
Alex Groce (agroce@gmail.com), Northern Arizona University

Gerald M. Weinberg’s An Introduction to General Systems Thinking is this month’s Passages
selection. Weinberg’s Psychology of Computer Programming was last month’s Passages
selection. I believe that many more software engineers have read last month’s selection than
this month’s. Some of the virtues of Psychology are shared by this book: Weinberg’s engaging
writing style, cultural and literary fluency, clever questions for further research, intellectually
exciting suggested readings, and overall combination of a big-picture theoretical framework that
is suggestive and powerful with a practical, anecdotal approach that makes it possible to get
down to brass tacks. However, the two books are also very different: unsurprisingly, the
Psychology is clearly a very relevant book for software engineers, about the human dimension
of programming computers. An Introduction to General Systems Thinking uses computer
programming, as an example of a way to go about doing general systems thinking, but it is not
really a “computer” book, specifically, at all. It is what it says it is.

Why, then, is it a book specifically for software engineers? To understand why, you’ll need to let
me (seem to) digress for a bit, by repeating verbatim (a part of) some notes I took while
re-reading Weinberg’s Introduction:

I can, with existing code, grep for a TERM from a real domain, but that term is, usually,
arbitrary language (it could be "foo" and system would still work same) - NOT
programming language constructs, or machine elements, but at best defined by a library
or other system we can't modify. But usually OURS

Our programs usually map from some context to an operative model; makes executions
like science makes predictions

Our effort is much closer to the scientific enterprise, or inventing an engineering
discipline, than to "normal" engineering in a well-defined discourse/domain. We have to
"Kuhn it up" pretty often if doing "real work" vs "just grunt coding". I personally find just
grunt coding useful and somewhat fun at times, but what a way to make a living!

Underlying idea of "passages" is that interesting SE is like doing science. Hence
Weinberg's book is useful.

What? I am claiming that software engineering (as opposed to “mere coding”) often involves, at
heart, constructing a model of some aspect of reality (either real-world or computational) that is
provisional, complex, and yes, a little bit ad hoc. It’s experimental, in the sense that you seldom
fully understand the thing your software talks to, or represents, and must “feel” your way to an
approximation of its behavior.

I hypothesize that if you are good at experimental science, in domains with notable uncertainty
and lack of foundations, but that are not completely “loosey goosey” (e.g., not critical theory or

astrology), then you should, all things being equal, be good at software engineering, too.

Weinberg’s book is about how to go about doing “experimental science” in domains where
getting everything right is too hard, and aggregate methods don’t apply well -- Weinberg
correlates this kind of work to a “law of middle numbers”:

“For medium number systems, we can expect that large fluctuations, irregularities, and
discrepancy with any theory will occur more or less regularly.”

Things in the realm of “middle numbers” lie between the world of “small numbers” where you
can just compute everything because the number of interactions is small, and the world of “large
numbers” where statistical properties dominate, and averages are very useful in prediction. In
between, it gets hard. It gets muddled. It gets, in short, like most serious software work. I feel
comfortable thinking about this world, because software engineering research exists in precisely
such a part of actual science: software systems are generally too complex to understand by
reduction to a small number of parts, but do not behave like ideal gases, undifferentiated
statistically comprehensible substances. Weinberg is addressing a problem that is more
general than that of software, but a problem that definitely includes software, and the software
sciences.

So what does Weinberg tell us about how to operate in this world? He offers the notion of
General Systems Thinking, and associated General Systems Principles, as a tool to help us out.
Note that one such principle is “If you cannot think of three ways of abusing a tool, you do not
understand how to use it,” according to Weinberg, so don’t be surprised if using General
Systems Thinking is not a mere matter of memorizing and applying a few Thought Patterns.

There are only seven chapters in this short book, and the last chapter, rather than concluding
anything, reads like a list of open questions, provoking arguments, and a launching pad for
another book, one that Weinberg (to my knowledge) never really wrote. Before he gets to “THE
END??!!??!”, however, Weinberg offers up some key advice as to how to go about working with
his “general systems.” The basic principles offered up include composition, decomposition,
abstraction, concretization, and black and white box methods: all things the software engineer
should know, does know, but perhaps has not thought about in this context, before, or seen in
this more general light. There is much to be said for standing back from a familiar thing, and
seeing it as new, and unfamiliar, and a bit disconcerting. That principle is longstanding, and
older than software; Chesterton knew it, when he wrote Manalive, and Eliot knew it when he
said that “the end of all our exploring/Will be to arrive where we started/And know the place for
the first time.”

The principles of general systems thinking are, of necessity, contradictory; or, rather, they offer
up, like a type system, principles that introduce and eliminate certain “wrappers” around “the
thing itself” and so let us handle it according to our varying purposes, abilities, and mere
inclinations: compose when needed, then decompose. Though the concept here is deeper than

simply identifying two useful sides of a coin; there really is a contradiction, and even a war (with
no desired winner) between the reductionist and the holist, the materialist and the idealist, the
rationalist and the existentialist. Note that Weinberg actually refers to composition and
decomposition not only as principles or techniques, but as errors, and this is another new way of
seeing, perhaps the most important of all.

An Introduction to General Systems Thinking fits into what I consider a “line of thought” that is
essential to building, understanding, testing, debugging, and maintaining complex software
systems, perhaps best explained in Herb Simon’s The Sciences of the Artificial (it’s no surprise
that Simon’s book appears in the reading list for Weinberg’s penultimate chapter). Namely, we
must understand that we are very limited in our abilities, in some respects, and can easily build
systems far beyond our boundedly rational capacity to plan and understand. Only by
acknowledging that limitation, and working around it, can we get anywhere but into a muddle.
This book offers some deep tools for working in the mud.

