
Practical Automatic Lightweight Nondeterminism
and Flaky Test Detection and Debugging for Python

Alex Groce
School of Informatics, Computing & Cyber Systems

Northern Arizona University
Email: agroce@gmail.com

Josie Holmes
School of Informatics, Computing & Cyber Systems

Northern Arizona University
Email: josie.holmes@nau.edu

Abstract—A critically important, but surprisingly neglected,
aspect of system reliability is system predictability. Many soft-
ware systems are implemented using mechanisms (unsafe lan-
guages, concurrency, caching, stochastic algorithms, environmen-
tal dependencies) that can introduce unexpected and unwanted
behavioral nondeterminism. Such nondeterministic behavior can
result in software bugs and flaky tests as well as causing
problems for test reduction, differential testing, and automated
regression test generation. We show that lightweight techniques,
requiring little effort on the part of developers, can extend
an existing testing system to allow detection and debugging of
nondeterminism. We show how to make delta-debugging effective
for probabilistic faults in general, and that our methods can
improve mutation score by 6% for a strong, full differential test
harness for a widely used mock file system.

I. INTRODUCTION

For ourselves, we might prefer to think (and act as if) we had
free will; however, we generally prefer our software systems to
be as constrained in their actions as possible: in other words,
we wish them to be largely deterministic, from our perspective.

Determinism is particularly important for testing and debug-
ging, where being able to exactly reproduce system behavior
is essential to productivity. Developers using a test exhibiting
nondeterminism to debug a system face a serious challenge.
Regression testing effectiveness can be significantly reduced
if tests cover code or, worse yet, fail, only intermittently and
unpredictably. Such behavior is unfortunately all too common:
Gao et al. [7] observed coverage differences of up to 184 LOC
for the same test, and false positive rates as high as 96%.
Nondeterminism is problematic for developers, who want to
assume that library code behaves in a predictable fashion;
nondeterminism is vexing in debugging; nondeterminism is
often disastrous for large-scale automated testing.

A system is deterministic if, given the system’s complete
state at a point in time, it is possible, in principle, to predict
its future behavior perfectly. In the real world, prediction may
be possible but impractical, or some details neither predictable
nor interesting. We write complex software systems because
we cannot predict their behavior, and we usually want to
abstract away from machine-level details. As a consequence,
rather than defining determinism in terms of prediction, we
usually say that a system is deterministic if, given a certain
limited higher-level abstraction of state and inputs, observable
behavior is repeatable.

Unexpected nondeterminism is, unfortunately, usually only
discovered in a context that makes it very hard to debug.
The most common such contexts are occasional rare failures
of a system in deployment, and regression tests that do not
behave reliably (known as flaky tests). Furthermore, unex-
pected nondeterminism makes it difficult to use automated
test generation to produce effective regression tests for a
system. While developers may know how to produce reliably
deterministic unit tests, automated test generation usually does
not have sufficient information to do this.

Complex modern software systems usually include a large
set of regression tests. A regression test suite is a set of
tests that can be run every time code is modified, to ensure
that the modification has not broken the system. Flaky tests
[23] are regression tests that fail in an intermittent, unreliable
fashion. The essence of a flaky test is that, for the same
snapshot of test code and code under test, it sometimes
fails and sometimes passes: the pass/fail result (disposition)
of the test is not a deterministic property of the test code,
code under test, and testing environment. This produces three
serious problems: first, a flaky test often wastes developer
time and delays software changes by forcing the investigation
of correct code-under-test. Second, failures in flaky tests are
often ignored, and therefore serious software faults missed.
Finally, to mitigate the problem, flaky tests are often run
multiple times, wasting computing resources and delaying
code changes. Flaky tests are, for us, simply a special case
of the horizontal nondeterminism described below. Our focus
is on detecting sources of flaky-ness, before they propagate.

Contributions: This paper proposes (1) a number of formal
definitions of types of nondeterminism (horizontal and ver-
tical) and (2) an implementation, based on these definitions,
for detecting and debugging nondeterminism in property-based
testing. The implementation is based on an approach where
(3) horizontal determinism is considered as a kind of reflexive
differential testing (4) vertical determinism is specialized to
the common case of failure determinism, and (5) in both
cases the formalism is made practical by using the value pool
model of unit tests. We also introduce necessary modifications
to the widely used delta-debugging algorithm in order to
better handle nondeterminism as a test property. Evaluating
these approaches with realistic Python libraries, we show large
improvements to both fault detection and test reduction.

Step #1

Step #2

Step #3

Step #4

Step #5

Step #1

Step #2

Step #3

Step #4

Step #5

=

=

=

=

=

Horizontal Vertical
Step #1

Step #2

Step #2

Possible
changes
in
timing,
process,
etc.

=
Repeat
step

Step #3

Fig. 1: Types of determinism

II. LIGHTWEIGHT NONDETERMINISM DETECTION

We define two basic types of determinism, shown in Figure
1: horizontal and vertical determinism. In horizontal determin-
ism a software system reliably produces the same behavior
given the same steps of a test: the behavior of multiple
executions that are “the same” in terms of inputs/actions can
be aligned and checked for equality. In vertical determinism,
rather than behavior across executions, we are interested in
behavior within an execution, where repeating the same step
of a test twice should result in the same behavior.

A. Horizontal Determinism

1) Determinism and Reflexive Differential Testing: Hori-
zontal determinism can be best understood by thinking of non-
determinism detection as an unusual kind of differential testing
[21]. In differential testing, a system is compared against a ref-
erence in order to ensure that it behaves equivalently, at some
level of abstraction, to another implementation. Differential
testing is extremely powerful, in that any (properly defined)
divergence of behavior indicates a functional correctness fault
in (at least) one of the systems under test, and is widely
used for systems software such as compilers [21], [31] and
file systems [9]. The major limitation of differential testing
is that multiple implementations of a system are almost as
rare as good correctness specifications. For the special case of
detecting nondeterminism, however, a system can serve as its
own reference implementation. The problem, then, becomes
one of deciding at what granularity the reference equivalence
will be checked: e.g., processor-instruction and memory-layout
determinism is seldom necessary or even desired. We propose
two approaches to “aligning” an execution with itself.

Visible value determinism uses the human-accessible outputs
(displayed or stored to a file), and values returned by functions
or methods called as a library by other code, as the criteria
for determining if two executions are equivalent. Determinism
is motivated by the desire to create consistent behavior for
an observer, whether that observer is a human user, another
software system, or a regression test. In practice, of course,
some values (time stamps, pointer addresses, etc.) are not
expected to be deterministic by an observer; we call these
values opaque in that they are not interpretable as “showing”
the internal workings of the code being tested for determinism.
Rather, they mask an abstraction, usually one managed by the
operating system (system time, memory management). Any

mechanism for visible value determinism needs to support
designation of some values as opaque.

While visisble value determinism provides very fine gran-
ularity, which is important for debugging purposes, it is also
expensive, requiring checks on a potentially very large number
of values. It is often sufficient to only compare final states of
a computation performed by the system, which we refer to as
final state determinism.

B. Vertical Determinism

Vertical determinism is a property that expresses that some
operations of a software system should, within the same trace,
always behave the same way. Usually, for interesting cases,
this is dependent on some state of the system, though some
operations should be completely state-independent. E.g, the
hash of a given bytestring returned by a security library
should never change. This is one aspect of pure functions.
For nondeterminism checking, the interesting cases are non-
pure: a function depends on system state, but should always
depend on it in the same way, and should not, itself, change
system state in a way that would change its behavior on a
subsequent call to that function.

Many idempotent operations fall into this category. Consider
adding an element to an AVL tree implementing a set, not a
multiset. Assume the method call returns the parent node of
the element, whether it was added or was already in the tree.
Calling this method any number of times in a row should
always return the same value. One approach would be to
identify idempotent operations and automatically retry all such
operations, checking that the result is unchanged. Identifying
idempotent operations does impose a specification burden.

However, for the specialized case of failure determinism, no
specification is required. Failure determinism is the following
restriction on an API: If a call/action fails, and indicates
this to the caller, it should not modify system state in any
way; changes should be “rolled back.” Some behaviors of
the Mac OS High Sierra root exploit (CVE-2017-13872 [24])
exhibited failure nondeterminism. Attempting to login with the
root account with an empty password appeared to fail, then, on
a repeated try, succeeded. Many library APIs are largely failure
deterministic. For instance, if we exclude actual I/O errors,
most POSIX file system calls either succeed or do nothing;
interfaces that may only partially succeed, such as read and
write tend to explicitly return a degree of success, rather
than signalling total failure, when appropriate.

In languages with a clear mechanism for expressing failure
of a call (e.g., exceptions in Python and Java, or Option/Re-
sult types in Rust, Haskell, and ML), failure determinism
can be automatically checked. The overhead should be even
lower than for other vertical determinism, in that most failing
operations are fast. Checking equivalence of full observable
state, however, is still expensive, and requires defining the
observable components of a state, suggesting the shortcut of
simply repeating the failing operation, and checking if it still
fails which still catches such issues as the Apple login bug.

C. Formal Definitions

We can formally distinguish the types of nondeterminism
by using a variant of a labeled transition system (LTS), where
(1) S is a set of states; (2) V is a set of observable states,
where |V | ≤ |S|; (3) v : S → V is a total function that, given
a state, maps it into the set of observable states, such that
every state has an observable component, which may be the
complete state, or only an aspect of the full state; (4) I ⊆ S
is a set of initial states; (5) A is a set of actions; and (6)
T ⊆ S ×A× S is a transition relation.

We assume that the underlying behavior of a system may be
deterministic, or nondeterministic by allowing for a transition
relation that may be a function of S ×A. A trace t is a finite
sequence t = s0

α0−→ s1
α1−→ . . .

αn−1−−−→ sn where s0 ∈ I and
∀i < n.(si, αi, si+1) ∈ T . The concept of an action does not
restrict this approach to reactive systems; it can be generalized
to consider the only action that varies to be the selection of
an input, α0, with the remainder of the actions being internal
τ actions.

1) Horizontal Determinism: A pair of traces (t1, t2) where

t1 = s10
α1

0−→ s11
α1

1−→ . . .
α1

n−1−−−→ s1n and t2 = s20
α2

0−→ s1
α2

1−→

. . .
α2

n−1−−−→ s2n are said to show visible value nondeterminism
if ∃i > 0 such that: ∀j < i.α1

j = α2
j ∧ v(s1j) = v(s2j) but

v(s1i) 6= v(s2i). Final state nondeterminism is defined in the
same way, except with the restriction that i = n. A pair of
traces may exhibit visible value nondeterminism but not final
state nondeterminism.

2) Vertical Determinism: To define vertical nondetermin-
ism with respect to idempotency, we can define I ⊆ A, the set
of idempotent actions. A trace ts0

α0−→ s1
α1−→ . . .

αn−1−−−→ sn
shows vertical nondeterminism with respect to idempotent
operations if ∃i < n such that αi ∈ I ∧ αi = αi+1 and
v(si+1) 6= v(si+2). Note that vertical nondeterminism may,
in theory, exhibit only after a sequence of more than two
successive applications of a (supposedly) idempotent opera-
tion; the definition only requires that after some sequence of
actions, possibly with αi−1 = αi, the visible state changes.
In an implementation, we would usually restrict the search to
a finite number of repetitions; for many faults, two “copies”
will suffice.

3) Failure Determinism: To define failure nondeterminism,
we extend the transition relation to include a notion of failure:
T ⊆ S × A × S × F : bool, where the boolean F indicates
whether the action A failed. A trace t = s0

α0−→ (s1, F0)
α1−→

. . .
αn−1−−−→ (sn, Fn−1) shows failure nondeterminism if ∃i such

that Fi (that is, αi fails) and either (1) v(si) 6= v(si+1)
(the visible state changes) or (2) αi = αi+1 ∧ ¬Fi+1 (the
same action is repeated, but this time does not fail). The
second possibility offers a lightweight approach to checking
for failure nondeterminism. Unlike all of the other ways to
demonstrate nondeterminism we consider, this second type of
failure nondeterminism does not require the use of v.

D. Sources of Nondeterminism

In order to implement a practical nondeterminism-detection
tool, it is important to consider the real-world sources of
nondeterminism. Most nondeterministic behavior in tests is
probably attributable to simple effects that can vary with a
repeated execution, in the same (approximate) enviroment, of
the same test. There are two broad classes of nondeterminism
that can usually be detected by executing the same test twice
in succession, without attempting to control any other factors.
External Environment nondeterminism arises when a test’s
behavior depends on factors outside the program under test,
which are subject to uncontrolled variance. Calls to time
or random are obvious examples. Concurrency is a second
common cause. E.g., a multi-threaded implementation of a
search algorithm, that returns the location of an item in
an unsorted list; in the presence of duplicate items, thread
scheduling may change the index returned.

1) Process-Based Nondeterminism: Some sources of non-
determinism unfortunately require executing a test in a new
process environment, because the source is inherently tied to
the process in which code runs. In terms of our formalism, an
action needs to be introduced that indicates the generation of a
fresh process. Address Space Layout Randomization (ASLR),
which scrambles the layout of memory of the process in
which an executable runs in order to make it harder to exploit
memory-safety vulnerabilities, is probably the most important
source of nondeterminism that arises (only) from change in
process.

Another example of process-based nondeterminism arose
when Python version 3.3 introduced automatic random salting
of hashes on a per-process basis, in order to mitigate hash-
based denial of service attacks [25]. Until version 3.6 this not
only resulted in changes in exact hash values, but in the order
of iteration on dictionaries. Many Python programs relied on
a predictable ordering.

III. PROBABILISTIC TEST REDUCTION

Delta-debugging [33] is a widely used method for reducing
the size of failing tests, making them easier to understand
and debug. The core idea of delta-debugging is to take a test
with some property (usually “it fails”) and produce a smaller
test that has the same property. Delta-debugging as originally
proposed uses a modified binary search, but we rely only on
the general structure [10]: Given a test case, TINIT : test
and a predicate PRED : test → bool , we reduce TINIT with
respect to PRED as follows:

1) TCURR = TINIT

2) Let TNEXT = a variation of TCURR that has not yet been
tried. If none exist, stop and return TCURR.

3) Add TNEXT to the set of variations that have been tried.
4) If PRED(TNEXT), set TCURR = TNEXT .
5) Go to 2.
Delta-debugging in the context of nondeterminism has two

purposes. One is simply the usual goal of reducing the size of
a test. Identifying the cause of nondeterminism may be very

0100200300400500
Test length

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
(n

o
n
d
e
te

rm
in

is
m

)

(a) No modification

0100200300400500
Test length

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
(n

o
n
d
e
te

rm
in

is
m

)

(b) N=100

0100200300400500
Test length

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
(n

o
n
d
e
te

rm
in

is
m

)

(c) M=10, N=10

Fig. 2: Reducing the same simple test; x-axis is time/changing
TCURR; y-axis is true P (PRED).

easy in a test consisting of ten library function calls but very
difficult with more than a hundred calls. In horizontal nonde-
terminism detection, however, delta-debugging also tends to
change the probability of nondeterministic behavior; this can
be both harmful and beneficial. This behavior is part of a more
general (and, to our knowledge, not previously investigated)
issue: reducing a test with respect to an arbitrary predicate
PRED (including failure, but also code coverage, etc. [8])
that only holds with a certain probability (the predicate itself
is nondeterministic). “The test behaves flakily” is an obvious
relevant example of such a PRED .

For monotonic PRED , removing part of a test cannot
increase the probability of the predicate holding: when we
reduce t to r, P (PRED(r)) ≤ P (PRED(t)). This is fairly
common. In non-monotonic cases, however, there is no such
upper bound. Removing a step in t may increase the probabil-
ity of PRED . In probabilistic settings, we can often exploit
non-monotonicity. E.g., a test may be “almost non-flaky” and
we want P (fail) to be closer to 50%, to aid debugging.

A. “Publication Bias” in Reduction

However, simply using delta-debugging off the shelf with a
PRED such as P (fail) > 0.3∧P (fail) < 0.7, to force a test to
be highly flaky, and force it to fail sufficiently often to be used
in debugging, will often produce surprising and unfortunate
results. In many cases, delta-debugging will indeed reduce the
large test to a small subset. And, in a technical sense, delta-
debugging will work: it will never convert a nondeterministic
test to a completely deterministic test, because the reduced
test r that delta-debugging returns is always one such that
PRED(r) has evaluated to true at least once. However, if you
run the resulting test, it will, in many cases, have a P (fail)
that is much, much smaller than 0.3, perhaps as low as 0.01. In
fact, we have often observed delta-debugging taking a test that
had such a high probability of failure that we were unaware
it was “flaky” (only hundreds of repeated executions showed
there was a small chance it could pass) and transforming it
into a test that only failed once in every 10 to 20 executions.
Delta-debugging can easily act as a flakiness multiplier. Why?

The problem is analogous to the problem of publication
bias in scientific fields [1]. We can think of each application of
PRED to a candidate variant TNEW as a scientific experiment.
A predicate like P (fail) > 0.3 ∧ P (fail) < 1.0 cannot
be evaluated by determining the true probability of failure;
we have no more direct access to this value than a medical
researcher has access to the true effect size and direction of

a proposed medical treatment; rather, the test must be run
some concrete number of times, and the number of failures
counted. Even if the number of samples N is large, there is
some probability (based on the sample size) of a result that
diverges significantly from the actual probability of failure.
If the predicate were run only once, and the number of
samples reasonably large, this would not matter. However, test
reduction algorithms explore a search space that often contains
thousands or millions of tests. The predicate is evaluated on
each of these, and so even with large N , it is likely that
some evaluation will produce a poor estimate of P (fail). At
this point, reduction is “stuck” with the error, because the
algorithms usually do not allow backtracking. After such a
“mistake,” finding further reductions will become harder, but
may still be possible due to another unlucky evaluation. We
define a false positive in probabilistic delta debugging as a
case where PRED evaluates to true, but the actual probability
constraints of PRED are not satsified (false negatives also
exist, but are less of a problem).

The analogy to publication bias is simple. Assume that a pa-
per in, e.g., a medical journal will only be published if it shows
that a treatment is effective, with the statistical requirement
that p < 0.05. Even if no researchers are dishonest, 5 of every
100 papers published in the journal will be report an effect
with the wrong effect size or even direction! Now consider
a “hot” topic, a kind of treatment many research teams may
investigate. Major journals tend not to publish papers that say
“this new treatment, which is not established, may not work,”
(especially if the result is not “we accept the null hypothesis”
but only “the experiment did not show p < 0.05”), but they
are very likely to publish a paper that says “this exciting new
treatment works!” The bias in favor of positive results is shared
by test reduction, which; is much more influenced by cases
where PRED holds than cases where it does not.

B. Replication Mitigates “Publication Bias”

In scientific literature, the most frequently proposed solution
is the use of replications: repeated runs of “successful” experi-
ments to minimize the probability that a direction or effect size
is a fluke. One way to produce this effect would be to allow
reducers to backtrack if the probabilities observed in predicate
evaluations suddenly exhibit a strong discontinuity. However,
this requires modifying the implementations, which is difficult
and sometimes not really feasible. Ideally, the solution should
be implementable simply by modifying PRED itself.

A costly but plausible solution is to make N large in
comparison to the number of expected predicate evaluations
performed during delta-debugging. However, given the large
number of evaluations performed, this will tend to make
reduction extremely slow, since N must be very large indeed.
We propose using a dynamic sampling approach, where N is
small, but if the predicate evaluates to true, M repeated true
evaluations (“replications”) are required before the predicate
is counted as holding. To evaluate the predicate PRED given
N , M , and desired probability bound p, the algorithm is:

for i = 0 . . . M − 1
T = # times PRED is TRUE over N evaluations.
if T

N < p, return FALSE.
return TRUE

A set of M repeated false positives with N = K
M samples

each is much less likely than a false positive with K samples;
so long as we accept the resulting bias in favor of false
negatives, we can therefore produce a reduced test with a
desired P (fail) much more cheaply, and a desired accuracy
for P can be obtained with a much smaller value M×N than
a non-dynamically-sampled N .

To make the basic concepts, more clear, Figures 2a-2c
graphically show the interplay of delta-debugging and non-
deterministic predicates for a simple example. In the example,
tests consist of a sequence of operations that behave nondeter-
ministically with (independent) probabilities of 0.01, 0.05, and
0.10, respectively. Figure 2a shows one run of delta-debugging
on a test of length 500. In the course of reducing the test
length to a test with only two operations, the delta-debugging
algorithm also reduces the probability of nondeterminism from
almost 100% to about 20%. If we use a predicate that “forces”
the test to behave nondeterministically at least half the time,
by sampling the predicate value 100 times and only returning
true when at least 50 of the evaluations report true, we see
the behavior in Figure 2b: the final test is slightly longer, but
still falls well short of our target of exhibiting nondeterminism
50% of the time. Finally, Figure 2c shows what happens if we
use the same target of 50% nondeterminism, but use only 10
samples, with 10 replications (N = 10, M = 10): the test
is not much longer than in Figure 2b, but the probability of
nondeterminism is above our target value, close to 60% (and,
as a bonus, many fewer test executions were performed).

IV. IMPLEMENTATION

While the formal definitions above offer a framework for
checking nondeterminism, they leave unspecified the key no-
tions of state, visible state, and actions. For example, we could
identify the state and visible state of a system as identical with
the full set of memory locations accessed by that system, and
actions with processor instructions. However, this definition is
highly impractical. First, it is extremely inefficient to compare
multiple executions for full-memory-state equivalence at every
instruction step. Second, very few programs are deterministic
in this strict sense. What is a practical level of granularity
for (visible) states and actions that can be efficiently checked,
and matches developer and tester intuitions about what should
behave deterministically? Andrews et al. formalized a value-
pool-based model [2] that is widely used in tools, including
Randoop [26], where unit tests are canonically given as:

1) A declaration of a set of array variables, referred to as
value pools, e.g., int [] intVP = new int[3];.

2) A set of assignments of constant values to elements of
primitive type value pools, e.g. intVP[2] = 1;.

3) A part in which all statements are assignments of
calls of a method to a value pool, with all ar-
guments also taken from a pool, e.g. intVP[2]

= fooVP[2].bar(intVP[0], intVP[1]); (re-
ferred to as array-canonical statements).

Given such a form for unit tests, there is an obvious mapping
to states and actions in our formalism for nondeterminism: the
state is the full state of the system, but visible state is restricted
to the values stored in the value pools. Actions are the array-
canonical statements that call code under test to modify the
pools. We can ignore constant assignments and declarations,
since (assuming the language implementation itself is basi-
cally deterministic) these cannot introduce nondeterminism.
Because assertions of correctness and what a test actually
does depend on the values in value pools, it seems likely that
developers and testers expect determinism at the granularity
of value pool assignments.

We implemented our approach as a modification of the
TSTL [13] system, an open-source language and tool for
property-based testing [18], [5] of Python code. TSTL has
been used to detect (and usually fix) errors in a number
of widely used Python libraries, the Python implementation
itself, the Solidity compiler and a Solidity static analysis tool,
and Mac OS. TSTL takes a harness (a definition of what to
test, and what properties to check) and generates tests using
random testing and various other approaches. TSTL is open
source, and it and all examples used in this paper are available
at: https://github.com/agroce/tstl. We implemented horizontal
determinism checking (with both timing and process-based
differentiation of executions), failure determinism checking,
and a set of probabilistic delta-debugging strategies in TSTL,
in order to examine their effectiveness, and to make them
available to users performing Python library testing.

In TSTL, a test consists of a sequence of actions, where
actions execute arbitrary Python code, but are expected to work
by modifying the state of a test, which is stored in a fixed set of
pools containing Python objects. TSTL’s approach essentially
follows the pool-based canonical form defined by Andrews et
al. [2] and described above, but relaxes many of its restrictions
(e.g., a constant value can be used in a method call without
first assigning it to a pool). The TSTL actions defined by a
test harness correspond to the set A of actions in Section II-C,
and transitions result from executing action code,—roughly,
the array-canonical statements.

Because TSTL supports differential testing [13], horizontal
nondeterminism detection can technically be implemented
simply by declaring a system to be its own reference, using
TSTL’s notation for differential testing. However, such an
approach requires considerable effort on the part of the user to
express which values are checked for equivalence, and does
not (without a great deal of effort) support injecting timing
differences, or re-executing in a new process, in checking
for nondeterminism. We therefore instead made horizontal
nondeterminism detection a first-class property in TSTL, using
TSTL’s existing notation for marking some types of values as
opaque (not usefully compared for equality). In TSTL, visible
value determinism is thus based on comparing the values of all
non-opaque pool variables after each test action. Final State
Determinism simply performs the same comparison, but only

RQ1 RQ2 RQ3
Subject Detection Overhead Reduction % Reduction time
Parallel Sort Yes (see below) ∼40% ∼85% ∼2 minutes
redis-py Yes (see below) ∼20% ∼95% ∼10 minutes
datarray Yes (see below) ∼93% ∼90% ∼92 seconds
pyfakefs Yes (see below) ∼8% ∼99% ∼1 second

TABLE I: Overview of experimental results

on the final values of all pool variables (or a set of designated
pools) after a test has finished executing.

Because TSTL has an interface to AFL [32], we can use
AFL’s sophisticated heuristics to perform very thorough, week-
long checks for nondeterminism. Moreover, since there is
substantial overhead in nondeterminism detection, AFL can
be used to predict whether tested Python code is a good
candidate for checking for horizontal nondeterminism; if the
AFL stability statistic [32] is lower than 100%, it may indicate
horizontal nondeterminism. Because of the idiosyncrasies of
AFL instrumentation and process behavior, this is not always
a reliable guide, but it is a very low cost indicator.

First-class vertical nondeterminism checks are currently
limited to failures. In terms of the formalism, if execution
of action αi raises an exception that does not, itself, indicate
a test failure, then Fi is true, and TSTL repeats αi in order to
ensure that Fi+1 is also true.

V. EXPERIMENTAL EVALUATION

In order to evaluate our approach and implementation,
we applied nondeterminism detection to real Python code,
including some widely used libraries (according to GitHub,
pyfakefs is used by at least 338 other projects, and
redis-py is used by at least 50,000). The primary points
we wanted to explore were RQ1: whether our approach was
able to reliably detect actual nondeterminism, RQ2: whether
the overhead of nondeterminism detection for real systems
was acceptable, and RQ3: whether the performance of delta-
debugging in this setting was acceptable, in terms of both
time and results (amount of reduction). We chose two of the
subjects, redis-py and pyfakefs, based on the fact that
they were previously-existing large TSTL harnesses, and serve
to show how easily our approach can be integrated into an
existing test generation effort. The other two subjects were
chosen, and new harnesses written, specifically to demonstrate
specific, important sources of nondeterminism in Python code:
concurrency and hash salting. Table I shows a summary of our
experimental results. In all cases, our approach was able to
detect interesting nondeterminism (in fact, all nondeterminism
of which we are aware). The overhead imposed by nondeter-
minism checks varied,, but in the worst case did not double
the average cost of each action (the expected overhead, since
we essentially execute each test twice), and thus never halved
the amount of testing. Test reduction always reduced the size
of generated tests by 85% or more, in less than 15 minutes,
thus showing that reduction has a large payoff at an acceptable
price. Values are, unless otherwise noted, the mean of 30 runs.

050100150200250300
Test length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
(n

o
n
d
e
te

rm
in

is
m

)

(a) No modification

050100150200250300
Test length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
(n

o
n
d
e
te

rm
in

is
m

)

(b) N=100 (2131s)

050100150200250300
Test length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
(n

o
n
d
e
te

rm
in

is
m

)

(c) M=10, N=10

Fig. 3: Reducing a redis-py nondeterministic test

A. Parallel Sorting

Our first subject is an implementation of a
parallel merge sort (https://gist.github.com/stephenmcd/
39ded69946155930c347). When a sorting algorithm is
implemented using concurrency, a key question to ask is
whether the ordering of (equal under comparison) elements
is consistent. TSTL can be used to show that a parallel sort
implementation provides a consistent, deterministic ordering.
For contrast, we also implemented a very simple swap-based
parallel sorting algorithm that repeatedly has multiple threads
scan through a sequence and swap out-of-order neighbors,
until the sequence is sorted (a kind of parallel bubble-sort).

Our TSTL harness for parallel sorting produces sequences
of integer pairs, where only the first integer is used in the
comparison operator of the sorting algorithms, and checks
that the results of are sorted.. Both sorting algorithms always
produce sorted output. The horizontal determinism detector,
however, always generates a test case showing the swapsort
behaving nondeterministically in less than 3 seconds, thus
answering yes to RQ1. If we comment out the call to
swap_sort_parallel and only check the parallel merge
sort, TSTL finds no nondeterminism. This results in a slow-
down of approximately 40% (RQ2).

Reducing a lengthy test showing nondeterminism of the
swapsort usually takes less than two minutes (out of 10 trials,
only one took four minutes). The resulting test will be usually
be very compact, e.g. reducing the test from 56 to 8 steps.

B. The redis-py Library

The redis-py [19] module implements a (very) widely-
used Python interface to the popular Redis in-memory
database, cache, and message broker [28]. Using TSTL’s
harness for redis-py, both redis-py and Redis itself can
be tested; unfortunately, generating stand-alone high-coverage
regression tests for them has proven difficult, as numerous
Redis commands introduce nondeterministic behavior: thus
the resulting tests are very often flaky. Using AFL, we
can see that redis-py has a stability of only 56.26%,
a clear indicator of significant nondeterminism. Some of
the problematic commands are obvious simply by inspection
(e.g., randomkey, srandmember, expire). However,
issues such as whether the mechanism that allows a sequence
of commands to be queued up and executed at once introduces
nondeterminism are much more subtle.

Using the original TSTL harness, just over 20% of all
redis-py regression tests (of length 200) generated were

flaky. We determined that the mean time to find all (known to
us, over many experimental runs) sources of nondeterminism
and produce minimal tests is 3.2 hours (RQ1).

We removed 11 calls from the redis-py harness, and
modified 2 calls, after identification of sources of nondetermin-
ism. After making these changes, no flakiness was observed in
a sample of over 2,000 length 200 tests. Resulting code cover-
age loss was minimal. Mean branch coverage was reduced by
less than 5 branches (a less than 1% decrease). AFL stability
was 56.26% with the harness allowing nondeterminism, but
rose to 98.32% using the harness with nondeterministic oper-
ations removed. The overhead for determinism checks, with
no delay between operations, is only 20%, much lower than
the expected cost of running each test twice, answering RQ2
also in the affirmative.

As to RQ3, Figures 3a-3c show delta-debugging of a typical
redis-py nondeterministic test, originally with 287 steps.
The initial test behaves nondeterministically about half the
time. Unmodified delta-debugging eventually produces a test
of length 16 that only behaves nondeterministically 24% of the
time. The reduction takes only 38 seconds. For the purpose
of identifying commands leading to nondeterminism, this is
acceptable. However, if we were actually debugging a complex
nondeterminism bug in Redis itself, we might want a more
reliably nondeterministic test. Using the same parameters as
in Section III-A, we see the same pattern. Simply making a
predicate that “forces” the probability to remain high, with
a large number of samples, does not work (Figure 3c) and
requires over 2,000 seconds to produce a test with an even
worse probability of nondeterminism. Using 10 samples and
10 replications, on the other hand, improves the probability of
nondeterministic behavior, and produces a test with only 14
steps in just over 10 minutes.

C. Berkeley datarray Inference Algorithms

The datarray module [4] is a prototype implementation
for numpy arrays with named axes, which also provides a
set of algorithms for inference in Bayesian belief networks.
An earlier version of these algorithms sometimes produced
incorrect results due to dependence on the order of values in an
iterator over a Python dictionary (see Section II-D1). Running
our TSTL harness to test datarray consistently requires
less than 10 seconds to find process-level nondeterminism in
the calc_marginals_sumproduct function, answering
RQ1 again in the affirmative. Reducing this 60 step test to
a 6-step test required another 92 seconds (RQ3) on average.
The cost of checking for process nondeterminism is a mean
93% slowdown (RQ2).

D. Vertical Determinism: pyfakefs

The pyfakefs [20] module implements a fake file system
that mocks the Python file system modules, to allow Python
tests both to run faster by using an in-memory file system and
to make file system changes that would not be safe or easily
performed using real persistent storage. It is used in over 2,000

Python tests [20]. The TSTL harness for pyfakefs has been
used to detect (and correct) over 80 faults.

We introduced a subtle bug into pyfakefs, where the
remove call checks that its target is not a directory, and
returns the correct error, but still carries out the remove.
Using os.remove to delete directories violates the Python
os specification (and the POSIX standard). Detecting this bug
using the TSTL pyfakefs harness is normally impossible
without using another file system as a reference. However, the
fault was detected essentially immediately with our failure de-
terminism checks (an affirmative answer to RQ1). Moreover,
the overhead for the check in a version of the code without
the error was less than 8% (RQ2). Detecting the fault using a
reference file system required 17% more testing time before
detection, and took over twice as long to reduce the failure,
to a slightly longer failing test, which did not have remove
as its final operation (since further operations are required to
expose the bad state). Reducing the failing test to just 3 steps
required less than a second (RQ3).

We wanted to determine whether there were also simple
faults that could be detected by failure nondeterminism, but
not detected by differential testing, and quantify the additional
specification strength provided by failure determinism checks,
to further answer RQ1 in the special case of failure deter-
minism. We therefore used universalmutator [11] to
produce 2,350 mutants of the core file system code.

Non-differential testing, without failure determinism checks,
consistently (in all runs) killed 872 mutants, a 37.1% kill
rate. The differential harness, with an additional 60 seconds of
testing time (to make sure we accounted for the observed 17%
extra time to detect in the manually constructed example: we
want to maximize the chance to detect a bug using the strong
version of the harness), consistently killed 1,148 mutants,
improving the kill rate to 48.8%. Failure nondeterminism
checking consistently added an additional 71 mutants to that
total, a 6% improvement even for this strong differential har-
ness with a larger test budget, nearly as large an improvement
as the gain from using a full reference implementation. Using
failure nondeterminism was the only way to push the mutation
score above 50%. The kill rates are generally low because
universalmutator includes many operations thatproduce
hard-to-kill non-equivalent mutants not produced by other
mutation tools. This is a strong affirmative answer to RQ1.

E. Threats to Validity

Our empirical results are limited to a small set of Python
programs, ranging from relatively small and simple to large
and complex libraries; the representative nature of these sub-
jects is not clear. Because no other tools implement the kind of
approach taken here, we were unable to perform a meaningful
comparison with another nondeterminism detection tool.

VI. RELATED WORK

The general topic of nondeterminism in software engineer-
ing has long been considered important [6], [34]. Gao et al.
examined the question of how to make tests repeatable [7], in

the context of system-wide user interaction tests, focusing on
systemic factors. Shi et. al [30] examined code that wrongly
enforces a deterministic implementation.

The problem of test nondeterminism is closely related
to the issue of flaky tests [23], [17], [27], [16]. How to
handle flaky tests in practice is a major issue in Google-
scale continuous testing [22]. Previous work on flaky tests
has either focused on test inter-dependence [15], or large-scale
empirical examination [17], [27]. Bell et al. proposed DeFlaker
[3], which makes flaky tests much easier to detect by relying
on the observation that if a test fails, and does not cover any
changed code then the test is likely flaky. iDFlakies [14] is
a framework and dataset for flaky tests, but again focuses on
whole-tests, and detecting flakiness by actually observing it.

We introduce the first variation of delta-debugging that
properly handles probabilistic reduction criteria, in line with
Harman and O’Hearn’s proposal to simply accept that “All
Tests Are Flaky” [12], and work with probabilistically fail-
ing tests.. Vertical/failure determinism is also a less-studied
concept, and to our knowledge our formulation is novel. The
kinds of errors that are exposed, however, are not new, e.g.,
faults related to the propagation of error conditions [29].

VII. CONCLUSIONS AND FUTURE WORK

Unexpected nondeterminism of software systems frustrates
users, whether they be humans or (more importantly) other
software systems. Nondeterminism is even more pernicious
in software testing, frustrating debugging efforts, and leading
to the costly problem of flaky tests [23], [16]. This paper
proposes a formulation of types of nondeterminism, and a
practical approach to using automated test generation to detect
and understand nondeterminism in Python library code.

REFERENCES

[1] Ikhlaaq Ahmed, Alexander J Sutton, and Richard D Riley. Assessment of
publication bias, selection bias, and unavailable data in meta-analyses
using individual participant data: a database survey. British Medical
Journal, 344:d7762, 2012.

[2] Jamie Andrews, Yihao Ross Zhang, and Alex Groce. Comparing
automated unit testing strategies. Technical Report 736, Department
of Computer Science, University of Western Ontario, December 2010.

[3] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi,
Tifany Yung, and Darko Marinov. DeFlaker: automatically detecting
flaky tests. In International Conference on Software Engineering, pages
433–444, 2018.

[4] Berkeley Institute for Data Science. Prototyping numpy arrays with
named axes for data management. https://github.com/BIDS/datarray.

[5] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for
random testing of haskell programs. In ICFP, pages 268–279, 2000.

[6] Sebastian Elbaum and David S. Rosenblum. Known unknowns: Testing
in the presence of uncertainty. In ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages 833–836, 2014.

[7] Zebao Gao, Yalan Liang, Myra B. Cohen, Atif M. Memon, and Zhen
Wang. Making system user interactive tests repeatable: When and
what should we control? In International Conference on Software
Engineering, ICSE ’15, pages 55–65. IEEE, 2015.

[8] Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang, Yang Chen,
and John Regehr. Cause reduction: Delta-debugging, even without bugs.
J. Software Testing, Verification, and Reliability, 26(1):40–68, 2016.

[9] Alex Groce, Klaus Havelund, Gerard Holzmann, Rajeev Joshi, and Ru-
Gang Xu. Establishing flight software reliability: Testing, model check-
ing, constraint-solving, monitoring and learning. Annals of Mathematics
and Artificial Intelligence, 70(4):315–349, 2014.

[10] Alex Groce, Josie Holmes, and Kevin Kellar. One test to rule them all.
In International Symposium on Software Testing and Analysis, pages
1–11, 2017.

[11] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming
Zhang. An extensible, regular-expression-based tool for multi-language
mutant generation. In International Conference on Software Engineer-
ing: Companion Proceeedings, pages 25–28, 2018.

[12] Mark Harman and Peter O’Hearn. From start-ups to scale-ups: Oppor-
tunities and open problems for static and dynamic program analysis. In
IEEE International Working Conference on Source Code Analysis and
Manipulation, 2018.

[13] Josie Holmes, Alex Groce, Jervis Pinto, Pranjal Mittal, Pooria Azimi,
Kevin Kellar, and James O’Brien. TSTL: the template scripting testing
language. International Journal on Software Tools for Technology
Transfer, 20(1):57–78, 2018.

[14] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie.
iDFlakies: a framework for detecting and partially classifying flaky tests.
In IEEE International Conference on Software Testing, Verification and
Validation, 2019.

[15] Wing Lam, Sai Zhang, and Michael D. Ernst. When tests collide:
Evaluating and coping with the impact of test dependence. Technical
Report UW-CSE-15-03-01, University of Washington Department of
Computer Science and Engineering, Seattle, WA, USA, March 2015.

[16] Jeff Listfield. Where do our flaky tests come from? https://testing.
googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html,
April 2017.

[17] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov.
An empirical analysis of flaky tests. In ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 643–653.
ACM, 2014.

[18] David R. MacIver. Hypothesis. http://hypothesis.works/, March 2013.
[19] Andy McCurdy. redis-py. https://github.com/andymccurdy/redis-py.
[20] John McGehee. pyfakefs implements a fake file system that mocks the

python file system modules. https://github.com/jmcgeheeiv/pyfakefs.
[21] William McKeeman. Differential testing for software. Digital Technical

Journal of Digital Equipment Corporation, 10(1):100–107, 1998.
[22] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell,

Rob Siemborski, and John Micco. Taming Google-scale continuous
testing. In International Conference on Software Engineering, pages
233–242. IEEE, 2017.

[23] John Micco. Flaky tests at Google and how we mitigate them. https:
//testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.
html, May 2016.

[24] NIST. CVE-2017-13872. https://nvd.nist.gov/vuln/detail/
CVE-2017-13872.

[25] Open Source Computer Security Incident Response Team. ocert-
2011-003 multiple implementations denial-of-service via hash algorithm
collision. http://ocert.org/advisories/ocert-2011-003.html.

[26] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas
Ball. Feedback-directed random test generation. In International
Conference on Software Engineering, pages 75–84, 2007.

[27] Fabio Palomba and Andy Zaidman. Does refactoring of test smells
induce fixing flaky tests? In IEEE International Conference on Software
Maintenance and Evolution. IEEE, 2017.

[28] redislabs. Redis. https://redis.io/.
[29] Cindy Rubio-González, Haryadi S. Gunawi, Ben Liblit, Remzi H.

Arpaci-Dusseau, and Andrea C. Arpaci-Dusseau. Error propagation
analysis for file systems. In Programming Language Design and
Implementation, pages 270–280, 2009.

[30] A. Shi, A. Gyori, O. Legunsen, and D. Marinov. Detecting assumptions
on deterministic implementations of non-deterministic specifications. In
2016 IEEE International Conference on Software Testing, Verification
and Validation (ICST), pages 80–90, April 2016.

[31] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in C compilers. In Programming Language Design
and Implementation, pages 283–294, 2011.

[32] Michal Zalewski. american fuzzy lop (2.35b). http://lcamtuf.coredump.
cx/afl/. Accessed December 20, 2016.

[33] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. Software Engineering, IEEE Transactions on, 28(2):183–
200, 2002.

[34] Hadar Ziv and Debra Richardson. The uncertainty principle in software
engineering. In International Conference on Software Engineering,
1997.

