
Alex Groce (agroce@gmail.com), Northern Arizona University

Gerald M. Weinberg’s The Psychology of Computer Programming: Silver Anniversary Edition is
this month’s Passages selection. Weinberg died last August, but this book alone makes him
immortal in the world of software engineering. The Psychology is one of my favorite software
engineering classics, and one of the books that originally motivated this column. Tim Budd
gave me my first copy, when I was a young and ignorant professor at Oregon State, when he
retired (the opposite of the usual retirement gifting procedure) and I read it with great pleasure
and attention for the first time, not long after, and began to form the idea of Passages not long
after that. Why did I not write about it before this?

The question forces a confession: I’ve been saving this one. My major worry, when I started
these columns, was that at some point I would run out of interesting, actually suitable, books
and start stretching the definition to the breaking point, including too many out-of-left field
reviews. I wanted some surprises (I don’t feel bad about shoving Hugh Kenner or Confucius
into the limelight, such as it is, of Software Engineering Notes) but I don’t want to always be
unpredictable; that’s just another kind of predictability, and lowers the useful entropy of the
column. This is a suitable book, with no doubt, and so long as I have not written on it there is
one more good column left to write. So, then, have we reached desperation? No, I simply
decided there were too many good books in the queue to deny myself the pleasure of writing
about this one any longer.

Where to begin? First, let’s take a quotation that is dear to my own heart:

“Now, what cognitive dissonance has to do with our programming conflict should be vividly
clear. A programmer who truly sees his program as an extension of his own ego is not going to
be trying to find all the errors in that program. On the contrary, he is going to be trying to prove
that the program is correct—even if this means the oversight of errors which are monstrous to
another eye. All programmers are familiar with the symptoms of this dissonance resolution—-in
others, of course.”

Is this still relevant? Well, you do it, I do it; birds and bees would do it if they coded. It is
perhaps the great threat to testing your own code: you don’t want it to be wrong. There are
modern mitigations that aim to encourage what Weinberg calls “egoless” programming: open
source, issue trackers, pull requests, continuous integration, and, most importantly, code
reviews, all, arguably, partly have the goal of rewarding egoless behavior, or at least making
egocentric coding riskier. Egoless programming, however, is not the subject of a vast treatise,
which it easily could have been; in different hands, almost every idea in Chapter 4 (The
Programming Group) might have been the subject of a small and good, or large and tedious,
book. But Weinberg says enough to get you thinking, and moves on.

Perhaps you are thinking “I am sure Weinberg meant well, but a book called The Psychology of
Computer Programming written in 1971 is likely to be full of psychological experiments that don’t

replicate, and even worse, mere anecdotes from the early days of the field. I don’t want to
swallow whole a bunch of ill-supported fictions, however charmingly presented.” The modern
replication crisis holds no threats to Weinberg’s book, which is notably clear about being
provisional, exploratory, and thought-provoking, aiming to start a field, not solve it. Yes,
Weinberg is full of opinions, and supports many of them with (semi-)experiments, or with
anecdata. The support is more illustrative than bludgeoning, however; you will not be bullied by
Weinberg, but can disagree while learning. You must think of this as being like reading a
better-organized “Montaigne on code” than reading a hectoring article in Psychology Today
telling you what not to do with your life, and why the p-values for studies on 45 undergrads
prove it beyond a doubt. Weinberg uses psychological notions, like cognitive dissonance, but
does not rely on their exact conformance to reality. There are technical terms here, but much
more “common sense” than dubious science.

I am biased, of course; perhaps no other book so closely follows the concerns of this column.
Weinberg’s first chapter suggests, audaciously, that programs should be read, frequently, by
humans, and even treated as a literature. Weinberg’s bibliographical notes are miniature
Passages columns, e.g.:

“Festinger, L. A., A Theory of Cognitive Dissonance, Evanston, III., Row, Peterson, 1957.
Festinger's work on cognitive dissonance grew out of an earlier study of what happens when a
group which prophesied the end of the world saw the day arrive and the world go on. (When
Prophecy Fails). Obviously, dissonance theory has a lot to say to people who work in an
environment where prophecy fails each and every day—especially the prophecy that the
program is sure to work this time, now that the last bug has been removed.”

In fact, one route to becoming a well, if idiosyncratically (the best kind of syncratic!), educated
thinker about the deep issues of computer programming and software engineering would simply
be to read each chapter of Psychology’s bibliography, and pick and read the three most
interesting sounding books or papers. You might end up reading William James, Frank Lloyd
Wright, R. A. Fisher, Betty Friedan(!), Polya, and a big bunch of PL/1 manuals, and being all the
better for it.

As great as the bibliographies are, the most notable repeated structural element of Psychology
is the set of QUESTIONS at the end of every chapter. These are divided into questions for
managers and questions for programmers. Those who are both (25% of computer science
professors, for example) are free to answer both sets. The questions are always interesting,
and highlight the “let’s think together” exploratory nature of the book. The chapter on reading
programs concludes:

“2. If you are a higher-level manager, are your first-line managers capable of reading programs
written by their programmers? Are you sure? Ask the programmers themselves, then answer
this question again. Then find out if the first-line managers actually do read programs, even if
they are capable. Our surveys indicate that nine-tenths do not, for one reason or another. Do

you think it is possible for a first-line manager to know how good his programmers are or how
well they are doing without occasionally reading their programs? For Programmers 1. When was
the last time you read somebody else's program? Why has it been so long? When was the last
time somebody else read one of your programs and discussed it with you? Was it your
manager?...”

I could simply end this review by noting a few more of Weinberg’s most interesting ideas, most
amusing stories, most insightful questions, or most provocative (even wrong, but exciting)
claims, but perhaps it would be better to say where this book fits in the world of books that
Passages explores. Every book can be described, in part, by explaining which other books it is
most like, and how much it is like them. Some books are described by the greatness of
magnitude of the distance that a good metric would measure: nothing else, that does not imitate
it intentionally, is all that much like Moby Dick, Ulysses, Proust’s Remembrance, There Are
Doors, or The Intrepid Gnomes. Some books are best described in the opposite way: if you
have read one mystery novel about a cat, you have sorta read them all. Where does Weinberg
fit? I would say that, to restrict ourselves to previous Passages selections, Weinberg is
significantly different from, but located “in between” a set of other key books in the field:
Peopleware, The Mythical Man-Month, The Sciences of the Artificial, The Pragmatic
Programmer, and The Elements of Programming Style. In each case, d(book X, Psychology) is
quite large, but these are the nearest neighbors. That is a great place to be, the meeting of
many fresh and life-giving waters.

One final warning is in order. Perhaps you are a manager. This book is certainly for managers,
as the devotion of half of the probing questions that end each chapter to questions exclusively
for managers proves. But Weinberg is hard on managers, e.g.:

“If any one thing proves that psychological research has been ignored by working managers, it's
the continuing use of half-partitions to divide workspaces into cubicles. I might have thought that
DeMarco and Lister's Peopleware would set that issue to rest once and for all. That is, I might
have thought so if I hadn't learned about the managerial psychology that puts social status
above productivity.”

Programmers come in for their share of criticism here (who do you think has the ego to
frustrate?) but most stories with a villain in this book offer up a clueless or malevolent manager
as antagonist. There’s nothing unfair about it, and I think Weinberg admires good managers
deeply; but I’m just not sure he really believes they exist.

