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SUMMARY

Measuring the distance between two program executions is a fundamental problem in dynamic analysis
of software, and useful in many test generation and debugging algorithms. This paper proposes a metric for
measuring distance between executions, and specializes it to an important application: determining similarity
of failing test cases for the purpose of automated fault identification and localization in debugging based on
automatically generated compiler tests. The metric is based on a causal concept of distance where executions
are similar to the degree that changes in the program itself, introduced by mutation, cause similar changes
in the correctness of the executions. Specifically, if two failing test cases for a compiler can be made to
pass by applying the same mutant, those two tests are more likely to be due to the same fault. We evaluate
our metric using more than 50 faults and 2,800 test cases for two widely-used real-world compilers, and
demonstrate improvements over state-of-the-art methods for fault identification and localization. A simple
operator-selection approach to reducing the number of mutants can reduce the cost of our approach by 70%,
while producing a gain in fault identification accuracy. We additionally show that our approach, though
devised for compilers, is applicable as a conservative fault localization algorithm for other types of programs,
and can help triage certain types of crashes found in fuzzing non-compiler programs more effectively than a
state-of-the-art technique. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The proposed techniques in this paper are motivated in large part by progress in automated testing.
Recent advances, some implemented in powerful tools [106, 87, 40, 42, 55, 56], have made it easier
to find subtle faults in modern optimizing compilers. Unfortunately, the blessing of many failing
test cases can become a curse for a developer. Simply discovering which test cases in a large set
of failures represent distinct faults (or already known faults) is a very difficult problem [16, 23].
For simple crashes and assertion violations, bucketing failures is sometimes easy. When a failure
is detected by differential testing [66], where two compilers or optimization levels disagree, the
problem is so hard that it may turn potential users away from automated test generation [16]. Such
wrong code bugs do not produce a crash, only two compiled programs with different, incorrect (in
at least one case) behavior. Even once a fault is identified, fixing the problem can be very difficult.
Due to complexity of intermediate representation, interaction of optimizations, subtle language
semantics, and other issues, debugging compiler faults may often be harder than debugging faults
in other kinds of software (this is probably not limited to compilers; debugging systems software
in general is hard [67]). This paper proposes the use of mutants [4] to assist debugging based on
large sets of automatically generated test cases. The underlying idea is that if two failures can be
repaired, by applying the same program mutant, even if the repair only avoids the failure and does
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2 J. HOLMES AND A. GROCE

not truly fix it, the two failures are likely due to the same fault. Repairs can also provide information
for understanding and debugging discovered faults. The approach suggests a plausible metric for
comparing any two program executions, not just failing test cases. Comparing executions has been
a prominent concept in dynamic analysis throughout much of the last two decades [85, 93] (e.g.,
Ball’s early discussion of profile similarity [7]).

1.1. Fuzzer Taming and Debugging Assistance

Automated test generators tend to produce many failures, which correspond to far fewer faults. The
distribution of faults in a set of failures tends to follow a strong power-law curve, where a few faults
account for most failures, and many or even most faults have only 1 or 2 associated failures (even
in a set of 1,000 or more test cases) [16, 35]. Looking at all the failures to find distinct faults is
impractical. It is also impractical to apply the iterative approach: first, fix one test’s fault; then re-
run all tests, until all tests pass. There may be some (possibly known) faults that are very difficult
to fix. As of 5/8/2017, clang had 107 unresolved, assigned bugs, some dating to 2008 [1]. Knowing
if a randomly generated test case is an instance of a known failure can be difficult, and fixing long-
standing problems is unlikely. Applying a novel fuzzing technique [106, 40, 55] may dump dozens
of new faults on a project at once, and high priority faults may be hidden by stubborn low-priority
faults.

Chen et al. defined the fuzzer taming problem: “Given a potentially large collection of test cases,
each of which triggers a bug, rank them in such a way that test cases triggering distinct bugs are early
in the list.” [16]. Their proposed solution was to use the Furthest-Point-First [25] (FPF) algorithm.
An FPF ranking of test cases requires a distance metric d on test cases, and ranks test cases so
that dissimilar tests appear earlier. The hypothesis of Chen et al. was that dissimilar tests, by a
well-chosen metric, will also fail due to different faults. FPF is a greedy algorithm that proceeds
by repeatedly adding the item with the maximum minimum distance to all previously ranked items.
Given an initial seed item r0, a set S of items to rank, and a distance metric d, FPF computes ri as
s ∈ S : ∀s′ ∈ S : minj<i(d(s, rj)) ≥ minj<i(d(s

′, rj)). The condition on s is obviously true when
s = s′, or when s′ = rj for some j < i; the other cases for s′, however, force selection of some
(possibly non-unique) max-min-distance s.

Fuzzer taming results using FPF were promising, but limited. Rather than proposing a universal
metric for use in fuzzer taming, Chen et al. offered many possible metrics (based on ideas in
the literature, such as edit distances [58] or coverage spectra [86] methods), none of which
performed notably well across all three of their benchmark data sets, and some of which were
not even applicable to all data sets. For the two most difficult benchmarks, none of the metrics
performed extremely well. FPF-based approaches remain in need of a universal but effective metric,
particularly for the critical first 50 test cases examined [16].

One reason fuzzer taming is needed is that debugging compiler faults is, as noted, difficult. If
developers were able to fix faults quickly once they were identified, it would not be as important
to have very good fault identification. Many duplicate failures could be removed by fixing the
underlying faults. Ideally, a technique able to provide effective fuzzer taming should be able to
translate its underlying rationale into some form of automated debugging assistance. A variety of
automated debugging methods [85, 32] have been based on distance, so there is reason to expect
that a high-quality metric might also contribute to fault localization.

1.2. Comparison by Response to Mutation

The methods we propose are based on an idea with numerous possible applications: if two test
cases that fail can be made to succeed by the same small modification to the original program P ,
this provides evidence that they fail due to the same fault. The idea is hardly controversial: most
developers determine if they have fixed all faults in a set of failing test cases by re-running the tests
after they fix at least one fault. As a method for fuzzer taming or debugging assistance, however, this
is useless. Fortunately, developer-provided patches are not the only source of changes to a program.
Mutation analysis [21, 10] applies large numbers of small syntactic changes to a program, usually to
evaluate a test suite [4, 52]. Some recent work has also considered these changes as a source of fixes
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USING MUTANTS TO HELP DEVELOPERS DISTINGUISH AND DEBUG (COMPILER) FAULTS 3

or localizations for program faults [83, 45, 68, 20]. Published empirical data [30], as well as our
data, suggests that very few compiler faults are due to the kind of simple syntactic changes found
in mutants. However, what should matter is that failures, which correspond to faults, can be made
to succeed. When a test case t fails for program P but succeeds for mutant m of P we say that m
repairs t (in practice, we will usually restrict this to unkilled mutants m). In most cases this does
not mean that m is the inverse of a fault, but that m somehow avoids the consequence of a fault. It
is not important that repairs actually fix anything, if all we seek is a way to decide whether failures
are due to the same fault.

This idea is in fact a consequence of a more general (and difficult to investigate) hypothesis. What
is interesting about a program execution? For many purposes, the only interesting properties of an
execution are those that in some way relate to the correctness properties of the program, assuming
we have a good set of correctness properties. These may include assertions, differential testing
[66, 37], timing constraints, temporal logic formulas, or any other checkable properties. What, then,
makes two executions similar? Our proposal is that two executions of P are similar to the degree
that changes to P produce the same changes in correctness of the executions.

This leads to the general idea of comparing any two executions by their response to mutants, since
a mutant can cause a passing or failing test to violate more/different properties. This generalization
to any two executions may at first glance suggest that our approach subsumes past notions of
similarity, such as spectra of code coverage, since if two executions do not cover a statement, they
both cannot alter correctness if that statement is altered. The metrics are in fact simply incomparable:
for example, differences in coverage that never have an effect on correctness cannot contribute to
similarity in our approach; with weak correctness properties most executions are very similar. This
is similar to the idea of checked coverage: code that cannot impact correctness is not interesting
[89]. However, for practical purposes the most interesting implication of our proposal is that if two
failing test cases can be made to differ as to whether they fail by applying a program mutant, this
provides evidence that they fail due to different faults.

1.3. The Onion-Ring and Causality

This is not a claim that being repaired by the same mutant perfectly predicts fault equivalence. To
understand why that seems highly unlikely, consider why a mutant of a compiler might cause a test
case to stop failing. Many, likely most, compiler faults are due to incorrect optimizations. Turning
an optimization off can cause a program to compile correctly. Optimizations are generally guarded
by conditional switches — in some cases, so that the optimization can be turned off by a user,
in other cases when a property of the code in question prevents the optimization. If two failures
become successes due to turning off an optimization, it is presumably some level of evidence they
are the same fault, compared to the baseline probability. Intuitively, the evidence provided seems
much stronger than the fact that, e.g., the two test cases execute a shared line of code [86]. However,
optimization guards range from guarding very specific fragments of code to guarding entire modules
with many functions and related sub-optimizations. If a mutant prevents a very specific optimization
(consisting of a few lines of code) from executing, and repairs two tests, that is powerful evidence
they are related. If a mutant turns off a large number of optimizations, it is weak evidence. Must we
then characterize mutant granularity? No.

Consider the structure of mutants repairing a failure due to some optimization. If many mutants
repair this failure, by turning off the optimization or a whole family of optimizations, some will
likely repair failures due to different faults. Repairs naturally produce an onion-ring structure
(Figure 1), where a failure is repaired by (1) some mutants that are very specific to its fault (the
inner rings) and repair few failures, as well as other mutants (2) that repair more and more faults,
up to a hypothetical mutant (3) that turns off all optimization in the compiler (e.g., by effectively
adding -O0), the outer ring of the onion. This does not introduce confusion, because the more
repairs two tests have in common, the more likely they are to be due to the same fault, and the more
they disagree on, the less likely they are to be due to the same fault. While especially intuitive as a
consequence of disabling compiler optimizations, it seems likely this structure appears for repairs
in many programs. Disabling an optimization is a code change that (usually) does not cause any test
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Figure 1. Onion-ring shows all repairs for the center-most test case, and all other test cases repaired by same mutants.
Rings represent repairing mutants, and diamonds test cases. Diamond pattern symbolizes fault. For innermost ring, all

failures are due to the same fault. As rings expand, the set of faults grows (as does distance).

case that only concerns semantics, not speed, to fail, but can avoid some failures. For some oracles,
many changes may fall into this classification: for example, if the only oracle is to detect crashes,
a fault can be avoided by aborting the program early. Turning off a data-structure invariant checker
is another possible false repair that might cover many different faults. In all these cases, assuming
more interesting and specific ways to repair faults exist, a distance metric can still work.

The idea of measuring the distance between failures (or other test cases) by their response
to mutants is appealing. The most important aspect of most applications of distances between
executions is some aspect of causality [59, 109]. Since at least the work of Hume [46], causality
has been understood as answering some question of the form “what would have made a difference
in this effect?” A program mutant is a very direct way to answer this question. The problem with
determining causes of events in computer programs is that, as in most problems of causality, too
many things can make a difference, most of which are not interesting. Program mutants are much
more likely to be interesting causes for events in a program than changes to test cases, at least
for fault identification and debugging purposes, because the practical use of knowing a cause is
to change the cause and avoid or produce an effect. Debugging by changing test cases is not
useful; debugging by altering the program is precisely how we seek to use the causes we discover.
Using mutants as causes in order to measure similarity “inverts” the ideas of Lewis [59, 60], where
similarity determines causality. One pleasant side-effect is that execution representation [85, 86] is
not a difficulty for this kind of metric, since an execution is always represented as a set of correctness
evaluations.

This paper investigates the utility of using distance metrics based on the causal approach
suggested above. We show that such a metric can improve, in a statistically significant way, the
ability to distinguish tests based on which faults they trigger. Furthermore, fault localization based
on the same metrics can successfully pinpoint the location of some compiler faults sufficiently to
be likely to substantially aid debugging, and, when applicable, performs very well for some faults
studied in recent papers on mutant-based fault localization [45, 12].

1.4. Contributions

This paper extends our 2018 ISSRE paper [43] introducing our approach. That paper introduced a
novel way of measuring distance between program executions, but more importantly provided some
practical proposals for using such a metric in compiler fuzzer taming and fault localization. Our
experimental results show that, for two realistic complex compilers, Mozilla’s SpiderMonkey 1.6
JIT for JavaScript and GCC 4.3.0, using mutant response metrics improves FPF-based fuzzer taming
over best previous results [16], in multiple ways. Our fault localization approach also compares
favorably to state-of-the-art fault localization techniques [68, 45, 77] for non-compiler programs,
albeit with a more limited applicability (but also a lower cost). We extend the earlier paper by:

• generally expanding discussion of our approach, including the conceptual basis for using
mutants to measure similarity of executions, and related work,
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USING MUTANTS TO HELP DEVELOPERS DISTINGUISH AND DEBUG (COMPILER) FAULTS 5

• providing an extended example (in Section 4) to help readers better understand the metric,
FPF-based fuzzer taming, and our fault localization approach,

• introducing and evaluating another compiler fault localization approach (in Section 5.3),
based on code coverage changes,

• including a much more in-depth examination of the computational costs of our approach and
various ways of reducing that cost, including experimental evaluations (in Section 8),

• and showing how our approach works for fuzzer taming of non-compiler bugs, highlighting
the limitations of both our technique and the state-of-the-art semantic crash bucketing (SCB)
[97] approach.

2. A MUTANT-BASED DISTANCE METRIC

For every failing test case, the response (fixing or not fixing the failure) to all mutants defines a
bitvector, with length equal to the number of mutants that repaired any test case (or all mutants; it
does not matter for our proposed metric), where a 1 bit indicates that the mutant in question repairs
this test case∗. These bitvectors cannot be effectively compared with Hamming distance. Consider
t1 and t2, both repaired by 100 mutants. If these two test cases share 90 common repairing mutants,
and disagree for 10, they have a Hamming distance of 20. This makes them “less similar” than two
test cases, t′1 and t′2, where t′1 is repaired by 5 mutants, t′2 is repaired by 5 mutants, and none of those
mutants overlap. A Jaccard distance, also used (as similarity) in some fault localization algorithms
[13], is a better fit. For bitvectors u and v of length n:

d(u, v) =

{ ∑n−1
i=0 1 if ui 6=vi else 0∑n−1

i=0 1 if ui 6=0∨vi 6=0 else 0
∃i : ui 6= 0 ∨ vi 6= 0

0 otherwise

In other words, the Jaccard distance is bitcount(uYv)
bitcount(u∨v) (the number of 1 bits in the XOR over the

number of 1 bits in the OR for u and v); that is, the distance is the portion of mismatches
over repairing mutants for either test. This metric agrees with our intuitions about the above
comparisons. It essentially formalizes the intuition of the onion-ring model, where more matching
repairs indicates a much higher probability two failures are due to the same fault, even if not all
repairs match.

Given such a metric, FPF [25] fuzzer taming [16] begins by ranking as first an arbitrary test case.
FPF next ranks the test case, of all unranked tests, that has the largest minimum distance from all
ranked test cases — the test case most dissimilar by closest already ranked test — until all tests are
ranked. FPF is boundedly close to optimal under certain assumptions [25].

More complex metrics are possible, also combining information such as coverage and language
features or test case tokens [16]. However, mixtures of metrics (combining different features) other
than Levenshteins [58] over test case + output never performed well compared to more focused
metrics in earlier work [16]. Therefore, in order to evaluate the contribution of our repair-based
metric we compare it, alone, to the previous best metrics.

In Section 12 we discuss uses of d requiring comparison of both failing and passing test cases: in
this case, we would use three-valued vectors, with a bit for each property, where 1 indicates a failing
property succeeds and -1 that a succeeding property fails. For such an application, we could remove
the requirement that a repair not be a killed mutant, since the passing test vectors would encode that
information

∗By repairing a failing test we here mean that a mutant causes the test to pass, and the mutant does not cause other,
previously passing tests, to fail.
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6 J. HOLMES AND A. GROCE

3. LOCALIZATION AND EXPLANATION

Automated fault localization [101, 51] provides users with information about the likely location
of a fault in a program’s source code. Error explanation [32] also provides information about the
causal structure of a fault — how it can be avoided, what triggers it — a kind of “fault story.” Parnin
and Orso recently suggested that fault localization methods are not actually providing a great deal of
assistance to real users in debugging [78]. Automated fault localization has not been widely adopted
in industry.

Parnin and Orso note that most popular methods are statistical and tend to simply provide
an ordered list of statements to examine. These statements are not guaranteed to be essentially
related to the fault — with many techniques, the statements are, too often, code that executes as
a consequence of the fault, code accidentally executed with the fault, and so forth. We note that
most evaluations of fault localization have been performed over programs where it is not clear that
debugging is extremely hard, vs. the time spent applying automated localization and establishing
effective (automated) testing to support automated localization. Compiler debugging, on the other
hand, especially for subtle optimization-based problems that produce incorrect code (vs. simple
crashes) is generally known to be difficult. Researchers reporting subtle compiler bugs often observe
the time from reporting a fault to its correction, even once the fault is assigned, to be lengthy, and the
resulting patches are sometimes thousands of lines [16]. Important compilers, whether JITs where
security is paramount or C compilers used to compile core systems code, also tend to already be the
subjects of extensive automated testing [87, 106].

Repairing mutants can be used for localization and explanation. While few will be equivalent
to actual fixes, they will sometimes overlap the incorrect code, and will often be closely related
to incorrect code, semantically. Since some tests are repaired by a large number of mutants, it is
important to rank the mutants to produce a localization. Based on the onion-ring model proposed
above, this is simple: each mutant is ranked as a localization/explanation based on the most distant
failure it also repairs. If a given mutant only repairs failures that have similar repair vectors to the
test case being localized, it will be highly ranked. If it repairs even one very dissimilar failure, then
it will be considered a poor localization.

For a set F of failing test cases and M of mutants, the Repair localization for f ∈ F ,
where R(f) ⊆M is the set of mutants repairing f , ranks statements by the function
rf (m):

rf (m) =

{
1

1+maxt∈F :m∈R(t)d(t,f)
m ∈ R(f)

0 m 6∈ R(f)

This ranks a mutant m (and associated statement) by the inverse of the distance from f to the
most distant failing test also repaired by m, adding 1 so that if m only repairs failures at distance
0 rf is well defined (and maximal). If m does not repair f , it is not ranked at all. One advantage
of this approach over some statistical methods is that by ranking mutants the localization offers
developers not simply a ranked statement but a kind of “explanation” [32] of the fault: if this mutant
were applied, the fault would not exhibit. As Kochhar et al. show [54], a large majority (more than
85%) of developers considered the ability of a localization tool to provide a rationale or reason for
a localization important. A mutation plus the tests that stop failing when it is applied is a practical,
concrete explanation of a fault localization. Mutants that repair a failure provide insight into the
nature of the fault, and, we hypothesize, more information the closer they are to the center of the
onion-ring.

In general, we expect Repair to be used in the context of compiler (or other complex system)
fuzzing, where there are numerous failing tests, likely from multiple faults. In such cases, the f to
be localized is presumably selected by FPF. However, in case our localization approach is used in a
setting where single faults are expected, we propose an alternative method: let f be an arbitrary test
with as few repairing mutants as possible, to allow the distance metric to focus attention on a few
key mutants.
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01 void compile(program: feature list, optimizeLevel: int) {
02 internalRepresentation = initInternalRep(program);
03 if optimizeLevel > 0: {
04 if feature1 in program:
05 if feature2 in program:
06 corrupt(internalRepresentation);
07 if optimizeLevel > 1: {
08 if feature3 in program:
09 if feature4 not in program:
10 corrupt(internalRepresentation);
11 if feature5 in program:
12 if feature6 in program:
13 corrupt(internalRepresentation);
14 }
15 }
16 /* Will produce wrong code if corrupt called */
17 generateCode(internalRepresentation);

Figure 2. A toy “optimizing compiler” with multiple bugs

T1: (1, 2)
T2: (3)
T3: (5, 6)

Figure 3. Failing tests for the toy compiler.

An advantage of this method over some statistical approaches to localization is that it is not
potentially confused in settings with multiple faults. Each localization/explanation is based on a
single failing test case, which in most cases fails due to only one fault. In fact, other faults (and their
failures) theoretically help Repair rank the mutants.

4. A SIMPLE EXAMPLE

To better understand the causal approach taken in this paper, it is useful to consider a simplified,
abstract example, and understand how the approach proposed would apply to this example.

Consider the pseudo-code “compiler” in Figure 2. We can imagine that there is a large amount of
code (not shown) in the initInternalRep and generateCode functions. Assume, however,
that the only bugs in the compiler are the corrupt calls. Traditional Spectrum-Based Fault
Localization (SBFL) techniques can be easily “confused” in multiple-fault settings, and by cases
such as this, where there may be strong correlations between code covered by the (fault-free)
initInternalRep and generateCode functions and the features contained in programs,
making lines of code far from the fault locations appear suspicous.

Assume that all of our test cases run the compiler with optimizeLevel of 2, so as to
potentially apply all optimizations. A popular way to fuzz a compiler is to compare program
behavior when code is compiled with all optimizations with program behavior when code is
compiled with no optimizations, so this reflects real-world compiler testing. A set of delta-debugged
failing tests, then, might be those shown in Figure 3.

Further, let us only consider two kinds of mutants: condition-negation and statement-deletion
mutants. Obviously, negating the condition on line 3 will make all of our failing test cases
pass, and negating the condition on line 7 will make test cases 2 and 3 pass, but not test
case 1. Negating the conditions on lines 4-5, 8-9, and 11-12 will repair our test cases, but
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8 J. HOLMES AND A. GROCE

these changes are also likely to make some passing test case fail (they represent preconditions
for compiler optimizations), so these mutants will not be used in our analysis. Finally, the
only statements that can be deleted without breaking the code are deletions of the corrupt
calls on lines 6, 10, and 13. We can identify these mutants, which will form the basis of
our distance metric and our fault localization, by the line number of the change, since there
is only one mutant per line in the set. Each test can then be associated with a bitvector of
5 elements: (repaired by line 3, repaired by line 6, repaired by line
7, repaired by line 10, repaired by line 13). The vectors for our tests, then,
are:

T1: 11000
T2: 10110
T3: 10101

T1 thus has a distance of 0.75 from T2 and T3. T2 has a distance of only 0.5 from T3, however.

4.1. Fuzzer Taming for the Toy Compiler

If the Furthest-Point-First algorithm starts from T1 it will arbitrarily select either T2 or T3 next, then
the other test. If it starts with T2 or T3, it will select T1 next, then the other of the two closer tests. Of
course, taming a set of three failing tests is not difficult! However, if we imagine a much larger set of
failing tests, which contain irrelevant features that cannot be removed by delta-debugging without
causing the programs to become syntactically invalid, so long as the basic structure of the cause for
failure remains the same, the the FPF algorithm will still select tests with the same bitvectors as T1,
T2, and T3. Concretely, if we add these tests (shown with associated bitvectors):

T4: (1, 2, 7) 11000
T5: (3, 6) 10110
T6: (1, 5, 6) 10101
T7: (1, 2, 5, 6) 10000

then FPF from T1 will proceed to a maximally distant test, such as T5, at distance 0.75. The next
ranked test could not have been T4 (distance 0.0) or T7 (distance 0.5), but could have been T2, T3,
or T6. After T1 and T5, the next test in the ranking will be the test whose nearest neighbor among
already chosen tests is furthest away. The distances to the two tests already chosen are:

11000 10110
T2: (3) 10110 0.75 0.00
T3: (5, 6) 10101 0.75 0.50
T4: (1, 2, 7) 11000 0.00 0.75
T6: (1, 5, 6) 10101 0.75 0.50
T7: (1, 2, 5, 6) 10000 0.50 0.67

The FPF algorithm could choose either T3, T6, or T7 all of which have a nearest neighbor at distance
0.5. Let us assume it chooses T6. At this point, the three distinct bugs are all ranked. However, there
is one interesting pattern remaining. The distances to tests are now:

11000 10110 10101
T2: (3) 10110 0.75 0.00 0.50
T3: (5, 6) 10101 0.75 0.50 0.00
T4: (1, 2, 7) 11000 0.00 0.75 0.75
T7: (1, 2, 5, 6) 10000 0.50 0.67 0.67

The algorithm is forced to choose T7, the only remaining test that does not have the same bitvector
as another test. T7 is worth ranking, as it shows that a program can be written that will result in
wrong code unless both bugs it triggers are fixed.
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4.2. Fault Localization for the Toy Compiler

Now let us consider the Repair fault localization algorithm applied to this example. If we are
trying to fix the problem exhibited by T2, what will the system suggest to us as the location of
the fault? Recall that 1) in Repair, a localization is the location (and content) of a repairing mutant.
T2 is repaired by negating the condition on line 3, negating the condition on line 7, or deleting the
statement on line 10. Which of these is best? Repair distinguishes between repairing mutants by
ordering them by their distance to the most-distant (by bitvector) test also repaired by that mutant.
The only other tests repaired by deletion of line 10 are the other instances of the same bug, all at
distance 0. Of the other two repairs, negating the condition on line 3 also repairs T1, at distance
0.75, while negating the condition on line 2 repairs nothing farther away than T3 at 0.5. Therefore,
the localization for T2 is (in rank order):
1: DELETE 10 corrupt(internalRepresentation);
2: NEGATE 07 if optimizeLevel > 1: {
3: NEGATE 03 if optimizeLevel > 0: {

4.3. The Onion Ring

In this simple toy example, the onion ring will only have a few layers, one for each possible distance
from the test at the center. For example, if we take T2 as the center, then the layers will be:

0.00: T2 T5
0.50: T3 T6
0.67: T7
0.75: T1 T4

5. CORE EXPERIMENTAL RESULTS: COMPILER TRIAGE AND DEBUGGING

Our primary experiments are based on subjects used in the only previous study of compiler
fuzzer taming (from Chen et al.’s PLDI 2013 paper [16]), which we hereafter refer to as the FPF
benchmark. Of the three data sets examined in that paper, this paper considers two: faults and tests
cases for SpiderMonkey 1.6, Mozilla’s JavaScript engine, with tests generated by jsfunfuzz [87],
and wrong code faults and test cases for GCC 4.3.0, with tests generated by Csmith [106]. GCC 4.3.0
crash faults were essentially perfectly localized by previous approaches. In fact, on examination,
only two of the 11 crash bugs are not distinguished by simply examining the crash message. Faults
that produce a crash are also likely to be much easier to debug than semantic problems such as all
of the GCC wrong code bugs and most of the JavaScript faults — e.g., following a dynamic slice
might well suffice.

Our mutants were produced using the tool written by Jamie Andrews [4]. Andrews’ tool applies
only four operators: statement deletion, conditional negation, operator replacement, and constant
replacement, chosen as a small set that still produces good results for C code. Experiments were
performed on a MacBook Pro with 16GB RAM and dual-core 3.1GHz Intel Core i7; GCC executed
on a VirtualBox-hosted Ubuntu 11.04. For GCC, some test cases from the FPF set no longer
failed, presumably due to unknown differences in execution environment, OS, or memory layout.
Discarding these reduced the set of test cases from 1,275 to 1,117 and the number of distinct faults
to 27 rather than 35. For SpiderMonkey, all 1,749 test cases from the FPF benchmark failed in the
new environment, representing 28 distinct faults.

These data sets, though similar in that both compilers are written in C, provide some interesting
variance for testing our metrics. The oracle for SpiderMonkey executions is the set of checks built in
to jsfunfuzz plus the requirement that the execution not crash. This is only a moderately strong
oracle, and allows serious deviations from both the JavaScript language specification and normal
SpiderMonkey behavior, while checking some complex details, such as eval round-trips. For GCC,
the oracle is a differential check on a hash code: failure was defined as producing a executable with
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Figure 4. Discovery curves for SpiderMonkey 1.6 faults

the -O3 flag that, when executed, produced a different checksum than code compiled by either of
GCC 4.9.3 or clang 7.0.0, both using -O0. A repairing mutant must enable GCC 4.3.0 to actually
compile code correctly, which is a very strict correctness property, making coincidental correctness
[70] highly unlikely—only missed optimizations are allowed.

We only show results for the first 50 tests in the ranking, and computed areas under curves for the
same limit, since it seems very unlikely that a user will examine many more than 50 tests, especially
given the decreasing slope of the discovery curves. In practice, after 50 tests, fixing a few faults and
then re-running tests and FPF seems the most likely recourse, and we confirmed that after removing
random subsets of faults, our metrics still outperform the previous best. We applied X-means [79]
in an attempt to use clustering with our metrics, but, as with previous results [16] it did not compare
well with FPF, and the runtime was much higher. We confirm the conclusion [16] that clustering
(at least with X-means) does not work well in a setting with extreme disparity in instance counts
for faults. A further difficulty for our setting is that X-means and most off-the-shelf clustering tools
take vectors, not a distance metric. X-means is using the raw repair data, not weighted by the fact
that 0-0 agreement is much less informative than other possible matchings (a Euclidean over 0-1
vectors is just the square root of Hamming distance).

5.1. Mozilla SpiderMonkey 1.6 Results

There were 96,828 SpiderMonkey mutants, based on 69,634 lines of code in C and header files. Of
these mutants, 12,666 were covered by some failing test case. Of these mutants, 10,525 survived
a basic set of SpiderMonkey quick tests [33]. Of these mutants, 1,326 (12.6%) repaired at least
one test case. Figure 4 shows the discovery curves for the mutant repair metric compared to the
ideal discovery curve and the best curve from previous work using FPF, which used a normalized
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Figure 5. Discovery curves for GCC 4.3.0 wrong-code faults

Levenshtein distance [58] over the failure output and test case text [16]. A discovery curve is a plot
of the number of distinct faults that a user, examining the tests in the ranked order, would have seen
after N tests (here, N goes up to 50).

The APFD (Average Percent Faults Detected) values in the graphs are based on the measure
introduced by Rothermel et al. for evaluating test case prioritization methods [22]. APFD is a
somewhat better summary of results than the raw curve areas used for evaluation in previous work
[16]. APFD, as the name suggests, measures the percent of all faults discovered at the “average”
point on the curve, by comparing the curve’s area to an ideal curve, with interpolation. A simpler
(but less informative) way to compare the curves is to note that the mutation-based metric’s curve
is above the best previous curve at 60% of data points†.

APFD results are useful summaries, but the curve itself is also worth examining, since (1) long
sequences of tests with no new faults may discourage users more than an overall less effective but
steadily climbing curve with few “plateaus” as we call these uninformative sequences of tests and
(2) a good early curve is important to developers. The mutant repair curve climbs very rapidly in
the early portion, with perfect discovery for the first 12 faults. The largest plateau is 5 tests without
a new fault, ignoring the long period after the 31st test. In fact, a plateau at the end of the curve is
not problematic. Assuming that few users will examine more than 50 test cases without fixing some
faults, the user may give up after seeing 10 or more tests without a new fault based on the mutant
repair curve, and in fact lose nothing by doing so. The best FPF benchmark curve, in contrast, has
a plateau of size 17 after the 17th fault. If we assume a user stops examining tests after a size 10

†The details of APFD calculation are slightly involved, and the interpolation and perfect curve are not exact fits for fuzzer
taming; nonetheless the basic method summarizes curves fairly well and is standard in the testing literature for similar
problems [111].
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Figure 6. APFD values for Spidermonkey suite slices

or greater plateau, the user will only see 17 faults using the best benchmark metric, vs. 19 with our
metric. Stopping at a plateau of size 6 produces the same results.

Over all mutants, and all pairs of test cases repaired by the same mutant (so the same pair may
count many times, if many mutants repair both test cases), the probability of being due to the same
fault was 42.77%, and the probability of being due to the same fault if two test cases disagreed on
a repair (the mutant repaired one test case but not the other) was only 20.33%. The baseline rate
for same-fault for test pairs was 33.64%. Just knowing that two test cases have one shared repairing
mutant makes it 1.27x more likely that they are the same fault, and knowing they differ for one
mutant makes it 0.6 times as likely they are due to the same fault. Matching non-repair, however,
provides very weak evidence: only a 34.14% chance of matching fault, just over baseline.

An additional measure of effectiveness is to consider how effective a metric is in producing
matched nearest neighbors. That is, how often is the nearest neighbor of a failure (that is not due
to a singleton fault—a fault detected by only one test case) due to the same fault? For reduced
[110, 16, 84] test cases, we assume that for a perfect metric, the nearest neighbor should almost
always share the same fault, since there is little or no extraneous semantic content to each test beyond
the cause of failure. For the SpiderMonkey failures, 96.3% of non-singleton failures matched their
nearest neighbor(s). For mutants that repaired any failures, the mean and median number of test
cases repaired were 120.6 and 4.0, respectively. Most mutants repaired a small number of tests,
but a few mutants repaired a very large number of tests. A few mutants repaired all SpiderMonkey
faults; obviously these mutants were not actual fault fixes, but effectively disabled the mechanism
jsfunfuzz used to detect failure. The mean and median homogeneity for repairing mutants (%
of failures repaired corresponding to the most common fault repaired) were 77.96% and 86.36%,
respectively.

In order to check our results statistically, we sliced the FPF benchmark tests into 20 randomly
selected equal-sized (as much as possible) distinct subsets (Figure 6) . The repair metric had a mean
APFD (89.23%) for these subsets that was 2.85% better than the mean APFD for the best benchmark
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metric (86.76%), over sets of ∼ 10 faults. The result was statistically significant (p < 0.05 by
Wilcoxon test). Median repair APFD was 90.05%, vs. 84.75% for the best benchmark metric.

5.1.1. Fault Localization Table I shows a comparison of three fault localization methods for the
SpiderMonkey (and GCC) faults. The first column is a fault ID. The next three columns show
localization rankings. A ranking of 1 means that a code location contained in the actual faulty code
locations was presented to the user as the most likely location of the fault by the method: the method
has precisely identified the fault location. A ranking of, for instance, 22, on the other hand would
mean that a user examining code locations proposed as faulty by the method would not reach any
faulty code until examining the 22nd such location proposed by it. A dash for a column means that
localization did not rank any faulty statements, or assigned all faulty statements suspiciousness of
0.0. The three rankings are: our Repair localization, the MUSE [68] localization, and the MUSEUM
[45] localization. MUSEUM uses the same formula as MUSE, but works better for multiple faults
because it uses only one failure. The MUSE/MUSEUM formulas normally make use of information
from passing tests as well: when mutating a statement makes a passing test case fail, it makes the
statement less suspicious, by a weighted amount. The weight assigned to information from passing
tests in our setting would likely be low (due to the ratios of repairs to mutation kills). In a limited
sense, information from passing tests is already incorporated in our results. Throwing out all mutants
that are killed by any passing test as potential repairs/localizations ensures that the rankings of all
statements that are in MUSE/MUSEUM rankings are correct, relative to each other. By definition,
passing tests have no influence on the suspiciousness of these mutants. However, there may be other
mutants that 1) repair a failure and 2) are killed by some test case: these could, if enough different
ones repaired the same faulty statement, improve MUSE/MUSEUM results, though in practice this
is extremely unlikely. We reject such mutants in part to keep costs low, and in part because we
think that the causal information contained in such mutants, that “fix” a failure but also break some
passing test(s), is problematic. They seem likely to be less useful as explanations of the causes of a
failure, since they do not impact the program semantics in a way that is only known to be beneficial,
and could potentially even mislead a user if used as explanations.

Discussion with the MUSE/MUSEUM authors confirms that adding information for passing tests,
while costly, would likely improve the MUSE and MUSEUM results, given the weakness of our
oracles, particularly for SpiderMonkey, and should be considered essential for ideal application of
their approach. Because the cost of recording the full mutant analysis matrix for all passing tests
(rather than considering a mutant killed as soon as one test fails, as we do) is very high, and we would
like to produce a comparison over a fixed computational cost, we give results for MUSE/MUSEUM
over failing tests only, cautioning that we are not sure what the impact of this choice is on faults that
were not localized. For similar reasons of keeping costs low, we also used the mutation operators
of Andrews vs. the more extensive Proteum [64] operators used in MUSE/MUSEUM’s evaluations.
Even with these restrictions, running all mutants on passing tests until at least a single kill was
observed took about 3 times as long as the search for repairs, which we already consider a potentially
problematic cost. In Section 6 we provide some comparisons with MUSEUM and MUSE fault
localization in the context of a full mutation result matrix using their preferred set of operators.

Results are reported as absolute ranks, rather than more sophisticated [68] localization evaluations
because our localizations do not assign suspiciousness scores, only rankings, and in accord with the
proposal of Parnin and Orso that only localizations ranking a fault in the top few statements may
be useful to users [78]. We expect users to examine the mutants and consider how they help avoid
the fault. Blind, unaided pointers to portions of compiler code without more semantic information
about why the statement is suspicious seem unlikely to work well, based on our experience with
complex compiler faults, and the results of Parnin and Orso [78].

Table I only includes 8 of the 28 SpiderMonkey faults. This is due to a problem with the data set:
producing ground truth patches for a large application, in the sense of finding a minimal, clearly
fault-fixing code change that can be back-ported to the original code is difficult [16]. While we
believe the 28 faults identified in the FPF benchmark data are correct, it is very difficult to produce
a valid patch of version 1.6 that captures the fix for most of these faults. In some cases the final
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Figure 7. APFD values for GCC suite slices

commit that caused tests to stop failing appeared to only be the end of a complex series of changes
that converged on a correct fix. In other cases, the code was modified so extensively before the
fix that identifying “the incorrect part” of the original code seemed to owe more to guesswork
than certainty. The evaluation of localization therefore only examines the 8 faults for which we
could be reasonably certain that the patch to 1.6 was correct and characterized the fault in question
accurately. In no case was the patch equivalent to one of the mutants (the smallest patch modified
two statements).

No method performs extremely well—for half the faults, no methods produced what we consider
a useful localization. Compiler faults are hard to debug, and any help is useful, but it seems unlikely
developers will really benefit from a localization when it does not rank at least one faulty statement
in the first 25-30 statements. By this measure, MUSE only provides a helpful localization once, and
performs worst of the methods. Repair and MUSEUM both perform well, with Repair slightly
better.

5.2. GCC 4.3.0 Wrong Code Results

There were 377,679 GCC mutants, based on 424,186 lines of code in C and header files. Of these
mutants, 73,016 were covered by some failing test case. Of these mutants, 41,385 survived a GCC
bootstrap build, compiled hello world, and passed a GCC test suite. Of these mutants, 3,232 (7.8%)
repaired at least one test case. Figure 5 shows discovery curves for the mutant repair metric vs.
the best benchmark curve, Euclidean distance over function coverage vectors [16]. GCC’s APFD
improvement is larger than that for SpiderMonkey, but its early curve (first 15 tests) is worse
compared to the benchmark curve, but still has a maximum gap of only 2 redundant tests vs. 4
for the benchmark. Over all, again the curve is better than the best benchmark curve at 60% of all
points. Using the hypothetical model where a user stops examining tests after a plateau of size 10,
the user of the mutant-based taming will see 18 distinct faults by examining 25 tests, and the user of
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Table I. Fault localization for compiler faults

SpiderMonkey GCC
ID Repair MUSE MUSEUM ID Repair MUSE MUSEUM
1 - - - 1 - 157 -
2 - 173 - 2 1 99 14
3 1 22 4 3 - 146 -
4 - - - 4 - - -
5 19 118 26 5 - 109 -
6 28 87 23 6 - - -
7 - - - 7 - - -
8 3 133 5 8 4 158 18

9 - - -
10 - - -
11 10 167 6
12 1 172 195
13 - - -
14 34 170 125
15 5 159 31
16 - - -

the function coverage will see 20 faults after 45 tests. If a user gives up after a plateau of size 5, our
approach again lets a user examine 18 faults over 25 tests. Function coverage only yields 16 faults
over 31 tests.

For GCC wrong code faults, the baseline chance that two test cases shared an underlying fault
was 38.97%. Knowing that two test cases shared a repairing mutant raised the chance to 68.5%, and
knowing they disagreed on a repair lowered it to only 19.01%. The respective increase and decrease
in probability of matching fault compared to baseline was thus 1.75 times greater for matching
repairs, and less than 0.5 the chance of being the same fault, given one mismatched repair. Knowing
two test cases were both not fixed by a mutant again provided marginal evidence of sharing a fault:
39.2% chance of matching faults. For 99.3% (all but 8) of the 1,090 non-singleton fault failures
in GCC wrong code, the closest test case(s) by the repair metric showed the same fault. The best
previous reported FPF metric, function coverage vectors, had a matching rate of 92.2%. The mean
and median numbers of repaired tests per mutant (for mutants that repaired any tests at all) were
18.4 and 3.0, respectively. A few mutants fixed a very large number of tests, up to 1,050. These
all appear to be turning off all optimizations—essentially running gcc in -O0 mode. Most mutants
fixed only a few tests, to a greater extent than was true with SpiderMonkey. Mean homogeneity was
79.4% (median 100%).

Slicing the GCC tests into 20 random equal-sized test subsets and comparing with function and
line coverage metrics (Figure 7) we find that differences in APFD values are statistically significant
between our metric and both benchmark metrics, by Wilcoxon test, with p < 0.0005, and the mean
APFD improvement—even for only 55 tests, exposing only 6-11 faults (mean of 7.75 faults)—is
more than 3.8% better than either benchmark metric.

5.2.1. Fault Localization Table I shows localization results for GCC 4.3.0. Again, only some faults
were deemed to have strong enough ground truth patches for evaluation. MUSE performed poorly,
with no useful (by the standard of having at least one faulty statement in the top 25) localizations.
MUSEUM provided 3 useful localizations, but no very high quality localizations. Only Repair
performed very well, with useful localizations for 5 faults, and the fault was in the top 5 statements
for 4 of these.

5.3. Coverage Localization

While Repair is often a high-quality localization technique, it often fails to localize a fault at all.
This failure suggested that for the compiler setting, we should consider other localizations methods,
even ones we do not consider likely to be helpful in more general settings. Compiler faults are often
so complex and hard to debug that even a somewhat informative localization might be useful.
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By definition, when a mutant repairs a test case, it changes the behavior of the test. In some cases,
this behavioral change may be limited to changes in program state and data values. However, the
vast majority of mutant repairs for a compiler can be expected to also modify the code coverage
of a test; in our compiler experiments, there were no repairs that did not change coverage; this
would be very unlikely to hold in other software settings, where many bugs are related to data
values; for well-fuzzed compilers, however, few bugs are simple, e.g., off-by-one bugs in an integer
value. If a fault can be avoided by disabling a problematic optimization in a compiler, this naturally
leads to changed coverage. If the fault is due to a bad conditional, where a program path should
include additional code, the repair will often change the execution to include the omitted code.
As a localization for a fault, then, we can examine the source statements whose coverage changed
most often in repairs. Early experiments with this approach showed that a useful coverage change
localization must account for the frequency of a change. Some coverage changes are extremely
common across all failures, faults, and repairing mutants, and therefore likely not related to any
specific fault.

The Coverage localization for a failing test case f ∈ F (F is the set of all failing test
cases) ranks statements by the function r (for rank) where:

C(s) =
∑
t∈F

(
∑

m∈R(t)

c(m, t, s))

r(s, f) =
∑

m∈R(f)

1

C(s)
c(m, f, s)

c(m, t, s) is 1 if coverage of s changes for test t with mutant m, and 0 otherwise. R(f)
is the set of mutants repairing f .

That is, the ranking is based on the number of times a statement’s coverage changes its value
(covered or not covered) from the original execution of f in executions of mutants that repair f .
Changes are weighted by their inverse frequency over all failures and all mutants. Higher values for
r result in a higher ranking (more likely to be faulty).

The coverage localization also provides a kind of explanation, though a less direct one than with
a repair. For any interesting line of code in the coverage-change-based localization, the user can
investigate a particular instance of the change, by selecting a single mutant and stepping through
the execution of the failing test case in a debugger to the point of change. The user can also browse
through all mutants that produce this coverage change for the test case.

Figure 8 shows part of the patch for SpiderMonkey fault 115, and the Repair and Coverage
outputs that successfully localize the fault (the 3rd mutant output, and the 6th coverage change
output), to give some idea of the information our methods present. For Coverage, it is surprising
that the sixth highest ranked change only appeared in 5 of 148 repairs. This change ranked high
out of thousands of changes because it was unusual, appearing for only 10 repairs in the entire
SpiderMonkey analysis.

Table II compares the Coverage localization with the Repair localization. In general, obviously,
Coverage is not as effective as Repair. In fact, in cases where both methods provide any localization
information, there is only one instance where Coverage is better than Repair. On the other hand,
Coverage provides a localization for 10 faults where Repair offers no assistance. The rankings
for these suggestions are often poor (indeed, in some GCC cases, they are almost ludicrously bad).
However, for GCC faults 10 and 13, Coverage produced a useful localization when all of the other
methods (including MUSE and MUSEUM) failed to localize at all. Because compiler faults are so
difficult to understand and fix, it might be useful for developers to examine the top few localizations
(that differ) for multiple methods. While MUSE and MUSEUM both generally perform better than
Coverage, they almost never provide better information than Repair. In every case where MUSE
or MUSEUM provides a useful localization (within top-25) and performs better than Repair, the
difference in ranking between MUSE or MUSEUM and Repair is five or fewer ranking positions.
Coverage uses a sufficiently different approach that it offers potentially useful information, even
when Repair performs badly.
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Diff of old (<) vs new (>) for SpiderMonkey fault 8 patch (portion):
...
< vp[1] = OBJECT TO JSVAL(thisp);
< } else {
< ok = OBJ GET PROPERTY(cx, thisp, id, &v);
< }
...
< a->avail = (jsuword)sp;
< }
...
---
> RESTORE SP(fp);
...
Mutant information:
Failure repaired by 148 mutants.
...
#3: delete statement mutant of jsinterp.c:944:

vp[1] = OBJECT TO JSVAL(thisp);
} else {

/*MUTANT ok = OBJ GET PROPERTY(cx, thisp, id, &v);*/
}

Coverage change information:
...
#6: 5 mutants (3.38% of repairs) added jsinterp.c:992:

a->avail = (jsuword)sp; /* ADDED */

Figure 8. Patch and explanation for fault 115

SpiderMonkey GCC
ID Coverage Repair ID Coverage Repair
1 2,255 - 1 44,561 -
2 720 - 2 75 1
3 190 1 3 - -
4 - - 4 3,067 -
5 18 19 5 186 -
6 46 28 6 490 -
7 - - 7 - -
8 6 3 8 260 4

9 465 -
10 19 -
11 43,903 10
12 85 1
13 2 -
14 302 34
15 223 5
16 639 -

Table II. Coverage localization results

6. REPAIR LOCALIZATION FOR NON-COMPILER FAULTS

The Repair localization was designed for use in compiler (or at least complex system software)
fuzzing. It is not proposed (or at least, not here evaluated) as a general-purpose fault localization
method. However, it is possible to compare Repair with other methods, using their full mutation
and experimental set, to provide a more generalizable (and fair) comparison than the evaluation vs.
MUSE and MUSEUM over compiler faults. We obtained the data from two evaluations of mutant-
based fault localization methods: the set of faults used to evaluate MUSEUM [45], and a set of
CoREBench [8] faults used in an evaluation of MUSE and Metallaxis-FL by Chekal et. al [12]
(we were unable to obtain the original MUSE dataset, thus far). These data sets are not ideal for
evaluating Repair: for all but 10 of the faults (all from the CoREBench set) there is only a single
failing test case in the data. Repair for single failing tests is essentially MUSEUM without use of
passing tests, except to reject any mutation that breaks a passing test. Repair is meant to operate in

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



18 J. HOLMES AND A. GROCE

the case where a program either has numerous failing tests associated with open bugs (e.g., a typical
production compiler or complex system software program) or where a program has just been fuzzed
for the first time, so has numerous failures representing different faults. The distance metric lets
Repair make use of these other faults, by enabling it to focus on repairing mutants most relevant
to the failing test. Repair can, in many cases, have a lower cost than MUSEUM or Metallaxis-FL
because it does not need to run mutants that do not repair any failing tests on the passing tests:
analysis can begin with failing tests and only analyze passing tests covering repairing mutants.

6.0.1. MUSEUM Results For the six faults used in the original MUSEUM paper (all with a single
failing test), Repair gives the same (perfect) localization for three faults. One of the other three
faults (Bug2) has no repairing mutants (that do not break some passing test) so Repair provides
no localization information at all. For the remaining two faults, Bug5 and Bug6, Repair gives best
rankings of 12 and 9, respectively, compared to 8 and 3 for MUSEUM.

6.0.2. CoREBench Results For the full data set in the paper [12], Repair does not perform as well
as MUSE and Metallaxis-FL, as expected. It is only able to rank a faulty line of code for 12 of 30
faults. However, for these faults, it performs very well indeed, perfectly localizing 7 of the 12 (vs.
3 total perfect localizations for Metallaxis-FL and 4 for MUSE). Repair is uniquely best for 5 of
the 12, and is tied for best for another 6; for the remaining fault, it performs better than Metallaxis-
FL but worse than MUSE. Table III shows full results. The fourth column shows, for those bugs
where Repair did not rank any faulty statement, how many statements Repair proposed for a user
to examine. Note that in most cases if Repair was not helpful it also provided little output to waste a
user’s time: it only once presented more than 3 statements to examine. In practice, we only suggest
using Repair at all in cases where 1) there is at least one repairing mutant (not killed by any passing
test) for a failing test and 2) there are multiple failing tests (whether from one or multiple faults).
When the Stmts column shows a bold 0, it indicates there were no repairs (7 of the 30 faults). The 7
faults meeting both requirements are bolded. For 4 of these, Repair produces a perfect localization,
and for the other three, it produces no more than 2 non-faulty statements to examine.

7. DISCUSSION

In one sense, the discovery curve improvements here are practically very useful, but not extremely
large in a relative sense. The SpiderMonkey curve has an APFD only slightly more than 2% better
than the best result from previous FPF efforts. For GCC, APFD improves by 6.4%. However, the
comparison is with the very best curve chosen after running more than 16 different metrics. In
practice, users simply do not know ground truth to rank curves, thus Chen et al. [16] do not really
give a practical approach to distance metric selection. The best methods for different subjects varied
widely, even in such difficult-to-understand ways as less-fine-grained coverage providing better
results in some cases, but worse in other cases. In practice, their work established that FPF could
produce good curves, but gave very little useful guidance for choosing a metric for actual use of
the technique, since trying multiple metrics is impractical: a user has to examine each curve. The
set of metrics also included methods such as comparing output signatures that are inapplicable to
differential testing for wrong-code faults, the most critical compiler application. This paper presents
a single curve using a universal metric, and achieves a 2-6% percentage point improvement over
the best of more than 16 different metrics studied in the previous work; our improvements over any
single “reasonable” method applied to both problems would be considerably larger (for instance,
using the most obvious basis, line coverage, we see more than 17% improvement). Moreover, the
improvement is, for our subject programs, reliable: choosing random subsets of the full data set, the
difference in mean APFD from best-previous method is around 3%, and statistically significant.

For fault localization and error explanation, the results show possible improvement on state-of-
the-art mutation-based approaches. A practical impact of the results reported is that we suggest
users of our techniques examine only the first few (at most 10, and we propose as few as 5) mutants
and coverage-changing statements, and ignore localization if none of these results are helpful. This
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Table III. Fault localization for CoREBench faults

#Failing
Fault Tests Repair Stmts Metallaxis-FL MUSE

Coreutils 1 2 1 - 1 1
Coreutils 2 3 - 0 86 186
Coreutils 3 1 25 - 47 27
Coreutils 4 1 - 0 28 431
Coreutils 5 5 - 2 4 7
Coreutils 6 1 - 1 5 206
Coreutils 7 1 1 - 5 9
Coreutils 8 1 - 1 22 160
Coreutils 9 5 - 1 10 157
Coreutils 11 1 - 1 2 1
Coreutils 12 2 - 0 6 9
Coreutils 13 1 - 0 905 833
Coreutils 14 1 14 - 19 11
Coreutils 15 2 1 - 1 6
Coreutils 16 1 - 0 569 447
Coreutils 17 3 - 2 37 195
Coreutils 18 1 - 3 27 3
Coreutils 19 1 1 - 3 1
Coreutils 20 7 1 - 12 3
Coreutils 21 2 - 0 20 191
Coreutils 22 2 1 - 6 2
Findutils 27 1 - 9 12 6
Findutils 32 1 - 1 73 70
Findutils 33 1 - 3 10 30
Findutils 35 1 1 - 1 1
Findutils 36 1 9 - 9 19
Findutils 37 1 11 - 22 34

Grep 46 1 - 2 7 10
Grep 47 1 4 - 4 4
Grep 48 1 - 0 26 497

is analogous to our suggestion that a user abandon the FPF curve if 5-10 test cases in a row
fail to reveal any new faults, as a heuristic. We suspect the information in the mutants/coverage
changes is probably helpful in some cases where they do not localize a faulty line, but this
is simply based on our highly incomplete understanding of the faults and patches in question,
and not a solidly established claim. The expertise of compiler developers would be needed to
confirm or reject this belief. Our suggestion that mutations themselves provide interesting error
explanation is also applicable to MUSE and MUSEUM. There may be some potential for confusing
explanations, however, if repairs include mutants that also cause some failures, as in the standard
MUSE/MUSEUM approach.

For the compiler faults, if any repair for a failure modified a faulty statement, Repair always
ranked it in the top 34 localizations, ranked it in the top 5 in 6 of 10 such cases, and 3 times
ranked it 1st. MUSEUM, in contrast, ranked one such repair 195th, never ranked a fault in its top
3 statements, and only ranked a fault in its top 5 statements twice. Of course, MUSEUM might be
suffering from a lack of mutation operators, but in some cases this is unlikely due to the nature of the
repairs. For the CoREBench faults, Repair produced more than twice as many perfect localizations
as the other methods, though it did not provide any ranking for a fault in a large number of cases.

There are two ways to consider the performance of Repair. First, it is using information that
other techniques are not using. If each failure was only repaired by one mutant, MUSEUM and
Repair would both rank that mutant maximally, and we speculate that it would usually be faulty
code. But such cases are very rare in compilers: for SpiderMonkey the mean/median number of
mutants repairing each failure were 90.8 and 78, respectively, and for GCC the mean and median
were 54 and 43. Repair can distinguish repairing mutants in fine-grained ways that MUSE and
MUSEUM cannot by relying on the onion-ring structure: when a repair also repairs failures that
otherwise do not resemble the failure being localized (in terms of its repairing mutants), Repair
assumes that repair is general to many different faults, and so ranks it lower than more “relevant”
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repairs. MUSEUM relies on a large set of mutation operators, and assumes that faulty statements
will have multiple repairs, compared to non-faulty statements, or that faulty statements will be less
likely to cause passing tests to fail when mutated. Restricting ourselves to cases where Repair and
MUSEUM both provided a localization, we know that some faulty statement was in a repairing
mutant, but that passing tests could not distinguish this mutant from other repairs (since we only
use repairs that cause no passing tests to fail). Many of the faulty statement repairs (as expected
for optimizing compilers) were statement deletions and conditional negations. For these, it seems
unlikely that Proteum would produce more mutants repairing the statement, though perhaps Proteum
would create repairs for other statements that cannot be modified into a repair by any of Andrews’
operators. Our suspicion is somewhat confirmed by the results above where we used our methods
with the MUSEUM mutant result set, and obtained similar results.

The other way to think about Repair for the non-compiler faults especially, is as a very cautious
localization. It only uses mutants that repair a failure, and, because it is clear that, in general,
failing tests contain far more information about faults than passing tests, it only uses information
from failures (other than using passing tests to prune mutants that kill some passing tests, again a
principle of discarding potentially confusing information). This results in Repair either providing
a “useful” localization or almost no localization information at all to mislead a user, for the non-
compiler faults, which user studies and surveys suggest is the ideal behavior due to the cost of false
positives in localization [78, 54]. This is basically a trade-off. MUSE, MUSEUM, and Metallaxis-
FL provide localization for many more faults, in a more diverse range of settings (with single failing
tests, no repairs, etc.), and using more diverse information—but, in cases where Repair provides
a localization, it seems to often be higher quality due to its restriction to a high-signal source of
information (mutants repairing failing tests, only). In settings, unlike compilers, where there are
relatively few repairs, Repair also produces very little incorrect information, and so has a low
cost to the user in terms of wasted attention. Note that our heuristic to stop reading after 5 wrong
localizations is not even needed for all but one CoREBench fault—Repair suggests 1-3 statements
at most.

Finally, in contrast to many previously reported results in fault localization (which are typically
over much simpler programs and faults than subtle compiler semantics bugs) all methods we
applied very frequently failed to provide a useful localization at all for our compiler faults. This is
presumably due to the sheer difficulty of compiler bugs: our approach, and MUSEUM, performed
very well on complex multi-lingual faults in the MUSEUM data set. In one sense, Coverage is the
most intriguing method presented here. While it did not perform nearly as well as Repair, it did
manage, in many cases, to rank some faulty line highly, relative to the extremely large number of
statements executed in each failing GCC run (on the order of 50K-100K+ statements). In future
work, we plan to experiment with different methods for weighting frequency of coverage, perhaps
using methods from machine learning, or of pruning changed coverage that is not likely to be
relevant. For example, perhaps the Repair approach can be applied, and coverage changes present
in very distant failures can be removed, though the argument is less clear, since a coverage change
isn’t directly associated with the onion-ring structure, and does not directly repair a set of failures. In
fact, a study of the importance of delta-debugging in localization [17] showed that even traditional
Spectrum-Based Fault Localization (SBFL) can sometimes produce good results on SpiderMonkey
faults. Such methods, of course, often perform worse than even Coverage; e.g., for our fault #8
(their fault ID 115), Repair and Coverage produced localizations at rank 3 and 6, respectively,
while the best SBFL result was well over rank 32. We suspect that combining multiple methods,
using some method to cross-assess confidence, might be required to obtain reliably good compiler
bug localizations, and assign good confidence scores to localizations. There is much to be done if
automated debugging is ever to make the lives of compiler developers easier in most cases [78],
and a human study using real, complex compiler bugs would be ideal, since previous studies of
localization effectiveness tend to focus on simple tasks even moderately experienced developers can
potentially succeed at. Fixing deep optimizing compiler bugs is a very specialized skill, in contrast
to general debugging skills.
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8. MUTATION ANALYSIS COSTS AND POTENTIAL OPTIMIZATIONS

Our compiler experiments required a very large computational budget. However, our approach is,
by design, cheaper than MUSE or Metallaxis-FL, in that, for a program with up-to-date mutation
testing results (just knowing which mutants are killed, not a full matrix), it only requires executing
mutants over failing tests. Running each test case under each mutated version of the compiler is
cheap: each execution requires around 0.05 seconds for SpiderMonkey, and 0.12 seconds for GCC,
on average; moreover, executions can be done in parallel, most failures do not cover most mutants,
and vice versa, so the total number of repair checks needed is far less than the product of mutants
and failures, and can be spread over many machines.

Mutation cost reduction techniques are also applicable. E.g., trivial compiler equivalence (TCE)
[74] can reject equivalent and redundant mutants, removing almost 30% of mutants for benchmark
subjects. Other techniques, such as using mutant schemas to avoid having to compile and store each
mutant, are also applicable—almost all of the techniques characterized by Offutt and Untch [73] as
do faster approaches apply, without any loss of ability to identify or localize faults.

8.1. Hot and Cold Running Mutants

Note that the largest cost in our approach, by far, is compiling the mutants. While running all the
GCC tests on the covered, compilable, test-passing mutants takes nearly 24 days of total execution
time, the process is embarrasingly parallel: no mutant/test execution depends on any other. On the
other hand, all executions of a mutant/test pair depend on having a compiler that includes that mutant
built, and compiling GCC requires more time than test executions by a large margin.

We expect that fuzzer taming will mostly be performed when someone is fuzzing a compiler
either for the first time or using a new technique. If fuzzing is performed on a well-fuzzed compiler,
with only incremental changes from previous versions, there is not likely to be a significant fuzzer
taming problem: fuzzing will often only detect a small number of faults, and manual triage efforts
will probably suffice. In the case of “new” fuzzing efforts, however, they will usually be aimed
at release versions of a compiler. For major projects such as GCC, LLVM, or V8, producing and
publishing a set of “hot” mutants might be one solution. Hot mutants are mutants that 1) compile 2)
pass all current tests and 3) are not known to be equivalent mutants. Producing such mutants should
be an easily automatable task without prohibitive cost, at the level of a major open source project.
Release versions are only produced a few times a year (e.g., both GCC and LLVM had 5 releases
in 2018 and 4 in 2017). In addition to fuzzer taming, such mutants would provide a useful quick
benchmark for new compiler-fuzzing techniques: if a technique can kill mutants not detectable by
the compiler’s test suite, it has possibilities for bug detection as well.

Alternatively, a radical way to produce “hot” mutants at low cost (the only significant cost
being that of executing the test suite to throw out mutants killed by some passing test) is
to produce mutants at the object code level, which does not require recompiling a system.
This is how SQLite applies mutation testing: https://www.sqlite.org/testing.html#
mutation_testing. Object level mutants are obviously not useful (or at least, certainly not as
useful) for fault localization as source-level mutants, but mutating branches alone probably captures
many compiler repairs that are useful in fuzzer taming.

8.2. Lossy Techniques

8.2.1. Random Sampling Mutation cost reduction techniques classified as do fewer on the other
hand involve a loss of signal, not just more efficient production of the same signal. One of the
most popular and simple approaches to reducing the cost of mutation testing is random sampling
[9, 3, 29, 113]. Figures 9 and 10 show, respectively, the results of random sampling of mutants for
SpiderMonkey and GCC, by comparing the APFD obtained on a set of 30 random samples of the
chosen percentage of mutants with the APFD for the full mutant set. Because some mutants are
actually misleading with respect to distinguishing faults, sometimes sampling can improve results.
Sampling 10% of mutants directly translates to our approach requiring about 90% less time (or less
computing power if run in parallel). We assume a “hot” mutants approach in that our sampling is
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Figure 9. APFD values for Spidermonkey samples
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Figure 10. APFD values for GCC samples

of compilable, test-passing mutants. A larger sample would be required, in proportion to how many
mutants compile and pass tests, to achieve the same results in a scenario with only “cold” mutants,
though the difference is not huge, since most mutants are ruled out by the fact that no failing
test covers the mutant, rather than that they cause some passing test to fail. The more significant
difference in a cold-mutant scenario is that each mutant/test evaluation is of course much cheaper
without the cost (even amortized over many tests) of compilation, not the total number of mutants
considered.

Pure random sampling is fairly effective for GCC, but more mutants are required to obtain a
comparable APFD on average, for SpiderMonkey. The reason for this difference is not easy to
understand. At a high level, every mutant that repairs at least one failing test test case provides
at most one bit of information for fuzzer taming. Some repairing mutants repair all test cases (thus
providing no information to distinguish faults), and others provide potentially redundant information
in that they repair the same set of mutants as another mutant. Mutants that repair no test cases
provide no information, of course. Given that more SpiderMonkey mutants (12.6%) repaired a
test case than did GCC mutants (7.8%), it would seem that a smaller sample of mutants would
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be required to produce the “same number of bits of information” with SpiderMonkey. However,
SpiderMonkey mutants are more redundant than GCC mutants, and, perhaps more importantly, the
SpiderMonkey code is less well-structured, and changes behavior for more causally complex (and
unrelated to faults and clear optimization levels) reasons than the more mature GCC code, making
each mutant’s bit of information inherently more “noisy.” For GCC, using only 30% of the mutants
produces results quite close to the optimal results, and almost never drops below 90% effectiveness.
For SpiderMonkey, similar results come with 60% of mutants. Sampling is an inherently incremental
process: mutants can be processed in a random order, and a developer can compute the curve at
any point in time. We observed that the early curve is reliably good for both SpiderMonkey and
GCC, even with as few as 10% of mutants; most variance is in the further reaches of the curve.
If developers can identify and fix bugs based on early mutant results, these can be fed back into
the process, and mutants not covered by any remaining unfixed tests can be removed from the set.
For fault localization, with hot mutants a single failing test’s complete repair set can be found with
relatively few evaluations, and then the repairing mutants can be evaluated on all other tests, to
compute a localization that is essentially as accurate as the best ones we produced (distances may
be slightly off due to mutants repairing other tests, but not the test being localized, but the sampling
is likely to largely handle this issue, since exact distances are not important, only relative ones).

We tried various ways of improving the effectiveness of random sampling by forcing the inclusion
of certain mutants that were deemed more likely to be useful. For example, it is very important to
include mutants that repair hard-to-repair faults represented by a small number of tests. Finding
faults represented by few tests is, in some sense, what users want from a fuzzer taming algorithm.
We cannot, without evaluating them over tests, predict which mutants will repair only a small
number of tests (and thus, likely, faults with only a few representatives). However, making sure
to include mutants that are only covered by a small number of tests lets us ensure we cover mutants
that, if they repair any failing tests, only repair a small number of failing tests. However, due to
the likelyhood that such mutants repair no tests at all, including mutants covering at most k tests
(for small k) turned out to be either actually harmful (statistically significantly worse APFD) or
statistically indistinguishable from pure random selection. We were unable to find any mixes of
random and biased or chosen sampling that performed better than pure random sampling. Is this the
best we can do?

8.2.2. Operator-Based Selection A deterministic alternative to random sampling, long used in the
mutation testing community, is operator-based selection, where only some mutation operators are
applied [102, 95]. Using only statement deletion and condition negation mutants, as in our toy
example, on the grounds that we expect most compiler “repairs” to simply avoid an optimization,
not actually fix a simple defect such as an off-by-one error in a loop, is an intuitively appealing
and trivial to implement approach. The idea is clearly related to the object-level branch-mutation
proposed above, conceptually, but operating at the (more understandable to humans, and thus useful
in localization) source level. The resulting cost reduction is significant: 67.8% of mutants can be
ignored for SpiderMonkey, and 73% for GCC.

More importantly, the APFD actually improves with this change. For SpiderMonkey, the APFD
improves by almost 3%, and for GCC it improves by 0.86%. For SpiderMonkey, the early curve
(first ten items) is improved, and for GCC it is very slightly worse. Most importantly, in both cases,
two additional faults are revealed in the first 50 examined tests. We speculate that the accidental
nature of many repairs produced by operator and constant replacements may introduce harmful
noise into the distance metric, and thus the FPF-based fuzzer taming process. Changes that simply
sidestep faulty functionality are, perhaps, more likely to be meaningful [83].

Operator selection can, in principle (and in one case in our data set, in practice) reduce the
effectiveness of fault localization. However, with hot mutants, it is easy, if localization using
only negations and deletions is not helpful, to use the same method as proposed above for
random selection to compute a more precise localization for a test. This should usually not be
required, however: we noted that in most cases where a mutant involved in a localization was
an operator replacement, the mutant was usually equivalent in behavior to a condition negation.
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Constant replacement repairs were simply very rare and not involved in any of the useful compiler
localizations. The problem observed with random sampling, that the metric of distances to other
tests may be inaccurate, is of much less concern with operator selection: as far as we can tell, based
on FPF discovery curves and APFD, distances are more accurate using only the mutants we propose.

While using only some mutation operators may degrade fault localization performance for non-
compiler faults, we propose it as the default way to use our approaches in compiler fuzzer taming and
debugging scenarios. Furthermore, we speculate, based on the results of Qi et al. [83] showing that
most actual correct fixes in program repair are functionality deletions, that limiting mutants used to
condition negations and statement deletions (or even adding an operator that converts conditionals
to a False constant, as is provided by some tools [36]), might be the best practice for complex
programs and “deep” (hard to debug) faults in general. It seems unlikely that mutation operators
will produce many fixes that do not simply avoid broken functionality (vs. actually fix it), for the
kinds of faults that are actually hard for programmers to locate, understand, and correct.

8.2.3. Combinatorial Control of Optimizations Finally, if we assume that in the setting of
compilers, faults are due to optimizations, it may be possible to use a combinatorial approach to
turning on/off optimizations as a cheap equivalent of mutants; Ghandehari et. al [90] proposed a
combinatorial approach to fault localization and such a method might work fairly well in this setting.
Further experimental effort would be required to determine how useful such a method would be; a
major concern is that rather than simply “turning off” optimizations as one might at the command
line, some mutants change the result of a check as to whether an optimization is valid for a piece
of code. GCC and LLVM also do not, unfortunately‡, expose all the optimizations they perform as
individually controllable by users. Based on our examination, the level of control over optimizations
provided by GCC 4.3.0 was simply too coarse-grained to enable effective replacement of mutants,
and SpiderMonkey 1.6 offers almost no control over optimizations, as would be expected of a JIT
usually used in a browser context; it does not work as a command-line tool that takes an input file
and produces a binary. There may be API calls to control optimization in some way, but these were
not easy to discover, or practical for a developer to use.

9. FUZZER TAMING FOR A NON-COMPILER TARGET: FUZZGOAT

Fuzzgoat (https://github.com/fuzzstati0n/fuzzgoat) is a well-known backdoored
C program used to test fuzzers and other analysis tools. It is an useful subject for demonstrating non-
compiler fuzzer taming because it is a single program version with 4 distinct bugs with complete
ground truth, and widely viewed as representative of a typical fuzzing use-case. We ran AFL [108]
for over 7 hours on the program, generating 4,244 crashing inputs (Figure 11 shows a screenshot
from just before we terminated the run). AFL’s internal triaging methods reduced this to a set of 38
crashes it considered distinct. We terminated the run once it had been nearly three hours since a new
distinct crash was detected.

These crashes exhibit the usual fuzzer taming structure, where some bugs are far more frequently
found than others. Three of the bugs are easy to identify: they are triggered by 15, 14, and 11 of
the 38 AFL-produced crashing inputs, respectively, and all have multiple inputs that uniquely detect
that bug, and no other. The fourth bug, however, is only triggered by three of the 38 inputs, and is
never uniquely present (any input triggering it also triggers at least one other bug). The bug frees a
pointer that can subsequently be used, and it is (as often with use-after-frees [96]) hard to produce
inputs that actually cause this to happen. This bug was only found by AFL after nearly an hour of
fuzzing, in fact.

‡Unfortunately, at least, from this combinatorial point of view; as developers we may suspect that modern compilers
already have plenty of command-line options.
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Figure 11. AFL run for fuzzgoat

This is a classic fuzzer taming problem, albeit on a smaller scale than with the compilers: a user
will probably not want to inspect the highly-redundant set of 38 inputs, but will want to see all four
distinct faults, while examining as few inputs as possible.

Applying the mutation-repair based approach is relatively easy here. We used the
universalmutator tool [36] (https://github.com/agroce/universalmutator) to
generate 18,489 mutants for fuzzgoat. This tool is far more aggressive than Andrews’ tool, in terms
of operators used, and, more importantly is more widely available to typical users and easy to apply
to source code in a large set of languages, unlike, e.g., Proteum. Of these mutants, only 6,809
actually compile, and trivial compiler equivalance [74] can further reduce the set to 2,899 mutants
to be used in producing repair bitvectors. Computing the full bitvector set and all distances for
the 38 crashes required just over 10 minutes. While compiling and running mutants is a serious
computational burden in the setting of a production compiler, it is negligible compared to the
time required for fuzzing, in a typical fuzzing effort, we suspect, even without using such simple
additional reductions as checking the mutants for code covered by some crashing input. This is
partly because the number of mutants to consider is smaller, and partly because compiling GCC or
SpiderMonkey is simply much slower than compiling more typical small-to-medium-sized fuzzing
targets. Fuzzing a very complex target, such as a complex production-grade database (e.g., LevelDB
or RocksDB) or the Linux kernel itself might be more like compiler fuzzing, however, in terms of
mutation analysis cost. Input runtime is also smaller for most non-compiler targets, we suspect, even
including “hard” targets like databases and kernels.

Table IV shows fuzzer taming results for fuzzgoat, using our repairing-mutant-based approach,
Chen et. al’s [16] statement coverage method, and (as a baseline) random ordering. For repair-based
ranking and statement coverage-based ranking, we show the mean result over all 38 possible choices
for first test to rank. Random is the mean over 38 random rankings. Cutoff indicates the point at
which the user stops examining crashing inputs, and Mean bugs indicates how many of the four
distinct faults, on average, the method, with that cutoff, allowed the user to see within that cutoff.
# Perfect describes how many of the 38 experiments produced a perfect triage, where all of the
bugs were seen before the cutoff. We begin Cutoff at 3, since 3 is the minimum possible number
of inputs a user must examine to find all four bugs (some inputs cause a crash due to either of
two bugs, so are able to identify two faults). Coverage-based FPF is better than repair-based FPF,
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Method Cutoff Mean bugs # Perfect % Perfect
Repair 3 3.00 0 0.00%
Coverage 3 3.10 13 34.21%
Random 3 2.58 3 7.89%
Repair 4 3.42 16 42.10%
Coverage 4 3.39 15 39.47%
Random 4 2.74 6 15.79%
Repair 5 4.00 38 100.00%
Coverage 5 3.50 19 50.00%
Random 5 3.29 16 42.10%
Repair 6 4.00 38 100.00%
Coverage 6 3.50 19 50.00%
Random 6 3.18 11 28.95%

. . .
Repair 10 4.00 38 100.00%
Coverage 10 3.63 24 63.16%
Random 10 3.58 23 60.53%
Repair 11 4.00 38 100.00%
Coverage 11 3.63 24 63.16%
Random 11 3.66 25 65.79%

. . .
Repair 17 4.00 38 100.00%
Coverage 17 3.97 37 97.37%
Random 17 3.84 32 84.21%
Repair 18 4.00 38 100.00%
Coverage 18 4.00 38 100.00%
Random 18 3.82 31 81.58%

Table IV. Fuzzgoat triage results

for fuzzer taming, if a user only examines 3 of the 38 crashes. However, once a user is willing to
look at 4 inputs, mutation-repair is better, and if the user is willing to look at 5 of the 38 inputs, our
approach guarantees all of the distinct bugs will be seen. Statement coverage-based FPF, in contrast,
requires a user to look at 18 inputs before providing such a guarantee. Indeed, there is a more than
25% chance of missing one bug even if the user looks at 10 inputs, and random ranking performs
almost as well as coverage-based FPF, once a user is willing to examine 10 or more inputs. In the
table, cutoffs for which statement-based coverage performance is identical to the previous cutoff are
omitted. That the coverage-based ranking does not improve its performance between cutoff of 6 and
9, and 11 and 16, shows how weak the signal from the distinct faults is, in terms of code coverage.

To our knowledge, the state-of-the-art in research on advancing fuzzing triage over the tools
built into fuzzers like AFL is represented by the semantic crash bucketing (SCB) approach of van
Tonder, Kotheimer, and Le Goues [97]. This approach uses patch templates based on common types
of bugs/semi-fixes, combined with semantic information obtained by observing the execution of a
crashing input, to bucket crashing inputs discovered by fuzzers. We contacted the SCB authors, and
with their cooperation investigated how well SCB handled the fuzzgoat crashes. The fuzzgoat code
highlights the primary limitation of SCB: namely, if a kind of failure is not handled by a (manually
constructed) patch template and identified by the semantic feedback mechanisms, then SCB does
not really handle it. The SCB tool was able to produce a patch for one of the four fuzzgoat bugs,
a null pointer dereference. Unfortunately, at present, SCB does not handle bugs related to misuse
of free (use-after-free, double frees, or frees of invalid pointers), and the other three fuzzgoat
bugs are all free-related. SCB therefore can very effectively identify the inputs associated with
one of the four bugs, but provides no assistance with finding the other three bugs. This is not to
say that SCB is useless here; the null pointer bug is responsible for 15 of the 38 crashes, so SCB
does make it easy to see an instance of the null pointer bug, and ignore 14 additional inputs. It
does not, however, help find the rare bug with only a few instances among the remaining 23 inputs.
While mutation repair also has no knowledge of free bugs, it is able to find mutants that avoid
their symptoms or their causes, and thus triage all four faults effectively. The SCB team added the
fuzzgoat example to their published VM, and plan to use it to drive development of patch templates
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and analysis for use-after-frees; this will, at some point, likely make it possible for SCB to handle
fuzzgoat effectively. However, in the long term, if fuzzing is applied to find assertion violations,
differential testing divergences [66, 37], or other more complex “custom” properties, as is likely
with the appearance of tools such as DeepState [27] that merge fuzzing and property-based testing,
it is hard to see how SCB will handle these “custom” bug types.

Fuzzgoat is a poor candidate for fault localization, due to the lack of a reasonable set of passing
tests, and due to the fact that all four bugs are fairly easy to understand once an appropriate input
is run under a sanitizer. We do note that repair manages to localize the null pointer dereference
perfectly (SCB’s patch is also an excellent localization for this bug). Given passing tests, we suspect
all fault localization methods discussed in this paper could handle the localization problem easily,
in contrast to a typical compiler bug.

Unsurprisingly, the repairing-mutants approach does not improve on SCB on the set of bugs
from the SCB paper [97]. These bugs were intentionally selected to consist of null pointers and
buffer overflows; SCB in this setting operates as a bucketing version of repair that only has to use a
selected, known-relevant set of mutants. Repair is good at ranking the crashes for these subjects, but
unable to provide bucketing, and more difficult to set up and more expensive (though still relatively
cheap — it requires minutes for taming, vs. the seconds of SCB) than SCB. When SCB applies, it is
likely to be faster and more useful than mutant-based FPF ranking. However, a user will obviously
seldom know for certain that all faults in a set of crashes correlate to bug types that SCB supports.
One approach would be to use SCB to bucket crashes, and then apply our approach to any remaining
inputs, and examine the first few inputs in repair-FPF order. In Section 12 we will return to this point.

10. THREATS TO VALIDITY

The largest threat to validity is that this paper’s core conclusions rely on only two data sets for
compilers, and a small number of non-compiler faults. The compiler ground truths are possibly
imperfect, due to the complex change history, and it was not possible to produce good patches
for all faults, limiting our analysis of compiler fault localization. The comparison with other fault
localization methods is also limited: our compiler experiments limit the mutation budget in ways that
may weaken MUSE and MUSEUM effectiveness, and the results using fault and mutant data sets
from other studies provide few faults, no multi-fault problems, and very few multi-failure problems,
limiting Repair effectiveness. It is also possible that faults in the framework used for experiments
introduced errors into our results. In order to make it possible to check for these problems, we
have made the raw data for a re-analysis of the PLDI13 benchmark available, including the
tests, ground truth, and mutants, at https://github.com/agroce/compilermutants;
the fuzzgoat example is also available, including source code for a simple version of our FPF
algorithms, at https://github.com/agroce/fuzzgoattriage. The data required for
analysis of the non-compiler faults is available from the authors of the respective studies (see the
acknowledgements at the end of the paper).

11. RELATED WORK

There are four primary areas of related work. First, fuzzer taming and related problems of
determining the set of faults from a large set of redundant failures have been investigated in a few
papers. Second, some recent efforts to localize faults have begun to incorporate the use of program
mutants, and the broader problem of fault localization has been very extensively investigated.
Program mutants have also been used in efforts to produce automatic repairs for program faults.
Finally, our work fits into the general framework of efforts to define distances between program
executions.
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11.1. Fuzzer Taming/Bug Triage

The most closely related work (other than the ISSRE 2018 [43] paper that we extend) is that of Chen
et. al [16], whose FPF [25] algorithm and benchmark we use. We extend their work with a better,
and more universal distance metric, as well as an approach to fault localization in addition to fuzzer
taming. Prior to the FPF-based work, Francis et al. [23], Podgurski et al. [81] and others [63, 62]
used clustering to attempt to solve similar problems in identifying distinct faults, on simpler human-
generated data sets. Chen et. al [16] provide an in-depth comparison of clustering and ranking, and
the advantages of ranking (as well as some possible limitations). Jones et al. discuss general issues
in debugging multiple faults [49]. The work of Groce et al. [35] provides an alternative approach to
fault identification, based on term rewriting to normalize failures, but is not currently applicable to
compiler fuzzing, as it only supports tests that are sequences of method calls in Python [39, 44].

One recent approach does, at a conceptual level, resemble our methods: semantic crash bucketing
(SCB) improves the fuzzer taming ability of AFL [108], Honggfuzz [28], and CERT BFF [92], by
approximating real bug fixes with lightweight program modifications [97]. The primary difference
between SCB and our approach is that we generate many more potential approximate fixes,
via mutation, but use no semantic feedback from failing inputs other than code coverage. The
selectivity of SCB dramatically improves its scalability and ease-of-use, but limits applicability
to cases where a patch template has been manually constructed, e.g., buffer overruns and null
pointer dereferences. While these cases are by far the most common in traditional security/crash-
based fuzzing, crashes are usually the uninteresting cases in compiler fuzzing, or fuzzing/symbolic-
execution based property-based [18] testing [27, 26, 94]. It is unlikely that enough patch templates
for the interesting changes to compiler code, or invariant-preserving code in other fuzzing, can be
manually produced to make SCB alone generalize to these settings. Another difference is that SCB
provides bucketing, rather than ranking; this is in some cases ideal (a user of AFL usually just wants
to count “different” vulnerabilities that are memory-safety based), but in settings where the fixes are
even more approximate and overlapping, and the bugs more complex, ranking is most useful.

11.2. Fault Localization

Fault localization [101, 85, 61, 62, 19, 51, 50, 49, 32, 11, 63, 31, 88, 2, 105, 110], even
specifically for compilers [100], is a long-standing field of research. Many fault localization
researchers have used program mutants to improve statistical [51] fault localization techniques
[68, 20, 24, 45, 77, 76, 12, 112, 71, 72]. One core aspect of this work has been the belief that
faulty program locations are (1) more likely to change a failing test to successful when mutated
and (2) less likely to change a successful test case to faulty when mutated. This clearly connects to
our general notion that how two test cases respond to a set of mutants is a good measure of their
semantic similarity.

The work of Hong et al. [45] on MUSEUM and Moon et al. [68] on MUSE provides a good
summary of other work along these lines, and is perhaps most similar to ours in assumptions. In
particular we agree with “Conjecture 1” that a test case that used to fail on a program is more likely
to pass on a mutation of a faulty statement. However, while we suggest some localizations as a
welcome and interesting side effect of our distance metric and FPF analysis, our primary goal is the
discovery of all faults. Much fault localization work is largely (in many cases exclusively) based on
single-fault scenarios; e.g., the MUSE [68] evaluation includes only 2 of 14 scenarios with multiple
faults, and those scenarios include only a few faults. The statistical approaches may owe some of
their superiority in experiments over other methods to the use of mostly single-fault evaluations [50].
By focusing on a single failing test case (for us, selected by fuzzer taming) as the locus of analysis,
our work, like some early efforts [85, 19, 32] may be more suited for situations involving many
faults. MUSEUM [45] also revisits this approach, combining the MUSE formula with localization
using only a single failure.

Metallaxis [77, 76, 12], in contrast to MUSE/MUSEUM (and our own work), relies on the idea
that mutants that are (relative to other killed mutants) mostly killed by failing tests likely have a
connection to a program defect or defects. This idea relies on a fundamentally different notion of
“killing” a mutant than the one primarily used in this paper. We generally speak of a mutant being
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killed when the mutant makes a previously passing test fail; in this sense, a failing test cannot kill a
mutant. However, these “correctness kills” are not the only possible notion of mutant kill used in the
literature; a different approach is to consider a mutant killed whenever it produces a different output
than the original program. This point of view, unfortunately, is not obviously useful for compiler
mutants, where almost all mutants, however benign, of covered code, will result in some (perhaps
meaningless) change in the output binary. We have therefore considered a mutant killed only when
it causes semantically wrong output from a compiled program, a fairly complex specification-based
notion of difference. Compilers may therefore be an unusually poor fit for the Metallaxis approach,
which, as our results above show, is quite competitive for more “normal” localization, where output
(vs. specification-satisfaction/correctness) differences are likely to be meaningful. Extending our
approach beyond “correctness kills” (at least for non-compiler contexts) is an interesting possible
line of future research.

Musco, Monperrus, and Preux offer yet another alternative mutant-based approach to localization,
one that (like ours) is explicitly causal [72]. Their approach, quite different than MUSE, MUSEUM,
Metallaxis, or our own, uses mutants to mark likely causal relationships in call graphs. A recent
survey of advances in mutation testing places all of these approaches using mutants in fault
localization within the larger context of mutation testing research [75].

Explaining, rather than merely localizing, bugs is a less common goal, though all mutation-based
approaches can probably be adapted to this idea (since a mutation is, itself, a kind of explanation).
Key work on explaining bugs in addition to localizing them includes Groce’s early model-checking
work [32, 11] and the MintHint [53] approach, which bears some resemblance to the use of mutants
as “hints” for fault repair, but is more general and backed by user studies to show its utility. The
real-world value of MintHint explanations supports the idea that mutant-based explanations might
be useful to developers.

11.3. Automated Program Repair

Using program modifications or mutants broadly defined to repair programs has been a popular
topic of recent work as well [57, 82, 99]. These generate-and-validate approaches to patching
aim to fix programs by generating a large variety of potential fixes, then using test cases to prune
out invalid fixes. Qi et al. [83] discuss some serious limitations of early work on this topic, but
also demonstrate that effective patching is possible using a restricted search space that focuses on
removing functionality.

Some approaches to localization or patching assume the possibility of a mutant/change actually
fixing a fault. In our experiments, we found this to be highly unlikely – most of our compiler patches
were far larger than the largest higher-order-mutants [47] anyone usually considers applying, and
none were equivalent to a repair. Previous work has shown that, across a large body of open source
programs in many languages, most fault fixes were larger in size than even low-order higher-order
mutants [30]. We speculate that fixes for compilers may be likely to be even more complex than the
average, given that compilers are particularly complex software systems. Our primary assumption is
simply that similar executions respond similarly to mutants, and in particular executions due to the
same fault can be “repaired” by similar program changes. These changes are likely to be related in
some causal way to the actual fault, but are unlikely to be the actual fault, for reasons of comparative
complexity of mutants and real fixes.

11.4. Distance Metrics

The use of distance metrics in software engineering includes some of the localization and fault
identification efforts discussed above (e.g., [85, 32, 11, 63]). Vangala et al. proposed using distance
to cluster test cases to improve diversity and eliminate duplicates [98]. We speculate that using
FPF with our causal metric over passing tests as a test prioritization (or selection) method might
be a fruitful approach [107]. Adaptive random testing uses distances (usually between inputs)
to choose tests [14, 15, 5], and Artzi et al. guided test generation for fault localization using
path constraint metrics [6]. Sumner et al. evaluated approaches to generating execution peers for
debugging and understanding [93] using tree edit distances (and evaluated other distances). Xin
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et al. [104] examined methods for indexing program executions, useful in all methods involving
execution alignments. To our knowledge, most metrics used are essentially spectrum-based [86, 7]
(using counts over structural entities), while our metric is essentially causal, based on mutants as
counterfactual [59, 60] versions of a program.

12. CONCLUSIONS AND FUTURE WORK

When are two failing test cases due to the same fault? This paper demonstrates that “when they are
repaired by the same program mutants” is a useful answer to this question. The problem of causality
in executions is hard, and has long been tied to a notion of similarity of executions [85, 32]. By
using program changes (produced by mutants) as causes to determine distance, it is possible to
improve on efforts to identify the set of faults in a large set of redundant compiler failures [16] and
discover the source code locations of faults [68, 45]. For a set of more than 2,800 tests and more
than 50 faults, over the Mozilla SpiderMonkey 1.6 JavaScript compiler and GCC 4.3.0, our methods
improve fault identification (“fuzzer taming”), in a statistically significant way (with effect size of
about 3% improvement), over the best (for each subject program) of over 16 metrics considered in
previous work.

We also demonstrated that our approach can be cheap and effective in fuzzer taming not targeting
compilers. It performed much better than a coverage-based ranking approach, reliably revealing
distinct faults in the first few inputs presented, and is more general in application than the (to our
knowledge) best competing method, semantic crash bucketing [97].

Preliminary investigation also shows improvement (for a shared mutation testing budget) over
previous mutant-based fault localization methods, for the same tests and a subset of 24 faults
with known locations. Our Repair method, in particular, was the only localization approach to
provide any perfect localizations of faults (it produced 3), and provided three times as many very-
high-quality (ranking the fault in top 5 locations) localizations as the next best method [45] — 6
such localizations, compared to only 2. For GCC wrong-code faults, only our methods produced
any very-high-quality fault localizations. When applied to non-compiler faults, the metric tended
to either not produce a localization, produce a very small incorrect localization (1-3 statements),
or produce a very high quality localization. Restricting to the cases where we consider Repair
applicable (7 faults) Repair perfectly localized 4 of them, and produced a 1 or 2 statement incorrect
localization for the others.

As future work, we plan to apply the mutation-based metric to other fuzzer taming and fault
localization problems. The highly varying results for even the best fault localization methods in
our experiments demonstrate that further advances are required before compiler debugging can
consistently be made less onerous through automated assistance.

More practically, we would like to tightly integrate our approach with automated test generation
tools, such as TSTL [44, 38, 39], DeepState [27, 26], Echidna [91], and Manticore [69]. Automated
test generation tools tend to produce a large number of passing and failing tests, and are often
used in “overnight” runs where adding a step to use mutants to triage failing tests and provide
localization suggestions for the highly ranked tests may not even impose a noticable overhead on
current usage practices. The latter two tools (Echidna and Manticore), which target smart contracts
for the Ethereum blockchain [103], are particularly promising opportunities, because the gas-limited
computation bounds of the Ethereum Virtual Machine essentially guarantee that smart contract code
is small enough to make mutation analysis cheap. The availability of a multi-language mutation
analysis tool [36] supporting Python, C/C++, and Solidity (the language used for most smart
contracts) means that a common infrastructure base can be shared by all of these tool integrations.

We also plan to explore other applications of mutant-based metrics. Many software engineering
techniques rely on measuring distance between program executions [7, 85]. Not all of these
concern only failing executions. For example, Zhang et al. [111] show that FPF based on a simple
Hamming distance over branches covered can significantly improve the effectiveness of seeded
symbolic execution [65, 80, 48]. Mutation response is likely too expensive to use for this purpose
without modification, but sampling mutants to refine distance when coarser metrics plateau may be

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



USING MUTANTS TO HELP DEVELOPERS DISTINGUISH AND DEBUG (COMPILER) FAULTS 31

practical. Cost may be less of a concern when applying our metrics as a method for prioritizing
or selecting regression tests, where the results can be repeatedly used in test suite execution,
without recomputing distances based on every code change [107]. Our metrics may also be useful in
determining execution peers [93], for example to help operators of spacecraft find similar behaviors
to telemetry downlinks in testbed history [41, 34].

Finally, the results of our comparison with semantic crash bucketing (SCB) [97], which we
consider the state-of-the-art in general-purpose fuzzer taming, suggest what may be the most
important line of future work. When SCB applies to a set of crashes, it is cheap, effective, and
provides a useful bucketing. However, it is very hard to imagine the manual-patch template approach
of SCB ever applying to complex compiler bugs, or even to all the kinds of faults that might be found
in fuzzing of other targets, as discussed in Secton 9. We believe, however, that a combination of SCB
with our FPF-and-mutant-repair approach, perhaps using operator selection to approximate a large,
imprecise, set of “patch templates,” and using semantic guidance to select among these, might offer
a fuzzer taming method that is both extremely practical (like SCB) but also truly general-purpose
(like our mutation-based approach). In Section 9 we propose a simple two-phase approach, using
SCB first, then our approach, but we believe a more principled combination of the methods might
provide truly effective fuzzer taming, at a reasonable cost.
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