/rickynils/scalacheck/blob/master/doc/UserGuide.md
https://doi.org/10.1109/TSE.2007.1015
https://doi.org/10.1109/TSE.2007.1015
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2007.70722
https://doi.org/10.1016/j.infsof.2013.02.009
https://doi.org/10.1145/2884781.2884848
https://scitools.com/
https://users.rust-lang.org/t/tutorial-how-to-collect-test-coverages-for-rust-project/650
https://users.rust-lang.org/t/tutorial-how-to-collect-test-coverages-for-rust-project/650
https://doi.org/10.1145/2739480.2754696
https://doi.org/10.1145/2739480.2754696

28:38 J. Holmes et al.

[100] M. Skoglund and P. Runeson. 2005. A case study of the class firewall regression test selection technique on a large
scale distributed software system. In Proceedings of the International Symposium on Empirical Software Engineering..
DOI:https://doi.org/10.1109/ISESE.2005.1541816

[101] Amitabh Srivastava and Jay Thiagarajan. 2002. Effectively prioritizing tests in development environment. SIGSOFT

Softw. Eng. Notes 27, 4 (July 2002), 97–106. DOI:https://doi.org/10.1145/566171.566187
[102] Matt Staats, Michael W. Whalen, and Mats P. E. Heimdahl. 2011. Programs, tests, and oracles: The foundations

of testing revisited. In Proceedings of the 33rd International Conference on Software Engineering (ICSE’11). 391–400.
DOI:https://doi.org/10.1145/1985793.1985847

[103] M. D. Syer, M. Nagappan, B. Adams, and A. E. Hassan. 2015. Replicating and re-evaluating the theory of relative
defect-proneness. IEEE Trans. Softw. Eng. 41, 2 (Feb. 2015), 176–197. DOI:https://doi.org/10.1109/TSE.2014.2361131

[104] Sahar Tahvili, Wasif Afzal, Mehrdad Saadatmand, Markus Bohlin, Daniel Sundmark, and Stig Larsson. 2016. Towards
earlier fault detection by value-driven prioritization of test cases using fuzzy TOPSIS. In Information Technology: New

Generations. Springer, 745–759.
[105] Mustafa M. Tikir and Jeffrey K. Hollingsworth. 2002. Efficient instrumentation for code coverage testing. In Proceed-

ings of the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’02). ACM, New York, NY,
86–96. DOI:https://doi.org/10.1145/566172.566186

[106] David A. Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan Liu, Premkumar T. Devanbu, Bogdan
Vasilescu, and Cindy Rubio-González. 2019. BugSwarm: Mining and continuously growing a dataset of reproducible
failures and fixes. In Proceedings of the International Conference on Software Engineering (ICSE’19). IEEE/ACM, 339–
349.

[107] user1689822. 2012. python AVL tree insertion. Retrieved from http://stackoverflow.com/questions/12537986/python-
avl-tree-insertion.

[108] Lee White, Khaled Jaber, Brian Robinson, and Václav Rajlich. 2008. Extended firewall for regression testing: An
experience report. J. Softw. Maint. Evol. 20, 6 (Nov. 2008), 419–433.

[109] L. White and B. Robinson. 2004. Industrial real-time regression testing and analysis using firewalls. In Proceedings

of the 20th IEEE International Conference on Software Maintenance.18–27. DOI:https://doi.org/10.1109/ICSM.2004.
1357786

[110] G. Wikstrand, R. Feldt, J. K. Gorantla, W. Zhe, and C. White. 2009. Dynamic regression test selection based on a
file cache an industrial evaluation. In Proceedings of the International Conference on Software Testing Verification and

Validation. 299–302. DOI:https://doi.org/10.1109/ICST.2009.42
[111] Qian Yang, J. Jenny Li, and David M. Weiss. 2007. A survey of coverage-based testing tools. Comput. J. 52, 5 (2007),

589–597.
[112] Kohsuke Yatoh, Kazunori Sakamoto, Fuyuki Ishikawa, and Shinichi Honiden. 2015. Feedback-controlled random test

generation. In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA’15). ACM, New
York, NY, 316–326. DOI:https://doi.org/10.1145/2771783.2771805

[113] Michal Zalewski. 2014. american fuzzy lop (2.35b). Retrieved from http://lcamtuf.coredump.cx/afl/.
[114] Chaoqiang Zhang, Alex Groce, and Mohammad Amin Alipour. 2014. Using test case reduction and prioritization

to improve symbolic execution. In Proceedings of the International Symposium on Software Testing and Analysis.
160–170.

[115] H. Zhang. 2009. An investigation of the relationships between lines of code and defects. In Proceedings of the IEEE

International Conference on Software Maintenance. 274–283. DOI:https://doi.org/10.1109/ICSM.2009.5306304
[116] Jiang Zheng, Brian Robinson, Laurie Williams, and Karen Smiley. 2006. Applying regression test selection for COTS-

based applications. In Proceedings of the 28th International Conference on Software Engineering (ICSE’06). Association
for Computing Machinery, New York, NY, 512–522. DOI:https://doi.org/10.1145/1134285.1134357

[117] Jiang Zheng, Laurie Williams, and Brian Robinson. 2007. Pallino: Automation to support regression test selection
for COTS-based applications. In Proceedings of the 22nd IEEE/ACM International Conference on Automated Software

Engineering (ASE’07). Association for Computing Machinery, New York, NY, 224–233. DOI:https://doi.org/10.1145/
1321631.1321665

[118] Yuming Zhou and Hareton Leung. 2006. Empirical analysis of object-oriented design metrics for predicting high and
low severity faults. IEEE Trans. Softw. Eng. 32, 10 (Oct. 2006), 771–789. DOI:https://doi.org/10.1109/TSE.2006.102

[119] T. Zimmermann and N. Nagappan. 2008. Predicting defects using network analysis on dependency graphs. In Pro-

ceedings of the ACM/IEEE 30th International Conference on Software Engineering. 531–540. DOI:https://doi.org/10.
1145/1368088.1368161

Received September 2019; revised May 2020; accepted June 2020

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 28. Pub. date: September 2020.

https://doi.org/10.1109/ISESE.2005.1541816
https://doi.org/10.1145/566171.566187
https://doi.org/10.1145/1985793.1985847
https://doi.org/10.1109/TSE.2014.2361131
https://doi.org/10.1145/566172.566186
http://stackoverflow.com/questions/12537986/python-avl-tree-insertion
http://stackoverflow.com/questions/12537986/python-avl-tree-insertion
https://doi.org/10.1109/ICSM.2004.1357786
https://doi.org/10.1109/ICSM.2004.1357786
https://doi.org/10.1109/ICST.2009.42
https://doi.org/10.1145/2771783.2771805
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1109/ICSM.2009.5306304
https://doi.org/10.1145/1134285.1134357
https://doi.org/10.1145/1321631.1321665
https://doi.org/10.1145/1321631.1321665
https://doi.org/10.1109/TSE.2006.102
https://doi.org/10.1145/1368088.1368161
https://doi.org/10.1145/1368088.1368161

