
Target Selection for Test-Based Resource
Adaptation

Arpit Christi
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, Oregon, USA
christia@oregonstate.edu

Alex Groce
School of Informatics, Computing, and Cyber Systems

Northern Arizona University
Flagstaff, Arizona, USA

agroce@gmail.com

Abstract—Building software systems that adapt to changing
resources is challenging: developers cannot anticipate all future
situations that a software system may face, and even if they
could, the effort required would be onerous. A conceptually
simple, yet practically applicable, way to build resource adaptive
software is to use test-based software minimization, where tests
define functionality. One drawback of the approach is that
it requires a time-consuming reduction process that removes
program statements in order to reduce resource usage, making it
impractical for use in deployed systems. We show that statements
removed have predictable characteristics, making it possible to
use heuristics to choose statements to analyze. We demonstrate
the utility of our heuristics via a case study of the NetBeans IDE:
using our best heuristic, we were able to compute an effective
resource adaptation almost 3 times faster than without heuristic
guidance.

I. INTRODUCTION

Modern day software systems are complex and use nu-
merous resources, both explicit (e.g. memory, CPU, network,
and storage space) and implicit (e.g. libraries and protocols).
While developing complex software systems, assumptions are
always made about the availability and usage of resources. For
example, a navigation app is written with the assumption that
some kind of location provider is available. An application
that needs logging makes an assumption that disk space is
always available to log data. An application making a service
call to grab the latest stock prices makes an assumption
about availability and accuracy of this service. For mission-
critical systems that operate under extreme field conditions,
it is difficult to construct and enumerate these assumptions
and often the assumptions will not hold in all real-world
environments or situations. For example, to consider an often
overlooked example of a “resource,” a change in one of the
system libraries used by the software, due to an operating
system update to address a security vulnerability, may force
the development team to refactor some part of the application,
triggering a cycle of design-development-testing-deployment:
obviously, such a cycle is far too slow for fielded, critical
applications, but rejecting operating system updates may leave
software vulnerable in the field. Such inability to handle a
changing environment is a key limitation on the reliability of
many software systems. One way to handle these changes is to

automatically adapt the system to handle resource availability
changes.

Self-Adaptive Software Systems (SASS) or Self-Organizing
Software Systems (SOSS) are designed to allow a system
to adapt itself under varying conditions. Adaptation may
manifest as (1) restricted functionality, (2) altered function-
ality, or (3) enhanced functionality [1]. Different engineering
approaches to build adaptive software systems are summarized
by Kruptizer et al. [2]. Resource adaptive software systems
are a subset of self-adaptive systems where the reason for
adaptation is unavailability or variability in one or more
resource.

Based on the assumption that most mission-critical systems
have an adequate (and in fact high quality) test suite, we pro-
posed test-based software minimization, a conceptually simple
but practically applicable approach [3] to resource adaptation
that requires very little in the way of burdensome additional
specification by developers. In our approach, adaptive soft-
ware requirements are captured by annotating (usually simply
labeling) tests. Tests, in the simplest instance, are simply given
arbitrary but meaningful tags based on features present in the
tests, usually including a special “top” label that indicates
tests that must pass for any valid system. We introduced a
tool called hddRASS, a program reducer tailored to the task
of building Resource-Adaptive Software Systems, henceforth
abbreviated as RASS. hddRASS takes as its input a Java pro-
gram and annotated (labeled) tests, and automatically builds
an adapted program that has the potential to work well even
with degraded resource availability. In the simplest mode of
operation (conceptually encompassing other uses), hddRASS
takes a program plus a set of tests that must still pass, with
the assumption being that other tests, in the full test suite but
not in the provided set, check for behavior we are willing to
sacrifice in order to use fewer resources. In our approach, tests
themselves indicate sacrificability of specification. Given this
input (program/class + subset of tests), hddRASS returns a
program or class that has fewer statements (some of which
will be resource-using statements, with high likelihood) that
still passes the given tests. The resource adaptation arises from
the fact that the original program is written to pass the full
test suite, and if the reduced suite is properly selected, the
missing tests concisely and with little effort represent resource-

using functionality that can be sacrificed. As a simple example,
consider a system that produces detailed system logs, but needs
to operate in an environment with reduced storage space. We
remove (only) the tests labeled as logging, tests that check
the existence and content of system logs, and run hddRASS,
which (it is hoped) outputs a new version of the software with
logging calls removed. The new system therefore uses less
storage space, as it no longer produces detailed logs.

One major drawback of test-based software minimization as
originally proposed is the time taken to build an adaptation of
a program. In our original case study, it took about 3 hours to
build an adapted NetBeans IDE that reduced memory usage by
removing undo/redo functionality. For mission-critical systems
deployed in the wild, there may not usually be time to spend
hours on each adaptation. The system (or part of it) would
need to be halted for a very long time, until adaptation could
be applied and a new system made available. Instead of going
through all possible targets (statements to be removed) for
adaptations, predicting likely-removable targets and processing
only those targets should significantly reduce the time required
for adaptation. This paper proposes a heuristic approach to
select a subset of statements to attempt to remove. The
heuristic approach proposed here is in a sense independent
of the precise original approach to test-based minimization.
As long as a resource-adaptation approach relies on program
modification by deletion, either at the source code level or
bytecode level, processing only likely-removable targets will
tend to improve performance.

The contributions of this paper are as follows:

• We applied hddRASS to a large set of classes (almost
twice as many as in our previous work) from open-source
Java projects and their test suites, computing 800 test-
based reductions1. We found that the resulting reductions
are 1) small in size: very few statements are removed and
2) simple in kind: complex blocks are rarely removed. We
also show that certain program entities are most likely be
removed, and the removed targets typically have a well-
defined coverage relationship to tests that are retained in,
and removed from, the suite.

• Based on these empirical findings, we propose three novel
heuristics to speed up our original test-based software
minimization approach to resource adaptation. These
heuristics are a significant advance from our original
proposal, in that delta-debugging approaches usually con-
sider all components as potentially removable, which is
expensive and un-necessary in our setting; to our knowl-
edge, this is the first modification of a delta-debugging
approach that removes some potential components from
consideration on a heuristic basis, in order to improve
performance.

1We refer to the general process of removing statements from a program or
class as minimization, because that is indeed the goal; however, we refer to the
outcome of the process (a new version of the program/class) as a reduction,
not a minimization, to emphasize that the delta-debugging approach used is
not optimal, and so we seldom obtain results that are truly guaranteed to be
minimal.

• We verified the validity of our heuristics by applying them
to a new set of open source Java projects, demonstrating
that processing only likely-removable targets improves
performance significantly while sacrificing very little in
the way of accuracy of minimization. We also applied
our heuristics to build an adapted NetBeans IDE without
undo/redo, as in the original proposal’s case study, in
order to conserve memory. We show that the heuristic
approach to selecting removal targets preserves memory-
usage reductions, but speeds processing by a large factor
(nearly 3x at best), moving us much closer to practical
in-the-field adaptation.

II. BACKGROUND

In a research road map to software engineering for self-
adaptive software system, Cheng et al. mention the need
to capture adaptive software requirements [4]. Adaptations
manifest in 3 different ways: (1) restricted functionality, (2)
altered functionality, or (3) enhanced functionality [1]. In
restricted functionality, it is possible to meet the changing
resource need by dropping some functionality, or by not
exercising some features of the system. For the most part,
the system will continue to work as it should, though it will
no longer provide certain features, so that the resource under
stress will be conserved. This “sacrificability of specification”
is a subset of adaptive software requirements, one in which
the only possible adaptation is sacrificing satisfaction of some
specification(s): having the software do less.

Domain-specific languages (DSLs) and formal specifica-
tions [5], [6] have been proposed as ways to express sacrifica-
bility of specification; however, using a DSL forces developers
to learn a new language, purely for the purpose of expressing
adaptations, and very few existing systems have a formal
specification on which to base a sacrificability specification. In
practice, for most real-world software systems, even mission-
critical ones, specifications are documented and verified only
using tests. Our previous approach to expressing sacrificability
of specification, therefore, aimed to “meet developers where
they are” and base resource adaptation on the idea that most
tests concern only some of the system’s functionality. By no
longer requiring a system to pass a restricted set of tests, a
reduced functionality can be defined. Test annotations can de-
fine a multi-dimensional space in features such as functionality
tested, priority, and resource usage. It is then possible to group
tests and label those groups, such that each group represents
a sacrificable or variable unit. The approach, as described in
our original work, is summarized in Figure 1 [3].

In the figure, tests that are not surrounded by an oval
represent non-sacrificable tests. They are the core tests: if
any of them fail, the system is not usable. The tests within
an oval are sacrificable, and the labels (A, B, C, D) group
these by tested functionality. All tests with group A mark
a sacrificable unit. Now, let us say that a resource R is
unavailable and group A is chosen for adaptation, based on
its connection to resource R. The test suite (without tests
marked A) and existing program are fed into hddRASS and

Fig. 1: The test-based approach to resource adaptation by program minimization [3]

it will automatically build the system consisting of the core
system and components marked by labels B, C and D. As the
figure shows, we could also build a minimal functional core,
where all labels are considered non-essential. The approach
is conceptually simple, as it requires only the grouping of
tests and marking some tests as sacrificable. In our previous
work, we built an adapted NetBeans IDE that used much less
memory completely automatically simply by labeling 3 tests,
those checking undo/redo functionality, as sacrificable. As part
of the DARPA BRASS project [1], we work with a group
of developers building a Resource Adaptive Software System
(RASS) version of a Tactical Situational Awareness System
(TSAS). Our approach is currently under consideration by the
TSAS development team as a way to build adaptive system
components automatically.

hddRASS, the reducer we developed to support our ap-
proach, implements a modified form of Hierarchical Delta
Debugging (HDD) [7], optimized for the RASS workflow [3].
hddRASS reduces a program by removing one or more state-
ments at a time, so long as such removals do not cause a
test suite to fail. The intuition behind our changes to HDD is
discussed in our previous work [3]. Like HDD, hddRASS is
still a greedy search-based algorithm, with similar worst-case
time complexity O(n3) [3]2. This cost is even more significant
with hddRASS, as every attempted reduction step consists
of compiling a new version of the program and running
potentially most of the program’s test suite, a very time-
consuming operation. For example, computing the NetBeans
IDE reduction featured in our previous work took 3 hours and
35 minutes. Simply marking some statements as not likely to

2hddRASS is based on HDD* with known worst-case runtime O(n3)

be removable could considerably reduce this time-to-minimize.

Some possible restrictions on removals are obvious: if a
removal is, by the syntax of the language of the system,
guaranteed to cause a compilation failure, it should not be
considered, for example: e.g., the sole return statement for a
non-void method in Java simply cannot be removed (without
removing the whole method); some statements in the data-flow
of the return value of a method also may not be removable
(there must be at least one def of each value used in the return);
if a method is ever called, its definition cannot be removed.
If a statement is not covered by the retained tests (is, with
respect to those inputs, dead code), intuitively, it should be
removable since it is certainly not needed to pass the retained
tests. However, because of the restrictions on removal, and
the fact that we only consider statement removals (not entire
classes or methods) it is not always actually removed (or
removable, in our context). E.g., if 10% of program statements
are not covered by the complete test suite, this does not mean
that at least 10% of the program statements are removable in
every reduction. In our original experiments, we also noted that
reductions are usually small (in terms of change, not absolute
size: the absolute size is similar to the input program), leaving
the software system mostly unchanged. Moreover, reductions
are simple, not touching scattered and varied parts of a system,
and also seldom removing complex blocks of code. However,
these results were based on analyzing only a small set of
classes. In this paper, we first conduct experiments on a much
larger set of classes and test suites, and use the results to derive
heuristics for determining likely-to-be-removed statements.

A. Terminology

• Labeled test/annotated test/removed test: A test that is
marked as sacrificable. The minimization process uses a
test suite that does not contain the labeled tests; hence
they are also referred to as removed tests.

• Unlabeled test/retained test: A test that is not marked
as sacrificable. The minimization process uses a test
suite that contains all unlabeled tests; thus they are also
refereed to as retained tests.

III. EXPERIMENTS

A. Subjects and Tests

Test-based minimization is essentially based on the idea of
taking a program and a test suite and minimizing the program
(by removing statements) until it is (approximately) as small
as possible while still satisfying a (modified, by removing
some tests) test suite. At a certain level of abstraction, this ap-
proach is similar to generate-and-validate automated program
repair [8], [9]; however, the end goal (reduced-size program
that passes a given test suite) it quite different than the goal of
passing previously failing tests. Where program repair uses the
concept of a test-adequate patch or test-suite-adequate patch
[10], [11], we can consider a test-(suite)-adequate adaptation:
a minimized program such that all tests in a modified test suite
continue to pass.

Computing this reduced program version is computation-
ally expensive, suggesting that more information about the
minimization process is required to tune its performance. In
order to study minimization, we used hddRASS to produce
800 distinct reductions at the class level. In prior work, we
discussed how method and class level reductions can be
combined to build a whole-program reduction. We focused
our empirical examination on the class level because for
many methods, no statements can be removed; the class level
is the first level at which reduction is usually meaningful
and useful. The 800 reductions are applied to 40 distinct
classes across 10 open source Java projects. For each project,
we randomly chose 4 classes. Details of the subjects are
provided in Table I. We measured Java statements as defined
by java.parser.ast.statement. Subjects have an av-
erage of 387 LOC (for the whole class) and 132 statements
in non-constructor methods.

In addition to a program or class, minimization requires a
test suite (and the ability to build the system under reduction
and run the suite). For these projects, the build and test system
consists of simple ant or maven commands. In our previous
work on test-based minimization, we noted that arbitrary
subsets of tests are not interesting (reduction will usually
target some functionality), and some tests are not relevant to
a particular class. Based on this, we used direct coverage as
a criteria for selection, and we adopted the same criteria for
this larger examination of reductions. This yielded 24 tests
per subject class, on average (numbers per class are shown
in Table I). For 32 out of 40 subjects, statement coverage of
the tests is more than 80%, and it is more than 70% for 37

TABLE I: Subject Class Information. Stmt column counts
Java statements inside class methods as defined by
java.parser.ast.Statement. Mthd is number of class
methods. If multiple classes are contained within a single Java
file, LOC counts all lines. Statements counts only statements
within the class under consideration.

Project Subject LOC Mthd Tests Stmt
CruiseControl AntBuilder 499 33 22 143
CruiseControl Schedule 383 30 18 127
CruiseControl Project 685 70 35 291
CruiseControl AntScript 318 8 34 121
Ant Available 289 21 28 133
Ant Copy 679 48 24 179
Ant FixCRLF 385 17 34 23
Ant Checksum 431 24 15 142
Validator UrlValidator 218 11 21 82
Validator RegexValidator 93 4 7 40
Validator DomainValdiator 1302 15 20 74
Validator EmailValdiator 109 6 18 26
Jexl3 Engine 296 30 38 103
Jexl3 JexlArithmetic 781 54 35 289
Jexl3 JexlEvalContext 102 17 37 29
Jexl3 Script 207 20 14 50
Cli Option 404 48 9 85
Cli GnuParser 64 1 58 23
Cli PosixParser 141 6 58 37
Cli OptionGroup 86 8 13 30
Jena OntTools 289 29 4 65
Jena LocationMapper 292 21 10 138
Jena OntlClassImpl 464 60 27 133
Jena OntModelImpl 1174 162 65 686
Text ExtendedMessageFormat 301 17 14 137
Text LevenshteinDetailedDistance 220 6 12 142
Text AlphabetConverter 277 13 10 82
Text StringBuilder 1257 146 91 597
digester BinderClassLoader 64 4 11 9
digester CallMethodRule 255 9 15 58
digester Digester 1456 149 19 432
digester NodeCrerateRule 39 2 15 15
httpCore URIBuilder 304 36 26 143
httpCore HttpService 166 4 12 36
httpCore HeaderGroup 168 17 11 72
httpCore EofSensorInputStream 130 12 10 34
jfreechart DefaultIntervalCategoryDataset 151 20 20 150
jfreechart Hour 180 18 22 60
jfreechart GridArrangement 215 13 18 119
jfreechart StatasticalBarRenderer 281 11 11 159

MEAN 387 30 24 132
MEDIAN 285 17 18 94

TABLE II: Coverage distribution: #subjects is the number
of subject classes within each category. Coverage here is
statement coverage.

Coverage <70% 70-79% 80-89% >90%
#Subjects 3 5 15 17

subjects, as shown in Table II. The mean coverage over all 40
subjects was 84.7%. We can therefore say that we generally
have subjects with good test coverage. For 17 subjects, the
test coverage is excellent (>90%).

B. Procedure

For each class, we first randomly labeled 10% of the tests as
sacrificable, and computed a minimization. We repeated this
procedure 10 times for each class, randomly labeling tests each
time, yielding 10 results per class, for 400 results. During each
run, if the removed tests overlap with tests not removed, or
concern only very minor functionality, there may be almost
no reduction. On the other hand, if a very important test is
selected for removal (one that covers a lot of functionality
and has no overlap with other tests) the reduction will be
significant. Labeling tests randomly and repeating the process
10 times provide us with an idea of typical results. Developers
label tests based on some feature the test targets. Such labeling
is highly context-specific, and lacking from current test suites.
Because we are using random labels, rather than developer-
provided labels, we lack a solid basis for guessing the size
of a typical set of removed tests representing a feature. We
therefore repeated the same procedure, but with 20% of
the tests labeled as removable, in order to produce another
400 reductions. In the remainder of the paper, we identify
the labeling scheme used (i.e., portion of tests removed) by
percentage: Label 10% means the scheme where we labeled
(and thus removed) 10% of tests (at random) as representing
sacrificable functionality, and Label 20% means the same
scheme with 20% of tests labeled and removed.

C. Measurements

Our interest in computing these reductions is to understand
the type (and number) of entities removed, and how they relate
to the tests in the suite. Our results, therefore, consist of 4
measurements:

1) Reduction size: this is the number of statements re-
moved, a simple measure of the amount of change to
the class.

2) Reduction height: this measures the maximum distance
of a removed statement node from a leaf statement
node in the class AST. Reduction height can be seen as
measuring the complexity of changes to a class. If height
is one, only leaf nodes (hence simple statements) were
removed.

3) Reduction type: this describes the type
of statement removed, as defined by
java.parser.ast.Statement. We are interested
in determining whether certain kinds of statement are
more likely to be removed.

4) Reduction relation: this is the relationship of removed
statements with labeled and unlabeled test coverage. For
this measure only, the measurement is over 50 points
(chosen via stratified sampling) rather than the full 800
minimizations.

We measured coverage of removed (labeled) and retained
(unlabeled) tests separately for each subject. Unfortunately,
this step required some manual interventions due to idiosyn-
crasies of build environments and coverage tools. Therefore,
for coverage data only our results are based on a sample of 50
runs out of the 800, selecting one Label 10% data point and
one Label 20% data point for each of 25 randomly selected
classes, to yield a good sample of coverage data.

For reduction type, we used JavaParser’s [12] definition of
statement types. The version of JavaParser we used classi-
fies statements into 22 different types. In order to simplify
discussion and presentation, based on the results obtained, we
grouped the 22 types into (1) If statements (if, if-else, and if-
else-if-else), (2) Return statements, (3) Expression state-
ments (most often assignments, but also variable declarations
within methods, and method calls that are not part of another
statement type such as a return, etc.), and (4) Other, a
catch-all class for the other, less common statement types.

IV. EMPIRICAL RESULTS

A. Reduction Size

Table III shows the size of removals, in terms of both
absolute numbers and % of statements removed. For Label
10%, mean statement removal is 17.31 statements or 14.06%.
For Label 20%, the mean removal is 21.05 statements or
17.23%; doubling the number of removed tests does not
proportionally increase reduction. The corresponding median
numbers are 7.64 and 9.87% for Label 10% and 10.5 and
14.59% for Label 20%. Reduction size is less than 15 state-
ments for 34 of 40 subjects for Label 10% and for 29 of 40
subjects for Label 20%. It is clear that reduction size is small,
for randomly selected sets of tests; it is possible that larger
reductions are more common when removed tests are grouped
by functionality, but we expect most programs without very
high quality tests to have fairly non-redundant test suites, so
this effect should not be very large. One consequence is that
even heuristics that rule our large numbers of statements as
not being likely candidates for removal are potentially valid,
so long as the a-priori rejected statements match a set of
statements seldom, in practice, removed.

B. Reduction Height

Table IV shows mean and maximum reduction heights. It is
clear that complex blocks are only rarely removed. For 10%
test labeling, the average reduction height is greater than 2 for
only 4 subjects out of 40. For 20% test labeling, the average
reduction height is greater than 2 for only 8 subjects, and
greater than 3 for only 1 subject out of 40. As more tests
are labeled, complex removals only become modestly more
common, and are never very frequent.

C. Reduction Type

Reduction type measures type of removals. As noted, the
version of JavaParser that hddRASS uses defines 22 types of
statement. We are primarily interested in knowing if certain
statement types dominate removals. To measure this, we

TABLE III: Reduction size: how many statements are removed? Tests removed and reduction size are averaged across 10 runs.
% Reduction is measured against total statements in the class as defined by Table I
.

Label 10% Label 20%
Class Tests removed Reduction size % Reduction Tests removed Reduction size % Reduction
AntBuilder 3 6.45 4.54 4.4 9.53 6.73
Schedule 2.7 0.8 0.62 3.5 1 0.78
Project 3 11.27 3.87 6.1 43.27 14.86
AntScript 3 4.3 3.55 8.6 7 5.78
Available 34.1 26.05 24 7.14 23.2 17.44
Copy 2.6 79 44.1 5.1 88.1 49.2
FixCRLF 3.1 10.1 16.55 6.4 12.3 20.16
Checksum 2 31.5 22.18 2.5 39.2 27.60
UrlValidator 2.8 7.18 8.75 6.1 13.54 16.51
RegexValidator 1.4 2.4 6 2 3.6 9
DomainValidator 2.6 9.45 12.77 5.4 14.8 20
EmailValidator 1.6 3 16.66 2.9 3 16.66
Engine 5.3 46 56 7.9 46 46
JexlArithmetic 4.2 1.2 0.41 7 4.4 1.52
JexlEvalContext 3.9 7.1 24.48 8.4 7.4 25.51
Script 3.9 7.1 24.48 8.4 7.4 25.51
Option 1.3 6.3 7.41 1.6 8.3 9.76
GnuParser 4 2.2 9.56 4 2.2 9.56
PosixParser 6.3 0 0 10.7 0 0
OptionGroup 2.1 2.2 7.33 3.2 4.3 14.33
OntTools 3.2 6.5 10.76 5.7 7.5 11.53
LocationMapper 1.6 11.66 8.44 2.83 12.66 9.17
OntlClassImpl 2.6 2.5 1.87 2.25 3.5 2.61
OntlModelImpl 5.9 27 5.7 12.8 36 7.6
ExtendedMessageFormat 1.5 18.4 13.4 2.4 21.3 15.5
LevenshteinDetailedDistance 1.3 10.6 7.46 1.9 17.3 12.2
AlphabetConverter 1.4 8.1 9.87 2.3 10.5 12.8
StrBuilder 1.4 8.1 9.87 2.3 10.5 12.8
BinderClassLoader 2 0.7 7.77 2.1 1 11.11
CallMethodRule 2 22.4 39.48 3.1 22.44 38.69
Digester 2.1 207.4 48.0 3.5 235 54.39
NodeCreateRule 1.8 1.8 12 2.6 3 20
URIBuilder 2.4 0 0 4.6 0 0
HttpService 2 7.1 19.72 2.1 7.4 21.74
HeaderGroup 1.6 17.5 24.30 2.3 20.3 28.19
EofSensorInputStream 1.5 4.2 12.35 2.1 7.4 21.74
DefaultIntervalCategoryDataset 1.9 41.7 27.8 3.8 44.4 29.6
Hour 2.2 8.8 14.66 3.9 11.6 19.33
GridArrangement 1.5 10.33 8.6 3.4 13.11 11.0
StatisticalBarRenderer 1.3 14.30 9.08 2.2 19.62 12.34
MEAN 3.35 17.31 14.60 4.48 21.07 17.23
MEDIAN 2.15 7.64 9.87 3.5 10.5 14.59

Label 10% Label 20%

expression

if

return

other

46%

28%

12%

14%

49%

27%

11%

13%

Fig. 2: Reduction type: what kind of statements are removed?

categorized removals into the four categories defined above
(If, Return, Expression, and Other). Figure 2 shows
the breakdown for removals across all 800 reductions. With
20% vs. 10% removed tests, the removal pattern did not
change notably. Expression, If and Return statements
were most common, by far (while Other has nearly as many
total removals as Return, recall that it covers 19 different
types, none of which are very frequent). Removal of return
statements was somewhat surprising, as Java requires every
non-void method to have a return statement, but a return
inside an if block is frequently removable.

Of course, percent of total removals is not all that matters.
If some kinds of statement are more common, this will also
matter (e.g., if 90% of removals are Expressions but
Expression statements are 95% of the program, this is less
meaningful). In practice, the combination of both raw numbers

TABLE IV: Reduction height: how far from a leaf in the AST
are removed statements? Averaged across 10 runs.

Label 10% Label 20%
Class Mean Max Mean Max
AntBuilder 1.2 3 1.2 3
Schedule 0.4 2 0.8 4
Project 0.6 6 2.4 6
AntScript 1.3 2 1.7 2
Available 0.8 2 2.6 3
Copy 2.5 8 3.6 8
FixCRLF 1.6 2 2 3
Checksum 0 0 0.222 2
UrlValidator 1.6 3 2.2 3
RegexValidator 1.6 3 1.9 3
DomainValidator 1.3 3 1.85 3
EmailValidator 1 1 1 1
Engine 3 3 3 3
JexlArithmetic 0.4 2 0.6 2
JexlEvalContext 1 1 1 1
Script 1 1 1 1
Option 2.3 3 2.6 3
GnuParser 1.4 6 1.8 6
PosixParser 0 0 0 0
OptionGroup 1.2 2 1.5 3
OntTools 2 2 2 2
LocationMapper 1.8 2 2 4
OntlClassImpl 2 3 2.5 3
OntlModelImpl 3 3 3 3
ExtendedMessageFormat 2 2 2.3 3
LevenshteinDetailedDistance 2 2 2 2
AlphabetConverter 2 2 2 2
StrBuilder 1.6 2 2 2
BinderClassLoader 1.4 2 2 2
CallMethodRule 1.8 2 1.7 2
Digester 2.7 3 3 3
NodeCreateRule 0.6 1 1 2
EofSensorInputStream 3 3 3 3
URIBuilder 0 0 0 0
HttpService 1.4 2 1.1 2
headerGroup 3 3 3 3
DefaultCategory 2.1 3 2.2 3
Hour 1.6 2 2.1 3
GridArrangement 2 2 2 2
StatisticalBarRenderer 1.1 2 1.4 2
MEAN 1.55 1.85 2.76 3.14
MEDIAN 1.6 2 2 3

and probability is important to determining likely reduction
targets. As it turns out, If and Expression are also simply
more likely to be removed than other types of statement, in
addition to dominating the raw numbers (Figure 3).

D. Reduction Relation

Test based program minimization relies on labeled tests,
where (in this paper’s simplified version of the process),
labeled tests are removed from the set of tests the program
must pass, in order to compute a reduction. We measured code
coverage for both labeled (removed) and unlabeled (retained)
tests. Our original approach assumed the availability of a high
quality test suite for a program. Intuitively, if we have a
good test suite, all removed statements (or at least almost all
removed statements) should be covered by some test. In reality,
of course, a program may have a poor, highly inadequate test

Label 10% Label 20%

expression

if

return

other

28%

35%

22%

15%
28%

34%

21%

17%

Fig. 3: Reduction probability: what is the breakdown of
removal types, adjusting for statement type distribution dif-
ferences?

suite, in which case removals will sometimes be due to code
not tested at all (in which case test labels are not even relevant).

However, for the expected case, where code coverage is
very high and test quality is good, we make predictions about
statements to be analyzed according to their coverage. In
particular, we can consider a few key subsets of statements:

CL = { s | s is covered by ≥ 1 labeled (removed) tests}.
CU = { s | s is covered by ≥ 1 unlabeled (retained) tests}.
CU ′ = { s | s is covered by 0 unlabeled (retained) tests}

We consider these sets in the light of a few further claims:
first, any statement not covered by a retained test (and not
somehow required for successful compilation) will certainly
be removed (this is basically a kind of dynamic dead-code
removal). Second, any statement that is removed, despite
being covered by retained tests, is likely tested by the labeled
(removed) tests: that is, while the retained tests execute it,
a removed test is actually checking its behavior. Together,
these ideas suggest that CL ∪ CU ′ should contain most
removed statements. We therefore define a set of Coverage-
Based Likely-removable Statements, CBLS = CL ∪ CU ′.
While only considering statements covered by the retained
tests is somewhat obvious, not considering statements that are
not also covered by the removed tests is an important and
considerably more subtle point.

How does this prediction match reality? Tables V and
Table VI show how the 50 sampled data points match up with
the CBLS hypothesis. For 39 of the 50 sampled coverage data
points, all removed statements are in CBLS . Overall, 95.9% of
removed statements were in CBLS . The relationship did not
significantly change with change of labeled strategy, either.
This is a fairly strong result, especially given that we expect
test suites for real mission-critical systems built for adaptation
in deployment to supply better test suites than typical open
source Java projects.

TABLE V: Reduction Relationship: % of removed statements
in CBLS

Relation Avg Median SD Mode Min Max
Label 10% 96.04 100 8.9 100 64 100
Label 20% 95.76 100 9.1 100 64 100
All 95.9 100 9.0 100 64 100

TABLE VI: Reduction Relationship distribution: distribution
of % of removed statements in CBLS

Relation <80% 80-89% 90-99% 100%
Label 10% 2 2 1 20
Label 20% 2 3 1 19
All 4 5 2 39

V. HEURISTICS

The high cost of computing a reduction derives from the fact
that each attempt at removing a statement requires building a
new version of the system and running (potentially) all the
retained tests. Based on the results of our empirical study of
reductions, therefore, we propose heuristics for reducing the
number of statements to consider in computing a reduction.
These heuristics are most important for deployed systems,
where it is better to build a good candidate reduction quickly
than to build the smallest possible system after an unacceptable
long computation period, during which the system may be
unable to perform critical functions. The proposed heuristics
are all based on one of our empirical measurements discussed
above.

A. Heuristic H1: Only Attempt to Remove Simple Statements

The results in Sections IV-A and IV-B show that relatively
few statements are removed, and most of these are leaf nodes
in the AST. We also expect that resource-uses will typically be
via method calls, which are simple statements. We therefore
first propose only trying to remove leaf nodes in the AST, and
nodes one level above leaf nodes (to handle removal of simple
conditionals and loops).

B. Heuristic H2: Only Attempt to Remove If, Return and
Expression Statements

Section IV-C shows that certain statement types are most
frequently removed. Avoiding attempted to remove other
statement types may not save a large amount of time (since
such statements are also less common in programs), but is
also unlikely to be costly in loss of opportunity to reduce
or failure to remove resource-using statements. We therefore
also evaluate restricting the type of statement to remove. Note
that due to the structure of programs, this heuristic has some
overlap with the first heuristic.

C. Heuristic H3: Only Attempt to Remove Statements Con-
tained in CBLS

Section IV-D shows that the vast majority of removed
statements are in a set easily computable from a single run

of the full test suite on the original program. Most removed
statements are covered by the removed tests, or not covered
by the retained tests, or both. We therefore finally propose
only attempting to remove statements that match this coverage
behavior. This heuristic is conceptually quite different than
the other heuristics, in that it can ignore large numbers of
leaf statements, including assignment statements and method
calls. We therefore expect it to have the largest potential for
speeding up reduction.

D. Validity of Heuristics

We validate these heuristics by applying them to 6 randomly
chosen classes, taken from 2 open source projects not part of
the empirical study corpus used to arrive at the heuristics.
For these classes, we produced baseline results by applying
hddRASS as described in the empirical study. For each class,
we then applied each of the three heuristics in isolation to pro-
duce three additional reductions for comparison. We measured
accuracy and efficiency for these additional, heuristic-guided,
reduction processes.

1) Accuracy: Accuracy measures the similarity of heuristic-
based results to baseline results. We measure accuracy as
follows: BR = {x | x is a statement removed by the original
approach} HR = {x | x is a statement removed by the
heuristic-based approach}. As the heuristics all involve sub-
setting the set of statements considered for removal, HR ⊆
BR. Accuracy is thus defined as a percentage, |HR|

|BR| ∗ 100. If
the baseline removes 20 statements and a heuristic-based run
removes 18 statements, accuracy is 90%.

2) Gain in Efficiency: Efficiency measures how many state-
ments a measure allows us to avoid attempting to remove;
it is not a simple wall-time measure, because a the cost of
a removal attempt varies with build time and test execution
time. . We measure efficiency as follows: BS = {x | x
is a statement the baseline approach attempts to remove}
HS = {x | x is a statement the heuristic-based approach
attempts to remove}. Clearly, HS ⊆ BS, as above. We mea-
sure gain in efficiency as another percentage: |BS|−|HS|

|BS| ∗100.
If the baseline run attempts to remove 100 statements and
the heuristic-based approach attempts to remove 70 statements
then gain in efficiency is 30%. A gain in efficiency of 100% is
of course, actually undesirable, as it would imply the heuristic
rejected all statements. For all the heuristics, by construction,
this basically cannot happen3.

Table VII shows that all heuristics produce quite accurate
results. H3 is more accurate than H1 and H2. H3 is also,
it turns out, more efficient than the other heuristics (Table
VIII), a rare case where there does not seem to be any
tradeoff between accuracy and efficiency. However, all three
methods appear useful, and it is not possible without further
experimentation to be certain which approach is best for use in
real-world applications, with meaningfully labeled test suites

3Technically, there could exist Java programs with no if, return, or
Expression statements, and with no statements covered by the removed tests
or not covered by the retained tests, but these would clearly be pathological,
unrealistic, situations.

TABLE VII: Heuristic Accuracy (as %)

H1 H2 H3
Subject L10 L20 L10 L20 L10 L20
Array2DRowRealMatrix 100 100 83 85 100 100
EigenDecomposition 100 100 75 85 100 100
MillerUpdatingRegression 85 89 85 85 100 100
SevenZOutputFile 100 100 86 88 100 100
ZipFile 89 92 66 73 100 100
ZipArchiveEntry 100 75 75 90 100 100
MEAN 96.25 97.25 85.75 88.75 100 100

TABLE VIII: Heuristic Gains in Efficiency (as %); broken
down by Labeling for H3

Subject H1 H2 H3-L%10 H3-L%20
Array2DRowRealMatrix 16 22 63 65
EigenDecomposition 27 19 26 33
MillerUpdatingRegression 29 12 51 15
SevenZOutputFile 15 11 24 23
ZipFile 6 9 16 20
ZipArchiveEntry 11 10 47 36
MEAN 17.33 13.83 37.83 32

and real resource-usage reduction goals. It could be that while
H3 is the most accurate method, it is also the most likely to
fail to remove some resource-using statements, for some non-
obvious reason. Because our validation does not distinguish
between resource-using and non-resource-using statements, we
must turn to a more complete case study to begin confirming
the superiority of H3.

VI. CASE STUDY

We use the NetBeans IDE [13] (a popular IDE among Java
developers) as a subject for our case study. The NetBeans IDE
version we used has 7,386,809 LOC. The code base is well
tested, with a large number of unit, function, and performance
tests for all modules. The IDE uses significant system re-
sources, including memory and CPU time. Our previous work
on resource adaptation via test based software minimization
also used NetBeans IDE to demonstrate automatic resource
adaptation for memory. Resource adaptation was achieved by
removing the IDE’s undo-redo functionality. Full details of the
experiment can be found in our previous work [3].

The target for adaptation, the UndoManager, implements
the undo/redo functionality and is part of the openide.awt
module. This module consists of 11,284 lines of code, and
has 146 tests. We continue to use same 3 labeled tests used
in the original case study. The baseline run removed 130
statements, none of which were more than 5 levels above a leaf
node. By providing a memory profile of NetBeans IDE, we
demonstrated that the adapted IDE uses less memory. By care-
fully observing tests, module, and coverage information, we
can identify the exact 19 statements that, when executed, fill
up certain buffers, making undo-redo operations so memory
intensive. Those statements were automatically removed by

TABLE IX: NetBeans IDE case study: Accuracy and efficiency
gain for heuristics. Accuracy-all measures accuracy for all
removals. Accuracy-res measures accuracy for the 19 critical,
resource-using statements.

NetBeans IDE H1 H2 H3
Accuracy-res 100 100 100
Accuracy-all 80 88 86
Efficiency 25 20 56

TABLE X: NetBeans IDE case study: Time (in minutes) to
build a memory-adaptive NetBenas IDE.

NetBeans IDE baseline H1 H2 H3
Time 175.45 106.39 135.51 61.01
Improvement 1 1.64 1.29 2.87

hddRASS in our original case study. Unfortunately, computing
this reduction required 175 minutes – nearly 3 hours!

In order to confirm that our heuristics are accurate and
provide efficiency gains in a realistic setting, we applied them
to the same case study. We measured accuracy and gain in
efficiency, as above, and also verified (1) that the 19 critical
statements were all removed and (2) that the version of the
IDE produced indeed did now allow undo/redo operations. The
critical statements were, indeed, removed by all three heuristic
approaches, undo/redo functionality disabled, and the memory
footprint of the IDE significantly reduced.

Table IX shows accuracy and gains in efficiency for all
3 heuristics. Even with a real, complex case study, and tests
focused on a realistic functionality, the heuristics provide a
large benefit. In particular, again, H3 performs well: it provides
86% accuracy, while analyzing 56% fewer statements.

We also computed the actual time required to build a
memory-adaptive NetBeans IDE using the baseline approach
and the heuristics-based approaches, as shown in Table X
(results differ from the original experiment, due to using a
different hardware configuration). Using heuristic H3, we can
build a memory-adaptive NetBeans IDE that is just as useful
(in terms of memory reduction) 2.87 times faster than without
using a heuristic.

VII. DISCUSSION

Resource adaptations via test-based software minimization
is a conceptually simple and practically useful, but, unfortu-
nately, quite expensive way to build resource-adaptive software
systems. The high cost of this kind of adaptation is due to three
primary factors:

1) hddRASS uses a slow algorithm. hddRASS is a modifi-
cation of HDD* [7], with worst case complexity of n3.

2) hddRASS considers all program statements as potential
targets for removal.

3) Every potential reduction involves builiding a new version
of the system and running (potentially) the entire retained
test suite.

Improvement in any of these areas will improve the perfor-
mance of our approach. E.g., a better algorithm for computing
a reduction (across the same possible removed statements,
perhaps by removing more statements at once, successfully)
would help with the first issue. Using partial builds and
prioritizing tests effectively might address the third problem.
This paper is a step in the direction of improving performance
by addressing the second cause: there are too many possible
reduction targets. We performed an empirical analysis of a
large number of class reductions, and used the information
obtained to predict statements likely to be removed, resulting
in three heuristics:
• H1: Remove only statements close to the leaf nodes of

the AST.
• H2: Remove only If, Return, and Expression state-

ments.
• H3: Only remove statements covered by the removed tests

or not covered by the retained tests.
The only additional step required, beyond the original

algorithm, is to compute coverage for all tests in the full suite,
and associate the coverage data with retained and removed
tests. Given that each potential removal may run much of the
test suite, this is a small price to pay for significant reduction
of the number of statements to consider for removal.

It is no surprise that H3 is most effective. In a sense, H1
and H2 are fundamentally limited in two ways: first, they
cannot (at least usually) provide a very large reduction in
number of statements to consider, since most statements are
close to leaf nodes of an AST in most programs, and most
statements are If, Return, and Expression statements.
H3, however, is not bounded by the basic structure of normal
Java programs. It can throw out large numbers of leaf nodes
and “normal” statements as unlikely to be removable. On
the other hand, it will attempt to remove non-leaf nodes that
coverage suggests may only be needed to pass the removed
tests. In other words, it can be both more efficient (in terms of
throwing out statements unlikely to be removable) and more
conservative/accurate (in terms of keeping some statements
that are likely to be removable).

Since our initial results suggest that the dynamic, coverage-
based heuristic works best, they suggest that future attempts
to improve the speed of reduction should, perhaps, also be

based on information from runtime and the test suite. E.g., for
the NetBeans reduction, there are only 19 statements that are
critical to improve system resource usage. If we can identify
resource-using statements at runtime on the full test suite,
perhaps we can further focus on those statements. However,
such a focus is complicated, since other statements may have
to be removed to produce a “clean” removal of functionality.
It is useful to have an NetBeans IDE that does not provide
undo/redo; it is less useful to have one that crashes when
undo/redo actions are attempted. Data-flow from resource-
using statements in the H3-predicted removals based on a set
of tests may help guide a further refinement of the method,
based on H3.

A. Threats to validity

Our idea of adaptation assumes that test suites are not only
adequate, but very high quality; in the absence of such tests,
the validity of results is questionable. It is also questionable
in the absence of meaningful test labels. This means that our
empirical results, other than the case study, are useful for
understanding basic statistics of removal, but may not resemble
real-world application patterns as closely as we would like.
However, our empirical results had a very strong resemblance
to results for the NetBeans IDE case study which has a good
test suite and meaningful labeling, and test coverage for most
classes included in the empirical results was good; for 17 of
the 40 classes, it was probably as good as can be expected
even in many real-world adaptation efforts (>90%).

Our results are also only valid for Java programs, and we
rely on JavaParser’s notions of statement. Generalizing to other
programming languages would not be warranted, at least for
non C-like languages (we suspect C and C++ at least would
have similar patterns). Whether Haskell, Ruby, or Python
programs would have the same reduction statistics is more
uncertain, though in a sense, the coverage patterns are likely
to be fairly universal due to their grounding in the semantics
of the program and test suite.

Our subjects in the empirical study were open source Java
programs used in other software engineering research. The
extent to which our results would apply to other classes and
programs is not certain; however, the results across all classes
and randomly computed test labelings were highly consistent,
suggesting that the results might generalize to at least a large
number of other open source Java Programs.

The hddRASS tool is available on GitHub at https://github.
com/amchristi/hddRASS. The release includes both the com-
plete, non-heuristic implementation and all three heuristics
introduced in this paper. All subjects used for the empirical
study and for heuristics validation are classes of popular open
source projects and available online. The NetBeans IDE source
code is also available online. All results should therefore be
easily replicable.

VIII. RELATED WORK

This paper extends our previous work on using test-based
software minimization to adapt programs to resource-poor

https://github.com/amchristi/hddRASS
https://github.com/amchristi/hddRASS

environments by automatically removing non-critical features
that use resources [3], by empirically studying a much larger
set of reductions and using the results to derive heuristics to
speed adaptation.

The field of self-adaptive systems has enjoyed renewed
interest in recent years, with the growth of both autonomy
and ubiquitous computing resulting in more systems that are
difficult to communicate with, and so must be able to “go it
alone.” Salehie et al. [14] summarize much of the earlier recent
work in the field. Different engineering approaches to building
adaptive software systems are categorized by Kruptizer et
al. [2]. Cheng et al. [4] suggest adaptive requirements engi-
neering to capture uncertainty in an adaptive software system,
and envision a new requirements language that captures what
a system might do instead of what a system will do. Our test-
based version of sacrificability of specifications is a limited,
but easy-to-apply, version of adaptive requirements, where
the only possible adaptation of requirements is the possibility
of removing certain requirements, as represented by labeled
tests. Whittle et al. [15] propose a requirements language,
RELAX, that encodes the ability to relax certain requirements
at runtime if the environment changes. RELAX is designed
to sacrifice requirements marked as non-critical in order to
adapt to changing environment, while still continuing to satisfy
all critical requirements: it is thus a language-based, rather
than test-based, analogue to our approach. Delemos et al. [16]
categorize self-adaptive systems as self-managing systems
that rely on explicitly pre-computed adaptations, in contrast
to self-organizing systems which rely on implicit runtime
adaptations. The present work moves our test-based approach
closer to self-organization. With slower adaptation, it is harder
to go beyond a pure self-management approach. Fredericks et
al. [17] suggest choosing only a subset of test cases to execute
based on resource constraints for runtime adaptations, but do
not use this to guide an adaptation.

Delta-debugging [18] is an algorithm for reducing the
size of failing test cases or test inputs. Hierarchical delta
debugging (HDD) [7] was proposed as way to efficiently
reduce hierarchical inputs, such as computer programs. Cause
reduction extended those ideas to a much more general appli-
cability, including our use of reducing programs with respect
to tests they pass [19], [20].

The idea that modifications of a program that are both
useful and computationally tractable to identify are likely to
be (statement) deletions was proposed by Qi et al. [9] in
their criticism of much work in automatic program repair. Our
approach is a (very specialized) instance of program repair,
that aims to minimize the need for a complete specification and
reduce computational needs by only using statement deletion.
Because we only use deletion, modified programs are both
easier to compute (there are fewer alternatives, and we can
exploit an HDD-like algorithm). Deletions are also more likely
to be valid even in the absence of a full specification. Changing
expressions in code, rather than simply removing computation,
is more likely to produce subtly incorrect results that escape
even a good test suite. This is demonstrated by the cases in

the work of Lin et al. where a test suite that kills all statement
deletion mutants has a weaker mutation score on a set of
mutants containing other operators [21], or even by the simple
fact that the most obviously non-equivalent mutants when
using mutants to drive test suite improvements are usually
statement deletions [22].

An additional difference between our approach and program
repair efforts is that program repair typically needs an actual
fault to repair (and in adaptation, would thus start from a
failure caused by resource usage), while our approach can
compute, blindly, numerous potential reductions that sacrifice
different functionality, any of which can be applied when
needed. This means our approach can, in theory, “anticipate”
unusual or ill-defined “resource” usage problems, even when
these have not been thought of by a developer, or experienced
in the field. In program repair, on the other hand, fault
localization can be used to identify good candidate statements
for modification [23]; because we lack a fault, we instead must
make use of statistical characterization of deleted statements,
and the coverage relationship of statements with removed and
retained tests (the topic of this paper).

Conceptually, this relates to the statement-deletion mutation
operator [24], a special instance of deletion mutation opera-
tors [25] known to achieve a good balance between the number
of mutants generated and the value of the artificial faults pro-
duced Our hddRASS algorithm is a combination of the ideas
of HDD and statement-deletion, with heuristic optimization for
the case where the program is nearly minimal already (unlike
a test input, which is often far from minimal), and where
dependencies tend to flow forward in the source code. This
paper extends our previous work on the topic [3] by using an
empirical study of reductions to motivate heuristics to speed
adaptation, achieving nearly a factor of 3 improvement in
reduction time for a real-world case study. In the future, we are
likely to examine other modifications of delta-debugging [26]
to see if they promise further improvements in the runtime of
hddRASS.

IX. CONCLUSIONS AND FUTURE WORK

Building robust resource-adaptive systems is critical to the
long-term goal of producing software systems that can effec-
tively respond to their changing computational (and physical)
environments. Because anticipating all possibilities for trading
reduced functionality for lower resource usage is extremely
difficult for developers, there is an ongoing need for methods
that allow software to adapt without human intervention.

In previous work [3] we showed that by labeling tests,
developers could easily indicate a basis for computing resource
adaptations, without the burden of learning a specification
language or performing extensive program annotation. The
adaptation works by removing statements not required to pass
a reduced test suite. Unfortunately, the process is also very
slow, making it impractical for use in field adaptation in
deployed systems with limited computational resources. This
paper presents a first step towards practical in-the-field test-
based software minimization. We show that, by examining

patterns in a large set of reductions of Java open source
projects, using random subsets of their test suites, it is possible
to identify promising heuristics for which statements will
eventually be removed in a reduction. It is then simple to
only try removing those statements. All three heuristics we
derived maintain an acceptable accuracy of reduction, while
significantly reducing the time taken to compute the reduction.
One heuristic, in particular, based on test suite coverage, is
both most accurate and provides the highest gain in efficiency.

As future work, we aim to extract more information from
test suites, including effective ways to prioritize test execution
to speed rejecting statements that cannot be removed, and ways
to predict statements that can certainly be removed without
the expense of running tests (e.g., using code coverage or
data-flow to assertions, as in checked coverage [27]). We also
plan to apply our approach to large-scale real-world systems
operating in an Android environment, as part of the DARPA
BRASS project.

Acknowledgments: this work was partly funded by the
DARPA BRASS [1] program, and the authors would like
to thank our collaborators at Oregon State University and
Raytheon/BBN.

REFERENCES

[1] J. Hughes, C. Sparks, A. Stoughton, R. Parikh, A. Reuther, and
S. Jagannathan, “Building resource adaptive software systems (BRASS):
Objectives and system evaluation,” SIGSOFT Softw. Eng. Notes, vol. 41,
no. 1, pp. 1–2, Feb. 2016.

[2] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
Mob. Comput., vol. 17, no. PB, pp. 184–206, Feb. 2015.

[3] A. Christi, A. Groce, and R. Gopinath, “Resource adaptation via test-
based software minimization,” in 11th IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, SASO 2017, Tucson, AZ,
USA, September 18-22, 2017, 2017, pp. 61–70. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/SASO.2017.15

[4] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai,
H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A.
Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and
J. Whittle, in Software Engineering for Self-Adaptive Systems, B. H.
Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Berlin,
Heidelberg: Springer-Verlag, 2009, ch. Software Engineering for Self-
Adaptive Systems: A Research Roadmap, pp. 1–26.

[5] M. Luckey and G. Engels, “High-quality specification of self-adaptive
software systems,” in Proceedings of the 8th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, ser.
SEAMS ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 143–152.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2487336.2487359

[6] F. Fleurey and A. Solberg, “A domain specific modeling language
supporting specification, simulation and execution of dynamic adaptive
systems,” in Proceedings of the 12th International Conference on
Model Driven Engineering Languages and Systems, ser. MODELS
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 606–621. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-04425-0 47

[7] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,” in Pro-
ceedings of the 28th International Conference on Software Engineering,
ser. ICSE ’06, 2006, pp. 142–151.

[8] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic
method for automatic software repair,” IEEE Transactions on Software
Engineering, vol. 38, no. 1, pp. 54–72, Jan 2012.

[9] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in International Symposium on Software Testing and Analysis,
2015, pp. 24–36.

[10] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus,
“Test case generation for program repair: A study of feasibility and
effectiveness,” CoRR, vol. abs/1703.00198, 2017. [Online]. Available:
http://arxiv.org/abs/1703.00198

[11] M. Martinez and M. Monperrus, “Astor: A program repair library for
java (demo),” in Proceedings of the 25th International Symposium
on Software Testing and Analysis, ser. ISSTA 2016. New York,
NY, USA: ACM, 2016, pp. 441–444. [Online]. Available: http:
//doi.acm.org/10.1145/2931037.2948705

[12] “Javaparser.” [Online]. Available: http://javaparser.org/
[13] “NetBeans IDE.” [Online]. Available: https://netbeans.org/
[14] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and

research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp.
14:1–14:42, May 2009.

[15] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. Bruel,
“Relax: Incorporating uncertainty into the specification of self-adaptive
systems,” in Proceedings of the 2009 17th IEEE International
Requirements Engineering Conference, RE, ser. RE ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 79–88. [Online].
Available: http://dx.doi.org/10.1109/RE.2009.36

[16] R. De Lemos, H. Giese, H. A. Muller, M. Shaw, J. Andersson, L. Baresi,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar,
G. Engels, K. Geihs, K. M. Goeschka, A. Gorla, V. Grassi, P. Inverardi,
G. Karsai, J. Kramer, M. Litoiu, A. Lopes, J. Magee, S. Malek,
S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezze,
C. Prehofe, W. Schäfer, R. Schlichting, B. Schmerl, D. B. Smith, J. P.
Sousa, G. Tamura, L. Tahvildari, N. M. Villegas, T. Vogel, D. Weyns,
K. Wong, and J. Wuttke, “Software Engineering for Self-Adaptive
Systems: A Second Research Roadmap,” in Software Engineering for
Self-Adaptive Systems, ser. Dagstuhl Seminar Proceedings, R. De Lemos,
H. Giese, H. Müller, and M. Shaw, Eds. Springer, 2013, vol. 7475, pp.
1–26.

[17] E. M. Fredericks, A. J. Ramirez, and B. H. C. Cheng, “Towards run-
time testing of dynamic adaptive systems,” in Proceedings of the 8th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, ser. SEAMS ’13, 2013, pp. 169–174.

[18] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183–200, Feb. 2002.

[19] A. Groce, M. A. Alipour, C. Zhang, Y. Chen, and J. Regehr, “Cause
reduction for quick testing,” in IEEE International Conference on
Software Testing, Verification and Validation, 2014, pp. 243–252.

[20] ——, “Cause reduction: Delta-debugging, even without bugs,” Journal
of Software Testing, Verification, and Reliability, vol. 26, no. 1, pp. 40–
68, 2016.

[21] L. Deng, J. Offutt, and N. Li, “Empirical evaluation of the
statement deletion mutation operator,” in Proceedings of the 2013
IEEE Sixth International Conference on Software Testing, Verification
and Validation, ser. ICST ’13. Washington, DC, USA: IEEE
Computer Society, 2013, pp. 84–93. [Online]. Available: http:
//dx.doi.org/10.1109/ICST.2013.20

[22] A. Groce, I. Ahmed, C. Jensen, and P. E. McKenney, “How verified is
my code? falsification-driven verification (t),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Nov 2015, pp. 737–748.

[23] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges
in automatic software repair,” Software Quality Journal, vol. 21,
no. 3, pp. 421–443, 2013. [Online]. Available: https://doi.org/10.1007/
s11219-013-9208-0

[24] L. Deng, J. Offutt, and N. Li, “Empirical evaluation of the statement
deletion mutation operator,” in International Conference on Software
Testing, Verification and Validation, March 2013, pp. 84–93.

[25] M. E. Delamaro, J. Offutt, and P. Ammann, “Designing deletion
mutation operators,” in International Conference on Software Testing,
Verification and Validation, 2014, pp. 11–20.

[26] R. Hodován and A. Kiss, “Modernizing hierarchical delta debugging,”
in Proceedings of the 7th International Workshop on Automating Test
Case Design, Selection, and Evaluation, ser. A-TEST 2016. New York,
NY, USA: ACM, 2016, pp. 31–37.

[27] D. Schuler and A. Zeller, “Assessing oracle quality with checked
coverage,” in 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, March 2011, pp. 90–99.

http://doi.ieeecomputersociety.org/10.1109/SASO.2017.15
http://dl.acm.org/citation.cfm?id=2487336.2487359
http://dx.doi.org/10.1007/978-3-642-04425-0_47
http://arxiv.org/abs/1703.00198
http://doi.acm.org/10.1145/2931037.2948705
http://doi.acm.org/10.1145/2931037.2948705
http://javaparser.org/
https://netbeans.org/
http://dx.doi.org/10.1109/RE.2009.36
http://dx.doi.org/10.1109/ICST.2013.20
http://dx.doi.org/10.1109/ICST.2013.20
https://doi.org/10.1007/s11219-013-9208-0
https://doi.org/10.1007/s11219-013-9208-0

