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Abstract

This essay consists of an imaginary discussion among a
group of students after a computer science class, that presents
some problems of (and partial solutions to) fundamental is-
sues of program correctness.
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1 The Dialogue

The dialogue takes place in a classroom. The last class of
the day has finished, and the professor is packing up laptop,
display adapter, and mouse, and even remembering to turn
off the projection screen, as a few students remain sitting
near each other. The lingering students have become inter-
ested in a PROBLEM (or perhaps simply caught up in an
argument).

The students “recorded” below do not, for the most part,
stand in for particular stances on software correctness; in-
deed, many of the students shift their positions around as the
discussion ranges (which, in fact, is possibly a more accurate
encapsulation of the intellectual careers of most thinkers
on these topics, albeit ludicrously compressed in temporal
terms, than a monolithic point of view would be!)
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(let’s listen in)

PUPIL SIGMA: It just seems trivial to me. I think the code
here is simple enough that you can simply inspect it and see
that it does what it should do. The idea of binary search is
slightly tricky to understand the very first time you see it,
but once you understand how it works, writing code to “do
it” does not require a PhD.

PUPIL BETA: I'm not claiming it takes a PhD, or saying a
PhD would help! You saw how Dr. Omega messed it up the
first time on the whiteboard.

PUPIL DELTA: (sotto voce) That’s because Dr. Omega is a
bit of an absent-minded flake.

PUPIL SIGMA: Okay, that’s true. But Alpha noticed it was
wrong and once she explained why, we all understood. But I
want to say something stronger than just that we all know
the code is correct now. Look at the code...

(let’s look at that code ourselves (Figure 1))

PUPIL SIGMA: Now that we fixed that one problem, and
we all understand the basic idea of binary search, there’s
no use for anything more formal or complicated. There’s so
little room for bugs here that any possible problems would
be revealed as soon as we used the code. Think about the
professor’s mistake. As soon as we started using the code,
it’d fail to find something present in the array.

PUPIL DELTA: Are you sure? I wonder how often it fails.
I'll grant that if the code goes wrong often enough, someone
would notice, but you seem to be suggesting that even with-
out tests, we’d notice very quickly. But what if we almost
always search for things not in the array? Or even if we
search for things present most of the time, isn’t it only going
to show up when the item is where low and high meet, and
might that not be really rare? Especially if the array is very
big! I'd want thorough tests, and even for this code I'm not
sure how to make them!

PUPIL GAMMA: If you varied the size of the array, in your
tests, that should help. At size 1, this bug shows up every
time the element is present!

PUPIL ALPHA: Oh that’s nice. I bet that’s a good idea, to
test systems that can vary their size on really small versions.
You can probably test really thoroughly at small sizes, too.
If an array only has one element, I think you’ve fully tested
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int binsearch(int* a, int key, unsigned int size) {
int low = 0;
int high = size - 1;
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while (low <= high) { ON THIS LINE THE “=” HAS CLEARLY BEEN ADDED LATER

int mid = (low + high) / 2;
int midval = a[mid];
if (midval < key)
low = mid + 1;
else if (midval > key)

high = mid - 1;
else {
return mid; // key found
3
3
return -1; // key not found.
3

Figure 1. C Code on the Whiteboard at the End of Class

it if you just check the case where the element is the one
you’re searching for and the element is not the one you’re
searching for!

PUPIL DELTA: Anyway, I think the real problem isn’t how
to test binary search. I mean, that’s fine, and I'm sure there
could even be computer scientists who just think about silly
trivial things like how to write better tests that find more
bugs. But don’t you think there’s something deeper going
on here, something that’s a real problem?

PUPIL GAMMA: You're just jealous I thought of the one-
element array thing.

PUPIL BETA: No, that’s not it. All philosophy-CS double
majors are like this, all the time. It’s annoying. Anyway, let’s
hear about that “real” problem.

PUPIL DELTA: The real problem is, imagine that we have
a set of perfect, absolutely thorough tests for binary search,
or whatever we’re testing, let’s call it program . Or, better
yet, we have a complete proof of correctness of . Now,
those tests or that proof are going to be with respect to a
specification of what P should do. Let’s call that specification
S. Ok, we’ve demonstrated to everyone’s satisfaction that P
satisfies S. I claim we’re not much better off than in the case
where we just trust Sigma’s intuition that # is “obviously
right”

PUPIL BETA: How so?

PUPIL DELTA: Because, we’ve just shoved back the prob-
lem. We were going to trust #, or maybe trust Sigma. Now
we’re just changing that to trusting S! That seems as bad as
trusting Sigma!

PUPIL SIGMA: Hey! What’s so bad about trusting me!
PUPIL DELTA: Sorry. But seriously, we've just changed the
thing we have to place arbitrary trust in. Even if our proofs
or tests are good, how do we know S is good?

PUPIL ALPHA: S might be a lot simpler than #.

PUPIL DELTA: Ok, I can imagine that might probabilisti-
cally give us some more confidence. 1 don’t want to turn this
into the general problem of epistemology, but I think there is
a practical problem here. In the case of binary search, I think
there is a small amount of simplification from # to S. And

a small gain. But both are fairly trivial. It really is probably
almost as good to just trust Sigma as to trust S. Sigma made
a perfect score on the midterm, after all!

(Delta walks to the whiteboard and points to the code.)

PUPIL DELTA: And maybe trusting Sigma or S is fine
in this case. But if P is something complicated, just the
specification S is going to be extraordinarily complex, much
more complex than the ¥ for something like binary search.
If we don’t trust P for binary search, why on earth would we
ever trust something as complicated as S for a real problem?
What’s an operating system’s S?

PUPIL GAMMA: In the real world, I think this ends up be-
ing a social process, really. I mean, you’re right that it’s about
trust, but not trusting just Sigma. How do people come up
with the specification for an operating system, and decide if
it’s any good? A group of experts, I'd guess, work on it. They
toss ideas back and forth, they look for counterexamples to
proposals about how the system should work. They talk to
test engineers, developers, users.

PUPIL DELTA: You know, that sounds like what really hap-
pens. Trusting Sigma alone is no good, but a bunch of Sig-
mas... I don’t know if that’s ideal, but it’s not nearly as bad.
And in practice, it’s what we have to rely on. Even mathemat-
ical “proofs” are just things enough mathematicians agree
to call proofs. It happens that in math, unlike in philosophy,
there’s pretty frequent agreement on whether a proof is a
proof, but I've read enough history of the field to know there
are also cases where it took a lot of argument and discussion
to settle on the definitions and right form of proof. I think
Euler’s simple theorem about regular polyhedra was one,
even.

PUPIL EPSILON: I'm not sure I like this being a matter
of trusting a social process at all! In mathematics, there is
some way for experts to check each other, and to be hon-
est, the stakes aren’t as high as with a self-driving car or a
mission to Mars. Groups of experts make mistakes all the
time, especially if they are on the same “team” and subject
to groupthink. One person’s dominant personality should
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not drive a discussion of how to make a safe and reliable
computer system!

PUPIL DELTA: Of course. But what else is there? After all,
deliberation by the body of people who are in a position to
make a decision, by a social process, is how we determine
who runs the country, a jury of peers is how we decide if a
person should go to jail or not, and so forth. In these cases,
the people are far less expert. And more is usually at stake!
Science and math also, basically operate that way. That’s
peer review.

COMMENTARY: This dialogue is a tribute to, and
reflection on, Imre Lakatos’ classic book-length di-
alogue Proofs and Refutation [17]. It also owes a
debt to MacKenzie’s more recent sociological ex-
ploration of the same issues, Mechanizing Proof:
Computing, Risk, and Trust [18]. To some extent
the approach to thinking about proofs, tests, and
their meaning that (some of) the students arrive
at is based on a Popperian [24, 25] falsification
methodology proposed in work by my colleagues
and myself [12, 13]. All of these works concern ef-
forts to refute the completeness or correctness of an
intellectual object, be it a mathematical definition,
a mathematical proof, a computer program, or a
specification of a computer program. The sugges-
tive near-equivalences between the first two classes
and the second two classes are instructive, as is the
similarity of both to the process of scientific hy-
pothesis and potentially falsifying experiment so
central to Popper’s work. Finally, the initial discus-
sion owes a substantial debt to De Millo, Lipton,
and Perlis’ (in)famous “Social processes and proofs
of theorems and programs” [7].

PUPIL EPSILON: Sure, but I think the issue is “what else
is there?” It seems to me that computers offer us a chance to
finally do better, in certain limited parts of life. Take proofs.
Before computers, proofs were inevitably checked by other
mathematicians. The idea of reducing the steps in proofs to
such simple ones that other people could check the proofs
exactly was, I think, tossed around, by Leibniz and company.
But it couldn’t work, because nobody has the patience or
attention to detail. But before computers, nobody also had the
patience or attention to detail to produce perfect logarithm
tables. Babbage’s dream in part was to replace legions of
inattentive country clergy computing logarithms poorly with
a machine pumping them out perfectly. To an extent he
wouldn’t have thought possible, we have that now, and not
just for arithmetic problems, but with symbolic math tools.
There are people who work on automated theorem provers,
and while those aren’t replacing mathematicians or checking
proofs like Fermat’s last theorem yet, I think there are people
who have the basics of automatic proof checking.
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PUPIL DELTA: Fine, but that’s not relevant to my problem.
That’s not checking S. It’s checking the proof £. Hmm, we
called the program . The proof Q for “QED”.

PUPIL EPSILON: Yes, there’s nothing for your problem
right now. That’s why we have so many buggy specifications,
not just buggy programs. But I think we should dream big,
like Leibniz. Sure, his methods were fantastical at the time,
so were Babbage’s. We can dream about how to address the
S problem, too!

PUPIL BETA: Frankly, I don’t think this problem of know-
ing if you’ve proved or tested the right specification is quite
as hard as you all seem to think. I grant that sometimes it
is, but I think often we have a program like this one, where
it’s easy. Not because, as Sigma originally suggested, binary
search is so trivial, but because binary search is equivalent
to something that really is trivial.

PUPIL GAMMA: What do you mean?

PUPIL BETA: I mean that the right specification for binary
search is very simple: binary search works just like linear
search, only faster. Ok, maybe the “faster” part is not so easy,
but in either a proof or a test, we just need to compare the
“tricky” binary search results to the result for linear search.
Linear search is so simple I defy anyone, even the worst
student in this class, to get it seriously wrong!

PUPIL EPSILON: That’s a really good idea!

PUPIL GAMMA: Except it doesn’t work. What if you are
using binary search on an array with duplicates? The result
won’t always be the same as for linear search then.

PUPIL BETA: Oh, fine, we can just say that if both return
that the value is found, but they report different positions,
we’ll check if the right value is present in both positions.
PUPIL GAMMA: But then you are only using the linear
search to check “not found” results, and I imagine you could
just set up tests to know whether they are using a value in
the array or not. And for proofs, I think proving equivalence
to linear search for “not found” might be harder than just
proving the right answer is provided, since it’s not actually
equivalent to linear search!

PUPIL EPSILON: Ok, maybe Beta hasn’t saved us much
work here, where it’s not quite equivalent and “fixing” the
mismatch doesn’t seem much easier than just figuring out
exactly what binary search should do. But I bet this is a
good idea for the kinds of programs we were mentioning
above, where a person understanding fully what a program
ought to do seems so hard it’s almost impossible. Think
about either a really abstract file system that doesn’t have
hardware problems or efficiency issues, or a compiler that
doesn’t do any optimizations, and maybe produces very slow,
but simple, binary code. I don’t know about proofs, but for
testing at least, comparing complex versions that have to
be fast and practical for real-world use to much simpler
implementations that you couldn’t use in real life... That
seems like a very nice way to test some things.
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COMMENTARY: While linear search is a poor
specification for binary search, differential testing
is indeed, as the students speculate, a powerful
tool, widely used in compiler, file system [14], and
container library testing, among other places. In-
troduced into the literature by McKeeman’s classic
paper focused on compilers [21], it has likely been
independently discovered many times in the his-
tory of testing. Differential testing is one of the
most useful “tricks” for working around the oracle
problem [2, 27]. The oracle problem, though the
students do not mention it by name, is a funda-
mental aspect of their concerns: how can a specifi-
cation be “embodied” as checks that will fail dur-
ing a test. Translating a mental model of what a
program should do into computable conditions on
executions is a key part of the work of refuting
programs.

Similarly, the “just check 1” approach discussed
briefly relates to ideas of using informal “small
model properties” and, more generally, bounded
exhaustive testing [28], as well as other heuristics
for effective bug-finding.

The idea of having a computer check proofs dates,
in a certain sense, to Leibniz (again), but at least
to the frequently reprinted 1962 proposal of Mc-
Carthy [19, 20].

PUPIL DELTA: Yes, yes, that sounds practical. But it doesn’t
really address the underlying problem at all. It’s a cheap hack
that’s sometimes available. How do we know the “simple”
file system or compiler’s “idea of what it should do” is right?
How do we trust any specification that’s too complicated to
fit inside a person’s head. Or, really, like we said, to fit inside
multiple heads at once so a group of reliable people can all
agree that they are all thinking of the same thing, and that
thing is the right thing. You’re just pushing the problem back
one step, in a small set of cases, and the same issue really
comes up for the simple version, if the problem at hand is at
all complicated, like your examples.

PUPIL EPSILON: It’s still a partial solution, like I suggested.
Sometimes this will make the S-problem easier. That’s a step
in the right direction, and I’d rather trust that a simple non-
optimizing C compiler is right than trust that gcc -03 does
the right thing!

PUPIL BETA: Alpha, you've been awful quiet, that’s not
like you. Is something wrong?

PUPIL ALPHA: No, ’'m just thinking about the code. Which
the rest of you seem to have abandoned. For instance, shouldn’t
that unsigned int size really be a size_t?

PUPIL GAMMA: One thing that worries me is that we’re
talking as if the program P is just finished, once and for all,
and then we test it or prove it and when we’re satisfied we
call it a day. Maybe that’s true for a very small program like
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binary search in a library, or as a homework assignment (if
you are crazy and prove your homework assignments, or
even bother testing them). But in the real world, isn’t code
modified and changed all the time? I feel like a program in
reality is either thrown away quickly (in which case who
cares if it’s right?) or lives to be changed, maybe even even-
tually having no lines of code in common with the original
program.

PUPIL DELTA: Like the ship of Theseus!

PUPIL BETA: Show-off...

PUPIL DELTA: Seriously, it seems to me this is a possible
reason tests are even better than proofs! Or at least useful
even when we have a proof. Imagine we change the code for
some reason. If we have really good tests, it’s easy to see if
we made a mistake: we just run those tests! But your proof
isn’t something you can run. You have to look at the proof
and the changed code, and think about whether the change
breaks the proof. Another chance for human mistakes!
PUPIL EPSILON: There are automated proofs, like I said,
where a computer produces the proof, or at least checks that
it’s correct.

PUPIL DELTA: Sure, but I think the tools for generating
proofs without human assistance are not that great right now.
That might change, but right now it’s true. And the checkers
don’t seem that helpful here: I bet when you change your
program, the proof-checker just always says “your proof no
longer works.”

COMMENTARY: A somewhat different (but still
related) approach, less explicitly seen in the dia-
logue, is that presented in, e.g., Turner’s Computa-
tional Artifacts [30], where programs are seen as
machines with a human-intended purpose. It is in-
teresting to consider that while metaphors from this
viewpoint are common (e.g., “factory methods”) in
the field, the literature of program correctness is
much more attuned to programs as mathematical
than as industrial artifacts (or, more generally, as
teleological artifacts, like the wheel or the axe, of
homo faber). This may be due to the Leibnizian
dream of proofs and proof-checking; while engi-
neers use scientific principles in design, no one
really thinks that the model is the thing, or that
a bridge can be “proven” rather than tested. We
wish it to be otherwise, with computer programs,
so prefer not to think of them in this context as
unfortunately over-complex, but strangely easy to
copy, “machines.”

PUPIL EPSILON: In general, I think you’re right. But there
are some limited tools that are almost fully automatic I think.
The Turing Award in 2007 was given' for a technique called
model checking, that is fairly limited in application, but really

to Clarke, Emerson, and Sifakis
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does, sort of, compute the proof automatically. We talked
about it in automata theory class.

PUPIL DELTA: This does suggest a way to think abstractly,
though not practically, about how good a test, or proof... or
maybe even an S is? We want to know how many bugs does
it catch? Of course, that’s sort of useless. We don’t know all
the bugs there might be, or I guess we’d just go down that
list and check for each of them. The list of all bugs is just a
kind of “super-S”. But it can get us a little beyond just S, in
that if we have a program, and we release it to users, and
they complain about some awful behavior, even if we failed
to put “no doing that!” in S, we can easily agree it’s bad, and
revise S. That bad behavior is in the “set of all bugs” at least
in theory.

PUPIL EPSILON: Yes, but I'm looking for practical solu-
tions, ways computers could help us out.

PUPIL DELTA: Sometimes thinking about the problem def-
inition in the most abstract terms can be practical, you know.
That’s part of the lesson of philosophy.

PUPIL BETA: Oh brother.

PUPIL EPSILON: No, wait. I think you have something
there. Imagine a “bugginator” — a computer program that
takes another computer program, and changes it to all possi-
ble buggy versions. Now, if we have a bugginator, the oppo-
site of a “debugger” if a debugger did what it says on the tin,
I guess, then we could get somewhere. We could just run the
bugginator, and run all our tests and check all our proofs.
Every bug that isn’t detected either shows a problem with
our tests, or with our proofs, OR with S. There would be
some work in figuring out which one, of course, maybe hard
work. But it’d be concrete and practical. I mean, this is basi-
cally what we do in Delta’s scenario of customers reporting
problems or a Mars probe mysteriously crashing. We do a
post-mortem and if the problem really is a software problem,
we end up changing the program, but if we’re diligent engi-
neers we obviously fix up our tests, that’s what regression
testing is, and nobody can argue that’s some impractical
thing that nobody in industry can use.

PUPIL GAMMA: One little problem, again. We don’t have
a bugginator. How can you make a bugginator?

PUPIL EPSILON: Ok, you can’t. But perhaps you could
make a partial bugginator. Inject some bugs automatically.
I guess the lousy version would be to hire people to inject
bugs. Or maybe an LLM can come up with good bugs?
PUPIL DELTA: I don’t know how you’d get a good sam-
ple, and I don’t trust LLMs not to just make up the kinds of
bugs engineers already think about. You'd want something
principled, that comes up with bug scenarios nobody normal
will ever think of, the way the fuzzers we saw in the soft-
ware security class come up with program inputs nobody
considers.
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COMMENTARY: The general issue of trust focus-
ing on specifications, rather than programs, may
well loom larger in the future, if LLM or other Al-
based methods bring “program synthesis” (and, es-
pecially, potentially hallucinatory, and certainly
stochastic, program synthesis) broadly conceived,
into wider usage. One promising point is that while
LLMs can produce programs, which are inherently
hard to check, they can also produce tests [26, 31],
which as the dialogue suggests, may simplify the
problem of trust. Or, as Delta has implied, it may
not...

PUPIL EPSILON: That’s it! Those fuzzers like AFL are
called mutation-based fuzzers because their basic loop is
taking some input, and changing it a little bit to see what the
program does with the mutated input. So we get bugs for
the bugginator by making small random changes to #. You
could call them “mutants” to distinguish them from the set
of all bugs, these are a sample that’s biased to things that are
“very close” to the program we’re interested in, but it seems
reasonable that most programs are fairly close to correct, so
the making small changes should make the program “almost”
correct but not quite.

PUPIL GAMMA: Not bad, not bad. The bug that Dr. Omega
made is very close to the correct version of binary search. So
you’d surely include that kind of thing among your “mutants.”
You don’t even need anything smart here, you could just
write some dumb thing with regular expressions to change
arithmetic operators, or comparisons, or invert if condi-
tions.

PUPIL EPSILON: I bet just commenting out random lines
of code could get you somewhere.

PUPIL GAMMA: Let’s go over to my dorm room and write
one of these. I'd like to see how good my tests and my S are
for the operating systems project.

(All but one of the students walk out of the classroom, Beta
and Delta holding hands (they are dating), Epsilon and Gamma
discussing whether to write their bugginator in Python or Rust,
Sigma talking on the phone, asking another student about
hitting the gym. All is quiet for five minutes. Then...)

PUPIL ALPHA: Hey! Where'd you all go??? I think the
code is still wrong. What happens if the size of a is so big
that high plus low overflows? I don’t think your bugginator
would catch that problem with the proof or the tests or
the specification. The real problem is the specification and
proof and tests all assume something about how big an array
we want, and I think a proof might assume an int is an
actual integer, not a computer int. This is a problem of the
imagination. How do we get an imaginator?
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2 Postscript

The author was surprised to learn that Petricek, in 2017,
produced a very interesting dialogue, also featuring pupils
Beta, Alpha, and so forth, in similar homage to Lakatos, and
covering some of the same topics as this essay [23]! Reading
both essays shows how much divergence is possible even
given what amounts to the same starting point, and the same
unusual approach to similar topics, and, for that matter, a
probably substantial agreement by the authors on certain
core issues.

3 Dijkstra’s Objection

To speak of these topics, in this way is, possibly, to infuriate
the ghost of Edsger Dijkstra. In a 1977 position paper [9],
Dijkstra argued that discussing (other than, I assume, in for-
mal terms of vacuity and contradiction) S was, essentially,
beyond the scope of the scientific enterprise: best left to the
general public, the user (who may be sometimes “written
down as a fool”), or other unspecified decisionmakers. Di-
jkstra’s concluding words are a forthright challenge to this
essay:

As furthermore no scientific fruits are to be ex-
pected from dealing with fundamentally non-
scientific issues, the scientist is justified in ex-
periencing dealing with the non-scientific issue
not only as a neglect of duty, but even as a waste
of time.

P.S. The reader is mistaken if he thinks that he
can send me a copy of Imre Lakatos’s Proofs and
Refutations for my education.

Two responses are possible. First, there is what I consider
the “coward’s response:” this is an essay, not a research paper,
and the discussion, as with the students, is not meant to
contribute to science; the author is acting as a member of the
general public, or perhaps a fool; certainly as an individual
(like the students, as early in their careers as it may be for
them to have accomplished much along those lines) who
has sometimes been reasonably written down for a fool for
conceiving a poor specification. I think this is a reasonable
argument, but it argues too little.

That’s because Dijkstra was simply wrong, I think, that
there is no scientific or mathematical way to approach the
problem of the general suitability of S. it is certainly a hard
problem, and one where purely mathematical techniques
are very likely limited in effectiveness, but it is not outside
the scope of (computer) science, because it is possible to
automate some of the process of refutation and produce
meaningful quantitative measures of how much S “leaves
out” in terms of behaviors not prohibited. The bugginator is
realizable.

I add that in a sense my personal sympathies do lie with
Dijkstra. My own research interests have focused on non-
social methods for finding faults in software systems, those
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involving the execution of complex computer programs, not
the modification of development processes, other than in the
sense of incorporating the use of such tools. The simple fact
is, however, that such tools can help identify cases where the
specification itself should be questioned, and offer opportu-
nities to refine and revise S that do not arise from a social
process, but from an interpretation of a computation. And
surely Dijkstra cannot object to some limited amount of in-
terpretation of computations, without which no specification
can be seen as meaningful or checkable.

Furthermore, while Dijkstra might object to “bugginator”
uses that rely on testing, of which Dijkstra was notoriously
skeptical, it is possible to make use of mutants in fully formal
proof-based settings. This would normally only be done in
the context of automated proofs, for practical reasons, but
clarifies where I think Dijkstra would object most strongly
to the approach this essay endorses. Of testing, he said that
it can only show the presence of bugs, not their absence; of
mutation he would, I suspect, say that it can only show the
presence of (potential) bugs not captured by a specification,
not their absence. In that, he is correct.

4 Further Notes on Code and Tools / Code
to Accompany the Dialogue

The specific version of binary search that starts things rolling
comes from Joshua Bloch’s blog post [5] reporting the bug
the Alpha brilliantly detects. It thus comes, fundamentally,
from Jon Bentley’s original version “proven correct” in Pro-
gramming Pearls [3]. Proving binary search correct, of course,
has a long pedigree in the literature, e.g., back to Hoare [15].
Bloch’s version has been changed from Java to C code. The
programs in question, and instructions for proving and test-
ing (and mutating [22]) them using CBMC [16] and Deep-
State [11] (and UniversalMutator [8]), respectively, can be
found at https://github.com/agroce/onward24code. Some
brief notes on the connections between this code and the
imaginary classroom discussion follow.

4.1 CBMC

CBMC serves as an exemplar for proof. CBMC translates C
programs into goto-programs, and, eventually, into SAT or
SMT constraints, such that a satisfying assignment repre-
sents a counterexample to the properties to be checked. A
proof of unsatisfiability then is a proof of correctness for the
program.

Strictly speaking, the proof can be partial: CBMC is a
bounded model checker [4], and so requires the use of a
bound on loop unrollings. However, in the case of binary
search, a limit on unrollings of the search loop is part of
the full specification of correctness, so the proof is complete
(since CBMC can check that an execution exceeding provided
loop bounds does not exist). The “harness” for CBMC is


https://github.com/agroce/onward24code

(Programs), Proofs and Refutations (and Tests and Mutants)

#define MAX_SIZE 10
int main () {
int a[MAX_SIZE];
unsigned int SIZE = nondet_uint();
__CPROVER_assume(SIZE > 0);
__CPROVER_assume (SIZE <= MAX_SIZE);
int k = nondet_int();
int present = 0;
for (int i = @; i < SIZE; i++) {
alil = nondet_int();
if (i >0){
__CPROVER_assume(ali] >= al[i-1]);

3
if (alil == k) {
present = 1;

3
3
int r = binsearch(a, k, SIZE);
if (r!1=-1) {

assert(alr] == k);
} else {

assert(!present);

)
3
Figure 2. CBMC Proof Harness for Binary Search

#include <algorithm>
#include <deepstate/DeepState.hpp>
using namespace deepstate;
#define MAX_SIZE 32
TEST(Run, Bentley) {
int a[MAX_SIZE];
unsigned int SIZE = DeepState_UIntInRange(1, MAX_SIZE);
int k = DeepState_Int();
int present = 0;
for (int i = @; i < SIZE; i++) {
al[i] = DeepState_Int();
if (alil == k) {
present = 1;
3
3
std::sort(std: :begin(a), &a[SIZE]);
if (!present && DeepState_Bool()) {
k = a[DeepState_UIntInRange(@, SIZE-1)1;
present = 1;
3
int r = binsearch(a, k, SIZE);
if (r!1=-1) {
assert(alr] == k);
} else {
assert(!present);
3
3

Figure 3. DeepState Test Harness for Binary Search

shown in Figure 2. The code for binary search is omitted (see
Figure 1).

4.2 DeepState

DeepState exemplifies tests. While DeepState can make use
of symbolic execution, which can more resemble proof, if
is primarily used in conjunction with the more scalable ap-
proaches of random testing and coverage-guided mutation-
based fuzzing (e.g., with AFL [32]). The key idea is that while
a CBMC output of “correct” indicates that the program input
satisfies its specification (though not, as our students discuss,
that the specification itself is correct), DeepState may run
for days without finding a bug in an incorrect program. On
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the other hand, for some programs, DeepState will quickly
find a bug, and CBMC will simply exhaust the memory of
the computer it is running on, and the patience of the user,
without accomplishing much of anything. How often this
happens, vs. CBMC producing the bug quickly, if one exists,
is hard to know.

The “harness” for DeepState is shown in Figure 3. Again,
the binary search code is omitted. Note the larger size, due to
the fact we have to “help out” the testing rather than simply
using ASSUME statements to force sorting and relying on
exhaustiveness to check cases where the item to be searched
for is, in fact, present.

DeepState is one of many property-based testing [6, 10]
tools, unusual in that it allows the use of state-of-the-art
fuzzers for testing the properties, and defines tests as param-
eterized/generalized unit tests [29], with a syntax similar to
that of Google’s GoogleTest framework [1]. Property-based
testing is likely to become far more popular in the future,
and could be tightly integrated with mutation testing, to
make it easier to invent and improve properties.

4.3 UniversalMutator

Finally, the idea of mutation testing is represented by Uni-
versalMutator, which mutates code in C and a number of
other languages, using a more sophisticated version of the
approach proposed by Gamma [8]. UniversalMutator, like
other mutation tools, acts as a very limited version of Ep-
silon’s hypothetical “bugginator”

The imaginator remains up to us.
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