
Alex Groce (agroce@gmail.com), Northern Arizona University

Seymour Papert’s Mindstorms: Children, Computers, and Powerful Ideas is many things, though
most strikingly, seen in the right light, a tragedy: it showed a world on the cusp of a revolution in
how we learn and how we live, brought about by the computer. That world did not, so far as I
can tell, come to be, though the reasons it did not come to be are not entirely clear. Perhaps
the failure was overdetermined; a case where, as Robert Irwin says in The Arabian Nightmare,
the tragedy “was determined and more than determined. There are always more causes than
events.” I prefer not to think about it, really.

However, it is not that aspect of the book that I want to focus on in this Passages review. The
book is widely appreciated for offering a new, Piaget-plus-LOGO-turtles, way of looking at how
children learn and what school (or no school) could be like. However there are two less
widely-appreciated aspects that specifically have much to offer the software engineer. The first
is that Mindstorms is a book about the joy of debugging, and the centrality of debugging. The
second is that Mindstorms offers a view, though the name never comes up, of epistemology in
the mode of Polanyi as much as in the mode of Piaget. For Papert, this mode of knowing,
personal and provisional, is mostly concerned with the world at large and physics or
mathematics. For the software engineer, however, it is also clearly the only way large, complex,
software systems can be known: partially and personally.

First, let’s talk about debugging. I think one of Papert’s most acute criticisms of the educational
system is that it is extremely focused on right/wrong answers, and in most cases any wrong
answer is deemed equivalent to any other. This is not, of course, how anything much in life
works, except maybe being a contestant on a quiz show. It’s a convenient fiction that makes it
easy to assign grades, and indeed some simple questions do have simple and singular
answers. But in life, and especially in programming, it’s much less important to get the answer
right to start with than to be able to move from a somewhat-right answer to a more right answer.
If those answers are to questions about how the world works, or to “what should this novel say”
or to “how to be good”, then the answers will only approach correctness as a limit. And if the
program is much more complex than having a turtle draw a circle, then it too will probably never
be right: it will always be a work in progress.

Seen in this light, debugging, however frustrating and seemingly intractable it can be at times, is
essential to understanding real programs, which are generally too complex to be understood in
a logical, coherent, articulate and complete manner. Papert says: “Errors benefit us because
they lead us to study what happened, to understand what went wrong, and, through
understanding, to fix it. Experience with computer programming leads children more effectively
than any other activity to ‘believe in’ debugging.” The alternative formulation is also true: certain
ways of learning as a child will also lead one to believe in debugging in programming. Papert
notes that one objection to his approach is that the child programmer “hardly understands at all
the complex mechanisms at work behind the scenes whenever a Turtle carries out a LOGO
command.” But of course this is true of any modern programmer using a modern programming

language with myriad layered libraries sitting on top of an operating system of abyssal
complexity. Somewhere down there is the machine, but even godbolt.org can only unpeel one
layer of the onion. For the most part programming is, like a child’s LOGO work, a matter of
operating at a level of abstraction that glosses over many a detail.

The emphasis on debugging, and on active engagement with things to be learned, is related to
Papert’s understanding that “scientific knowledge is more similar to knowing a person than
similar to knowing a fact or having a skill.” Papert connects this view to some degree to the
work of Piaget, but I think for software engineers an equally critical connection, suggested by
Papert’s phrasing, is to the ideas Michael Polanyi put forth most famously in his book Personal
Knowledge. Polanyi defends a notion of scientific knowledge that is not purely formal or
positivist, but is still valid and immune to solipsism. To connect this to the understanding of
computer programs (whether the LOGO workings of a child or the most sophisticated project on
GitHub) a core idea of Papert and Polanyi is that it can be true that one truly “knows a great
deal” about a program and “understands it”, but at the same time be unable to consistently
articulate much of that knowledge, or consistently make completely true statements about it.
The understanding is, as with riding a bicycle or juggling, partly tacit and active, placing oneself
in the “spot” of the balls moving, the bicycle weaving, or the function executing. However, as
Papert shows, this is also not a one-sidedly inarticulate knowledge. Perhaps the most
interesting part of Mindstorms is Papert’s description of how a proper description of one kind of
juggling can aid debugging of the ball-tossing procedure, and reduce the time for a neophyte to
master it from two or three hours to perhaps half an hour.

Reading Mindstorms, then, is not useful only because it presents a glorious vision of the
education of children, or because (at least for me) it evokes deep nostalgia about the “golden
age of programming.” I fondly recall writing many LOGO programs in my youth (though for me it
wasn't so much about the turtle: as Papert notes, recursion is “the one idea that is particularly
able to evoke an excited response”). Rather, it is because Mindstorms is an aid to introspection
into how we actually go about writing and debugging complex programs, in some ways
unmatched in its explication of the deep roots and experiential nature of that art.

Finally, because for both Papert and Polanyi knowledge is personal, knowledge is intimately
linked to passion. In the preface to Mindstorms, Papert describes falling in love with gears as
his entry into the world of mathematics. Polanyi presents an epistemology that cannot be
reduced to a criteria of verification, whether of testability or of pure logic; instead a vision of
reality like a “shirt of flame” and “consumed by devotion” is required For both Papert and
Polanyi, there is no “phoning it in” for first-rate creations, whether in child’s play or in the
construction of scientific theories or great computer programs. As Frost wrote:

Only where love and need are one,

And the work is play for mortal stakes,

Is the deed ever really done

For heaven and the future’s sakes.

