Let a Thousand Flowers Bloom: On the Uses of
Diversity in Software Testing

Alex Groce
Northern Arizona University
United States

Abstract

Software testing is hard, and a testing problem is composed
of many sub-problems with different, often conflicting, so-
lutions. Like many real-world problems, it admits no single
optimal solution, but requires dexterity, and the opportunis-
tic combination of many partial solutions. Exploration and
experiment, even by practitioners, are important in real-
world critical testing efforts. An important set of research
results in the field endorse and codify the value of diversity
in test generation. However, our current approaches to evalu-
ating research results arguably cut against this fundamental
reality: while effective testing may need true diversity, com-
bining many partial answers, the iron logic of the research
results section often imposes a totalizing vision where au-
thors must at least pretend to present a monolithic, unitary
solution, a new “king of the hill”

CCS Concepts: « Software and its engineering — Dy-
namic analysis; Software testing and debugging.

Keywords: software testing, test diversity, swarm testing,
ensemble methods, test length, research evaluation methods

ACM Reference Format:

Alex Groce. 2021. Let a Thousand Flowers Bloom: On the Uses
of Diversity in Software Testing. In Proceedings of the 2021 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! ’21), October
20-22, 2021, Chicago, IL, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3486607.3486772

1 Introduction

“Variety’s the very spice of life,
That gives it all its flavour”
- William Cowper, “The Task”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Onward! °21, October 20-22, 2021, Chicago, IL, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9110-8/21/10...$15.00
https://doi.org/10.1145/3486607.3486772

Discovering all the bugs in a software system is an ex-
tremely difficult task. It is so difficult, in fact, that in the
real world it is seldom really attempted, for most kinds of
software. However, when software bugs can produce cata-
strophic consequences, as in the case of safety-critical soft-
ware, or produce catastrophic monetary or institutional cred-
ibility loss (e.g., a billion dollar Mars rover mission fails be-
cause of a bug [29]), it is worth at least trying to find all the
bugs, given our difficulty in estimating the probability that
an undiscovered bug will trigger in practice.

The difficulty in discovering bugs in software is not, alas,
even of a simple kind. It is conceivable that, while “truly thor-
ough testing” or “complete verification” would be costly and
require extensive human resources, the methods for achiev-
ing these goals would be widely known, and omitted out of
simple cost-benefit calculations. Unfortunately, even given
will-power and budget, we generally don’t know the best way
to go about trying to find all the bugs in a system. Complete
verification, for many real-world systems, is often essentially
impossible, and even if possible would rely on a formal spec-
ification that might not represent important requirements.
And, in testing, we seldom know which approach to testing
will work best. Even given a particular “method,” such as
fuzzing, it turns out that the ability of experts to predict
which approach(es) will be most effective is limited. Ask
ten fuzzing researchers or practitioners what the best fuzzer
is, and you won’t get ten answers; but you certainly won’t
get just one answer, and you may well get more than three
different answers!

Moreover, even if everyone agreed on the best fuzzer, run-
ning just that fuzzer would likely be a bad decision! Different
fuzzers are best at discovering different bugs, for almost all
software programs. Any competitive fuzzer that is not strictly
worse than another (e.g., the exact same fuzzer, but slower)
is likely to have some bug(s) for which it is better than the
“best” fuzzer.

The need for multiple approaches is even more complex
when we consider that some bugs may be best detected by
code review, some bugs may be best detected by manually
written unit or integration tests, some bugs may be best
detected by turning up the toleration for false positives in
static analysis, and being willing to wade through all the
resulting complaints, and so forth. However, even if we limit
the topic to automated test generation methods, the fact re-
mains. There are a very large number of possible approaches,

https://doi.org/10.1145/3486607.3486772
https://doi.org/10.1145/3486607.3486772

Onward! 21, October 20-22, 2021, Chicago, IL, USA

and users serious about finding bugs may easily miss impor-
tant bugs if they only use one of these methods, or even if
they use a few of the best methods. In other words, this is
a situation where the utility of diversity is extremely high.
Diversity, here, means employing a variety of different meth-
ods, where in some sense many of these methods may be
worse (on average!) than others.

One way to understand the fundamental need for diversity
in software test generation is to think about the testing prob-
lem as an instance of the coupon collector’s problem [4]. The
generalized coupon collector’s problem [5] is a probability
problem in which colored balls are drawn from an urn, with
replacement. In testing, typically, there are many more balls
than colors (distinct faults, including the non-fault of a test
that exposes no bugs); in fact, under a particular test genera-
tion strategy, the distribution of bugs often follows a severe
power law, with some bugs extremely rare and others very
frequent [9]'. Collecting all the “coupons” in such a setting is
difficult, even if you can bias the selection of balls, since many
methods of bias will only work for the balls whose chromatic
properties you have already observed, which might make it
harder to find novel colors.

Testing is, therefore, fundamentally, not best seen as an
optimization problem, at least not a simple optimization prob-
lem, since there is no single solution?. We want to hit all the
bugs; moreover, since we have no idea where the bugs are,
we probably want to hit all of some set of coverage targets,
or synthetic bugs (as in mutation testing) [16]. Perhaps, in
fact, coupon collection, while useful as a tool for mathemat-
ical analysis, is the wrong analogy. A better way to think
of software testing is as a scavenger hunt, where it might
be a good idea to split up the team, since finding a teacup
with blue flowers and finding a Bunsen burner will probably
involve trips to very different locations. Some trips may be
fruitless (perhaps the local tea-room has only green flowers,
or even plain white teacups), but cannot be omitted, without
increasing the chance of missing some items on the list. Of
course, in the case of bugs, the matter is complicated by the
fact that the list of items to be found is not given to the team.

This essay could, at this point, turn to marshaling evidence
that a variety of approaches, even if some are “inferior” to
others, is needed for finding most bugs. The research litera-
ture and practical commentary includes substantial evidence
for this fact. Some of it will be cited below; however, I think
this isn’t really very useful. Few software testing researchers
probably don’t know that there is, to particularize Brooks’
general principle [7], “no silver bullet” in test generation.
Even fewer serious practitioners of software testing who

!In fact, getting out of a bad distribution where the undetected bugs are
very rare is one rationale for diversity in test generation; even a distribution
where failing tests are very rare can be very useful if some previously rare
bug is now made less impossible to find.

2Obviously, minimally, there is no single “best test” and potentially there is
no truly optimal strategy, when strategies do not include mixed approaches.

Alex Groce

are any good at it will think there is such a thing. However,
many seasoned testers may use only one method, or a hand-
ful of methods, because of the problem of diversity. If you
are using one, known pretty-good, method for automatically
generating tests, the best practice is likely pretty clear: throw
as many computing resources into running this method as
you can, and try to solve the hard problem of triaging the
resulting bugs and false positives you run into. But what
if you want to use a diverse set of methods? Learning to
use one method or tool is often time-consuming; learning
to use every method and tool sounds like a nightmare. Two
solutions offer themselves: first, there are some ways to in-
troduce diversity into testing even with a single approach,
that apply to many tools. Second, there are solutions that
act as front-ends to diverse arrays of methods, saving the
bug-finder the effort of learning to “talk” to each approach
in its own unique language [17].

This essay will consider two aspects of this state of af-
fairs. First, there is advice for the working bug-finder (devel-
oper, test engineer, systems engineer, security auditor); what
diversity-aware approaches are available, to minimize the
burden on the humble bug-finder, and make it possible to act
as if you are using one, best, method? Second, and perhaps
in the long run more importantly, there is the problem that
there is a serious divergence between software testing research
expectations and publication barriers and the actual problems
and solutions of software testing in a diversity-critical world.

2 Digression: Diversity in General

The idea that diversity is good is not novel, or specific to
software testing, of course. The title of this essay is cobbled
together from famous phrases relating to the virtues of di-
versity [11, 24]. Since, at least, Montaigne [27], Cervantes’
[8] admonition to not “put all your eggs in one basket”, or
perhaps the unknown Scotsman who said that it is good we
all don’t like the same things, or there would be a powerful
shortage of oatmeal, diversity has been lauded, on occasion,
in literature and philosophy. The idea of the American polit-
ical system as using states as the “laboratory of democracy”
is essentially diversity-based, as are arguments against too
much central regulation by the European Union. Arguably,
the same could be said for the city-states of the ancient world
(perhaps there is something to be said for both Athens and
Sparta, someone must have pointed out). And, of course,
diversity is a widely embraced principle today: ACM has a
council on Diversity and Inclusion.

There are moral, ethical, political, philosophical, utilitar-
ian, and, especially, aesthetic, arguments for preferring a
multifarious, rather than monolithic, world. This essay is
only concerned with the utilitarian approach to diversity ex-
emplified by the folk saying about not putting all your eggs
in one basket. If you only run one (very good!) fuzzer and
it happens to be bad at finding the most dangerous security

Let a Thousand Flowers Bloom: On the Uses of Diversity in Software Testing

vulnerability in your code, you will be at least as unhappy
as the young maid who trips and pitches her one big basket
of eggs on the ground in 17th century Spain. We don’t care
(inside this essay) if diversity is right, or diversity is pretty,
we just care that it is useful.

3 Diversity in Practice

In case anyone who actually goes about finding bugs in soft-
ware is reading this essay, let’s start by looking at some exist-
ing ways of making use of diversity. The first two approaches
described will introduce “meta-diversity” — diversity within
a single tool or method. These approaches describe ways
to make the behavior of a single automated test generation
method more diverse, with relatively little effort. They do
not always apply to all methods, and, of course, as the nature
of the problem this essay faces suggests, sometimes they
don’t work very well! But they are worth trying, as low-cost
ways to add diversity when you can’t, or don’t want to, learn
a new method or tool.

The third approach described is fundamentally based on
the uses of diversity: using ensemble methods to allow a
“single” tool to (behind the scenes) apply many methods,
with the explicit rationale that diversity is useful in test
generation.

3.1 Test Length

Most automated test generation tools have a notion of max-
imum length of the tests generated. For fuzzers, this will
often be a number of bytes; for API-call sequence generation,
it will be the number of calls in each test. Most tools have
default values for this parameter, and few users probably
change those values. However, the value length can have a
huge impact on the testing, and the impact is not as simple
as there being an optimal value for the length [1]; different
bugs may “want” different lengths!

Figure 1 shows the range of branch coverage achieved in
two minute runs of the Python property-based API-sequence
testing tool TSTL [21], for eight real-world libraries. The
x-axis shows test sequence lengths, and the y-axis branch
coverage achieved over 100 repeated runs. For each method,
the “optimal” test length is noted; this length ranges from 10
to 1000 (the maximum length I used in experiments). How-
ever, just because the optimal length for a library is high or
low does not mean that some branches and bugs for that li-
brary don’t need a very different test length. For every single
target, at least two branches were found where the optimal
length for detecting that branch was not within 100 of the op-
timal value. For pyfakefs, sympy, and sortedcontainers,
I know for a fact that real bugs, which I reported, are most
easily found using different test length choices than the opti-
mal value, and moreover, from each other. In fact, for every
program for which I have reported bugs, the bugs “live” at
different test lengths.

Onward! 21, October 20-22, 2021, Chicago, IL, USA

It’s not hard to understand why: consider a bug that is
caused by an uninitialized value. Imagine there are two func-
tion calls, foo and bar. If you call foo, it will, as a side effect
of some other activity, initialize the uninitialized value. In
any given test sequence, after there is a call to foo, the bug
will no longer be detectable. If you call bar, but haven’t first
called foo, on the other hand, the bug will immediately be
detected, given certain choices for parameters to bar. In this
case, rather than running a smaller number of long tests,
where any testing after foo is called cannot find the bug, it is
best to run a great number of fast, short, tests, in the hopes
of hitting the right bar call before foo shows up.

On the other hand, consider the classic overflow bug,
where calling baz 64 times in a row causes no problems,
but calling baz the 65th time overflows a fixed-size buffer
and causes a crash. If there are 20 different calls that can be
made, and the length of a test is fixed at 100 calls, it’s pretty
hard to call baz enough times to trigger the bug before the
“deadline”

As these examples show, the “kinds of things” that gener-
ated tests do really vary depending on the length of tests. In
general, perhaps, “longer is better” [2] but for any particular
target (bug or branch) you may be better off using diversity
than optimality.

Thus, if you are using a test generation tool that lets you
control the length of inputs, and especially of call sequences,
it is a very good idea to vary the length parameter; it’s a
cheap way to get significant diversity in your testing, almost
like running different tools without all the hassle!

3.2 Swarm Techniques

Figure 2 shows the basic logic of swarm testing [19]. The
figure shows a 1,000x1,000 array of pixels, where each 10x10
block represents a sequence of 100 function calls in an API
sequence test. Each pixel is a call to a function, and the
calls to five different functions are coded by color (black,
white, red, green, and blue). The top half of the figure is
what traditional sequence generation will tend to do in such
a setting, assuming each call is given equal probability: every
test will look like every other test. The details will vary, but
at a certain level the arrangement will be very homogeneous;
in fact, the eye can’t tell where one test ends and another
begins! Let’s call this the kitchen-sink approach to testing:
every test generated throws in everything it can, at least
potentially.

The bottom half of the figure represents swarm testing. In
swarm testing, before each test is generated, a coin is flipped
for each of the five calls. If the coin turns up “heads”, then
that call is potentially included in the test; if the coin turns
up “tails” the call is not made at all in this test. On average,
the diversity between calls within each test is much worse
for the swarm portion of the testing. However, it is easy
to tell tests apart, with practical consequences. Beyond the
visually obvious impact of swarm testing, there is simple

Onward! 21, October 20-22, 2021, Chicago, IL, USA

AVL 120s best: 220.0 @ 230

.
220 5 I %
IRRARELALEREELE
-
200 L4 **ff%itt +§f$1
I + +
v !
g Tl +
g 180f |
Y |
=
i
& 160
!
'
10 .
120
S wowoOWwmowownwnowowonon o
FArNM@IToNoOBorRNBMO T O
FAARRARSYAREERREB S S
pyfakefs 120s best: 789.0 @ 505
800 T . n I T I I
+
$¢$é$%é$@%éaéﬁééé$
I-- - - - - T -
700 ¥
T
) 1
gson'
]
=
£ 500
o 1
1
'
a00f L
300
© n o WO NS no!nonomnmoS o n o
S8l M@TaonodanNameasxo
FEARARYRRBBERRIBSS
rsa 120s best: 367.0 @ 1000
o+ + +
é'f*"' ——————— - —_———_————
350 ¥
T
1
) !
g
$ 300
S
=
2
e
@
250
+
200t 1
© nowmwononononomnonon o
S8R RB8TansodmnoNdmae=w o
AN AMATAADORRB® ST
sortedcontainers 120s best: 717.5 @ 670
T 7
800 T T -
_ TI_TI};I:TT
s 7T ' i
700 __Eaag Eaﬁ |
IH L LT
600 Tg 1L - [
' -
Y e FTa !
= | o + '
£ s00 - . .- + | HE—
g . N + 0 '
o ! 1
£ 400 * P
g " N [T I
8 [T B R
= 300 ! + T T
L LooL - H
'
200f * . ! i
7 ! :
100 | 4
+ L
ncmcn:momanamoncncmo
AN M@TaaAoOB R NEMAa T O
FRANAANMYAARbBOERRNEE S

Branch coverage

350

Branch coverage
w
=]
8

~
i
S

700

600

500

Branch coverage
w 5
=] S
3 3

200

100

350

w
=
S

Branch coverage
~
&
S

200

12000

10000

8000

6000

4000

bidict 120s best: 373.0 @ 1000

c e

S ;W ownNowmownonowom o N n o
AU R ~NM@DY OB OB RN @ Mmoo Y o
SSANAMATRAADBERNRR DS S
redis 120s best: 668.0 @ 780
-

HTF

R

[R5 MY

T 1T

-1
+
-4

of

r-
+ 1 - w
OF-
LI~
L T
[N
L B
F-dTF -+
1o
-
I
P
-

e {TF -1

10
65
120

175
230
285
340
395
450
505
560
615
670
725
780
835
890
945
1000

simplejson 120s best: 350.5 @ 890

[mi]
o

D S s o

[
[Rp——
+t

R S W ST
-+
+---LTF--4

e

+

65
120

175
230
285
340
395
450
505
560
615
670
725
780
835
890
945
1000

sympy 120s best: 11222.5 @ 10

[

+
+

R
R s

[i S
.
[S

'
'
'

1

[~
————
[RP——
1= ==

10
65
120

175
230
285
340
395
450
505
560
615
670
725
780
835
890
945
1000

Figure 1. Best Test Lengths for Branch Coverage of Various Python Libraries

Alex Groce

Let a Thousand Flowers Bloom: On the Uses of Diversity in Software Testing

Figure 2. Kitchen-sink (top) vs. Swarm (bottom)

statistical reality. While it is possible for a single method
to be called 100 times using the kitchen-sink approach, the
most instances of any single call we observed was 37. For
the swarm tests, of course, each method was called more
than 50 times (and in fact 100 times) in multiple tests. The
set of behaviors is simply larger, and more diverse. You’ll
never see a pure-red, or red-green, kitchen-sink test, even if
it’s technically possible. Probability is more important than
possibility. A million monkeys might write Shakespeare, but
perhaps it’s best not to throw away your Riverside edition,
just yet.

More concretely, consider the problem of testing a stack
implementation that has incorrect overflow prevention code.
Imagine the stack max size is 64 elements, and that the over-
flow allows writing to the 65th element (stack[64]), which
will be detected by some form of memory safety analysis. If
the stack has five methods we are testing, push, pop, clear,
top, and size, and we assign equal probability to calling
each of these methods, then random testing will tend to
never generate a stack with 64 elements, that could expose
the bug on a push. Rather, the mean stack size will be quite
close to zero, and the maximum size reached in a test of
length 100 will also be quite small. In swarm testing, on the
other hand, one in eight generated tests will omit pop and
clear and include push and so tend towards a quite large
stack size. One in 32 tests will omit all calls except push, guar-
anteeing detection of the bug. The case is exactly analogous
to the figure: if push is represented by red pixels, then the
red “dots” in the bottom part of the figure represent tests
guaranteed to detect the bug. In the top half of the figure,
note that no square has a dominant red shade, so no tests
would expose the bug.

Onward! 21, October 20-22, 2021, Chicago, IL, USA

The statistical impact of swarm testing is relatively easy to
measure in a simple setting like this: the standard deviation
of pixel counts for each color in the swarm image is more
than five times higher than for the “kitchen sink” method.
Diversity here is easily measured as increase in variance.

Swarm testing probably works because most coverage
targets, and most bugs, likely rely on including some test fea-
tures (e.g., function calls), which can be designated triggers,
but also are prevented by other function calls (designated
suppressors). In experiments, most targets and bugs in C
compilers and file systems, at least, had a small number of
triggers and a small number of suppressors, and were “in-
different” to other test features [18]. This makes sense; it
is hard to design software humans can understand and use
(much less implement successfully) where every functional-
ity is intimately related to every other functionality®. Given
this fact about the organization of software interfaces, it is
clear that diversity of “kinds” of tests, in terms of features
(elements of the interfaces) included is likely to be useful.

Swarm testing is fairly widely adopted in automated
test generation. It is frequently applied to compiler testing
[13, 23] and is a core element of the testing approach used
for FoundationDB, the back-end database for Apple and
Snowflake cloud services [30]. Tools implementing some
form of swarm testing include TSTL [21], DeepState [15],
and the very widely used Hypothesis framework [25]*. Via
DeepState, swarm testing can be used in function call or
string generation in fuzzers such as afl and libFuzzer that do
not natively implement a notion of swarm testing.

Swarm testing was inspired by swarm verification [22],
which makes explicit-state model checking more effective by
applying a variety of (often bad, but sometimes very good)
tweaks to search parameters, effectively using a variety of
model checking algorithms. Swarm verification is, arguably,
essentially an ensemble method.

3.3 Ensemble Methods

Finally, ensemble fuzzing [10] is an approach that recognizes
the need for diverse methods for test generation, at least
in the context of fuzzing. Inspired by ensemble methods
in machine learning [14], ensemble fuzzing runs multiple
fuzzers, and uses inputs generated by each fuzzer to seed the
other fuzzers. Ensemble fuzzing is currently supported by
the Enfuzz website (http://wingtecher.com/Enfuzz) and by
the DeepState front-end’.

Less needs to be said about ensemble approaches than the
other examples of how to add diversity. The whole point of

3Dijkstra famously [12] notes that the text of a program should correspond
to its execution structure if we are to have any hope of working with it; the
same factor limits most interfaces (and perhaps can help focus testing)
4See https://github.com/HypothesisWorks/hypothesis/issues/2643.

5See https://blog.trailofbits.com/2019/09/03/deepstate-now-supports-
ensemble-fuzzing/.

http://wingtecher.com/Enfuzz
https://github.com/HypothesisWorks/hypothesis/issues/2643
https://blog.trailofbits.com/2019/09/03/deepstate-now-supports-ensemble-fuzzing/
https://blog.trailofbits.com/2019/09/03/deepstate-now-supports-ensemble-fuzzing/

Onward! 21, October 20-22, 2021, Chicago, IL, USA

ensemble methods is that a tool takes care of the diversity
for you.

4 The Totalizing Nature of the
Experimental Results Section
4.1 HowlItlIs

In software testing conference papers, whether on fuzzing
or on other test generation approaches (e.g., search-based
testing [26]), the basic expectation is that there will be a
research question like this:

RQ-N:Does our method work better than com-
peting methods for testing basically all pro-
grams we tried?

and an answer like

Our method found a mean of 5.6% more faults
than all other methods, including N previously
undiscovered faults. Our method also improved
code coverage, covering 3.4% more branches
per run on average. Both results are statistically
significant by Mann-Whitney U test [3], with
p < 0.001.

If the answer to RQ-N is more nuanced than this, it is
likely to result in at least one reviewer (which may be fatal
at better conferences) or all reviewers questioning if the ap-
proach is really very useful, and if it is worth spending the
precious time and space of the conference on such inconclu-
sive results.

There are ways around this; one way is to hide the com-
plexity of the results via various subterfuges, or to restrict
the set of of subject programs to those whether the method
worked, or just to lie; but we will restrict our attention to
honest researchers.

It is permissible to write a paper with a subtler answer if
you can clearly define the nature of the subtlety. For example,
if your method is good for a particular kind of bug, then you
can write a paper with a title like “A Method for Generating
Tests to Detect CATEGORY Bugs” and then RQ-N can be
answered thus:

Our method found a mean of 5.6% more CAT-
EGORY faults than all other methods, includ-
ing N previously undiscovered faults. For non-
CATEGORY faults, we found a mean of 8.1%
fewer faults than other methods. Our method
decreased code coverage, covering 3.4% fewer
branches per run on average. However, when
we identified branches associated with CATE-
GORY behavior, we improved code coverage
by a mean of 1.4%. All results are statistically
significant by Mann-Whitney U test [3], with
p < 0.001. We conclude that our approach is
successful at finding CATEGORY bugs.

Alex Groce

However, either CATEGORY must be a known, accepted,
and well-defined type of bug of general interest, or the bulk
of the paper must be spent explaining and defending the
introduction of CATEGORY. The success of the paper in
being published will depend on whether reviewers decide
that CATEGORY cleaves nature at the joints, or at minimum
that CATEGORY relates to some hot topic of the day.

The basic expectation is totalizing. A good research paper
in software testing will define a problem (perhaps a special-
ized, CATEGORY-defined problem), and then present a new,
best way to solve that problem.

4.2 How It Should Be: Taking Diversity Seriously

Accepting any test generation paper where a method found
at least one new bug would flood the research literature
with uninteresting results. The situation described above
did not arise through malice or ignorance, but through the
desire of program committee members to weed out bad work.
Nobody wants to fill ICSE or ISSTA with papers that end
with a whimper, not a bang, e.g.:

Our method found a mean of 2.6% fewer faults
than all other methods. Our method also de-
creased code coverage, covering 1.4% fewer branches
per run on average. Both results are statistically
significant by Mann-Whitney U test [3], with

p < 0.001.

Cowper, introducing his notion that variety is the spice
of life, concluded that variety isn’t all it is cracked up to be,
and often leads simply to “monstrous novelty and strange
disguise” In practice, however, this is not a realistic danger.
Program committees will not accept many papers that end
in a simple “our method did not work.” However, it is also
true that program committees, in a not-so-distant past, did
probably accept too many interesting ideas evaluated poorly
on toy problems®.

There is a place for negative results, but most papers pub-
lished should probably introduce useful methods. However,
what if the answer was something like this?

Our method found a mean of 2.6% fewer faults
than all other methods. Our method also de-
creased code coverage, covering 1.4% fewer branches
per run on average. Both results are statistically
significant by Mann-Whitney U test [3], with
p < 0.001. However, for 75% of subject programs,
for at least k faults and b branch coverage tar-
gets, our approach improved the probability of
detection per test by a factor of 10 or more, com-
pared to all other methods. There was no way
to predict which faults or branches would be
thus affected. We speculate that the underlying

®In part, the current problem is a result of the increasing maturity of the
field; learning how to evaluate research is often a challenge for emerging
fields [28].

Let a Thousand Flowers Bloom: On the Uses of Diversity in Software Testing

combinatorics of inputs relate to our use of new
technique.

Assuming that standards are set high enough for k and b,
and perhaps with some expectation that published methods
at top conferences will show discovery of at least one novel
fault, this seems like a potentially very useful result. In partic-
ular, the baseline comparison in a well-written paper is likely
to be the set of widely-used methods at present. A problem
facing most serious testing (especially fuzzing) efforts is that
of saturation: you keep fuzzing with good tools, and you
don’t find any new bugs, or even add any new interesting in-
puts to your corpus, except when major changes are made to
the code under test. Are you done? Is the fuzzing “finished”?
Probably not, unless the program under test is fairly trivial.
The problem is serious, and common. I myself was contacted
by the team testing the bitcoin core implementation, after
publishing (with John Regehr) a blog post on saturation’.

One way to get out of saturation is to apply “worse” but
useful methods. You used the best fuzzer, and the second-
best fuzzer. Now try the fourth best fuzzer, and a brute-force
really dumb but fast fuzzer, and this “one weird trick” that
sometimes works, the literature shows. In the absence of a
more diversity-aware literature, this kind of thing has to be
done, but there’s not a good, principled, peer-reviewed set
of guidelines on how it should be done. For bitcoin core, the
work is in progress, but simply running more fuzzers than
the best-performing one (libFuzzer, in this case), for longer
periods proved helpful.

Our research field is, to a large extent, failing to curate
the literature on specialized, but ill-defined, test generation
methods. The criticality of diversity, and in particular the
problem of saturation, however, means that such specialized
methods are likely needed in any truly high-stakes testing
effort.

There is no denying that this places more burden on
the program committee. The standards for what is a good-
enough paper are already hard to realize; accepting the best
partial methods means that in addition to scrutinizing ex-
periments, reviewers have to give a lot more thought to
the question of whether the underlying approach described
makes sense, is unusual and not just an incremental im-
provement to a known method, whether it is well-enough
described to make it plausible the partial results aren’t just
luck, and so forth. However, as it is, the approach tends to
make it hard or impossible to publish many useful methods
in many software engineering and testing conferences. It is
likely that junior researchers, under the pressure to publish
or perish, may abandon research on methods that are fruitful,
but clearly specialized and unable to honestly climb over the
hurdle of the expected RQ-N answer.

Software testing is hard. We need every genuinely useful,
even specialized, tool we can discover, in order to find bugs.

7See https://blog.regehr.org/archives/1796.

Onward! 21, October 20-22, 2021, Chicago, IL, USA

Right now, we’re forcing test generation methods, in order
to obtain publicity, to satisfy unrealistic constraints, and
thereby rejecting many tools that probably should be in our
belts.

4.3 How to Get Around It

In the absence of more diversity-friendly reviewers, there
are ways to publish work on promising partial testing ap-
proaches. Each of these approaches has at least one major
problem, however, in practice.

4.3.1 Journal Papers. Conference program committees
basically only have the option to reject a paper with a weak
answer to RQ-N or an unconvincing CATEGORY concept.
In fact, the original swarm testing paper was rejected once,
due to a single annoyed reviewer who said “this only seems
useful for testing systems software” (with the implication,
presumably, being that nobody would want to do that). Jour-
nal papers are a more collaborative kind of publication; un-
less the idea is just uninteresting or the results are terrible,
it’s possible to go back and forth and present a nuanced set
of results. For one thing, there’s space to elaborate on how
often a method works, and explain that it is sometimes useful
and sometimes not useful. A recent paper in TOSEM, where
I had the honor of working the idea of a brilliant student
through the process, after the student left the field, exem-
plifies the result [20]. The paper had trouble at conferences
because the results showed that sometimes the proposed test
generation heuristic was harmful, and for some programs
resulted in much worse results. At conferences, even with
a modest overall improvement (a middling-good RQ-N an-
swer), that was fatal. In the expansive world of a journal
paper, even at a top journal, it was acceptable to describe
the highly varying results (sometimes the method was very
powerful, and sometimes seriously detrimental), and even
spend some time extolling diversity of methods. The journal
setting gave us room to even spend some time expanding on
the virtues of competing approaches. This is probably, right
now, the best way to publish the best partial methods.

The problem is that people don’t seem to read journal
papers as much as they read conference papers. In practice,
unless you have a wide following that reads all of your pa-
pers, even a TSE or TOSEM paper isn’t going to obtain the
audience that an ICSE or even ISSTA paper will. I tend to
go look at the titles of the accepted papers lists for the top
conferences in the field, to see if anything sounds exciting,
but I only see a good TSE or TOSEM paper when Google
Scholar decides to send me an alert.

Also, the turnaround for journal papers remains slow, so
this may or may not be a useful avenue for junior researchers,
depending on how they are evaluated. Finally, journal papers
in good journals generally expect a very high standard of
evaluation, much more than a conference paper will typically
require for a promising and interesting-sounding method.

https://blog.regehr.org/archives/1796

Onward! 21, October 20-22, 2021, Chicago, IL, USA

The iterative process where reviewers collaborate with au-
thors, that makes it possible to publish partial results, also
means that a published paper will likely incorporate various
new experiments or evaluation measures demanded by re-
viewers as the price for admission. This is sometimes good,
for readers of the paper, but can make the required effort, for
junior faculty, or graduate students wanting to finish their
PhD, look bad in a cost-benefit analysis. More importantly,
it can delay the publication of important new methods that
might be extremely useful in escaping saturation or as an
addition to ensemble methods.

4.3.2 Ensemble Evaluation. Speaking of ensemble meth-
ods, one interesting way to get around the totalitarian results
section expectation is to “cheat” by adding your method to an
ensemble approach. If you can show that, e.g., Enfuzz + New
Method does much better by the traditional RQ-N stan-
dards, that may be enough to satisfy non-diversity-tolerant
reviewers.

The problem is that ensemble frameworks are either fairly
new and unstable (in fuzzing) or, to our knowledge, non-
existent in many other automated test generation settings.
This route may require substantial engineering effort, and
some part of the paper will have to be devoted to justifying
the use of an ensemble evaluation.

4.3.3 Preregistration. One interesting way around the
RQ-N wall is the use of preregistration. In preregistration,
authors propose a method, and a paper is accepted or rejected
based on how interesting and likely to be useful the method
sounds. Only after in-principle acceptance or rejection is
an evaluation conducted. Thus, if the method sounds good,
and the RQ-N result is nuanced, the paper is still accepted.
Proponents of preregistration argue that the approach avoid
duplicated efforts, by allowing for the publication of negative
results, and reduces the temptation for authors to over-claim
in results sections. A group of top testing researchers has
proposed to use preregistration to address problems in “the
incentive structure for fuzzing research” and is planning
to organize a journal issue to address the problem [6]. In
practice, preregistration as a solution to publishing partial
solutions is a subset of the journal solution, because by and
large, well-known conferences in the field do not currently
allow for preregistration.

4.3.4 Build a Tool. Finally, if your testing work is not
driven by the academic (or industrial lab) publish-or-perish
imperative, you can find an interesting method and either
build a tool that implements it, or add it to an existing tool.
Testing tools and fuzzers are now widely used enough that if
your approach is useful enough, even if only for some bugs,
it may find an audience.

Alex Groce

The problem is that this doesn’t work for everyone, due
to career needs 8. Also, in practice, unless you have a base
in a famous company or university, there are a lot of tools
out there and nobody is going to hear about your tool. There
are exceptions, such as David R. Maclver’s Hypothesis, but
by and large it is at least as hard to get attention for even a
very useful new tool, unless you have an existing audience
for your work, as it is to get attention for a new research
paper or result. It is possible that using a tool to find bugs in
important software is a way around this, but this requires a
lot of work for uncertain payoff.

5 Conclusions

Software testing is a kind of scavenger hunt for the set of all
bugs, where the consequence of not finding even one item
on the (invisible) list may be a major security breach, the loss
of a Mars mission, or the loss of human life. In practice, there
are no silver bullets, no testing methods that are best for all
bugs, and so the use of a variety of approaches is essential in
serious testing efforts. There are existing practical ways for
those who really want to find all the bugs to take advantage
of diversity. However, it is likely that the available tools and
methods are less diverse than they could be and should be,
because of certain expectations of the research community.
While these expectations are based on a desire to ensure the
quality of testing research, they exclude important results.
This essay offers no simple solution to this problem, but pro-
poses that the software testing research community should
begin to explore how to accept the reality that even some
“poorly performing” testing methods may be essential foot
soldiers in our war on error.

Acknowledgments: The author would like to thank the
reviewers, and would particularly like to thank Tomas Pet-
ricek for a very interesting, signed review; the limits of time
and my own understanding prevented me from making use
of all his suggestions, but I now have Image and Logic on
my reading queue, among other things. I would also like
to thank numerous colleagues and collaborators for their
discussion of these topics over many years; in particular
John Regehr, Josie Holmes, Gerard Holzmann, Peter Good-
man, Willem Visser, Mike Ernst, Andreas Zeller, and Gustavo
Grieco, as well as my graduate students and many students in
my software testing classes, have helped shape my thinking
on these matters.

References

[1] James H. Andrews, Alex Groce, Melissa Weston, and Ru-Gang Xu. 2008.
Random Test Run Length and Effectiveness. In Automated Software
Engineering. 19-28.

8This essay may convince PCs that diversity is good, but it will never
convince most promotion and tenure committees at universities that a tool
that doesn’t make the front page of the New York Times is worth even one
minor journal publication.

Let a Thousand Flowers Bloom: On the Uses of Diversity in Software Testing

(2]

(14]
(15]

(16]

Andrea Arcuri. 2012. A Theoretical and Empirical Analysis of the Role
of Test Sequence Length in Software Testing for Structural Coverage.
IEEE Trans. Software Eng. 38, 3 (2012), 497-519. https://doi.org/10.
1109/TSE.2011.44

Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statisti-
cal tests for assessing randomized algorithms in software engineering.
Software Testing, Verification and Reliability 24, 3 (2014), 219-250.
Andrea Arcuri, Muhammad Zohaib Igbal, and Lionel Briand. 2010.
Formal Analysis of the Effectiveness and Predictability of Random
Testing. In Proceedings of the 19th International Symposium on Soft-
ware Testing and Analysis (Trento, Italy) (ISSTA ’10). Association
for Computing Machinery, New York, NY, USA, 219-230. https:
//doi.org/10.1145/1831708.1831736

Leonard E Baum and Patrick Billingsley. 1965. Asymptotic distribu-
tions for the coupon collector’s problem. The Annals of Mathematical
Statistics 36, 6 (1965), 1835-1839.

Marcel Bohme, Laszl6 Szekeres, Baishakhi Ray, and Cristian Cadar.
2021. Journal Special Issue on Fuzzing: What about Preregistration?
http://fuzzbench.com/blog/2021/04/22/special-issue/.

Frederic P. Brooks. 1987. No Silver Bullet Essence and Accidents of
Software Engineering. Computer 20 (1987), 10-19.

Miguel de Cervantes. 1605. Don Quixote.

Yang Chen, Alex Groce, Chaogiang Zhang, Weng-Keen Wong, Xiaoli
Fern, Eric Eide, and John Regehr. 2013. Taming Compiler Fuzzers.
In ACM SIGPLAN Symposium on Programming Language Design and
Implementation. 197-208. https://doi.org/10.1145/2499370.2462173
Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chi-
jin Zhou, Xun Jiao, and Zhuo Su. 2019. Enfuzz: Ensemble fuzzing
with seed synchronization among diverse fuzzers. In USENIX Security
Symposium. 1967-1983.

G. K. Chesterton. 1920. The Uses of Diversity: A Book of Essays.

0.]J. Dahl, E. W. Dijkstra, and C. A. R. Hoare (Eds.). 1972. Structured
Programming. Academic Press Ltd., GBR.

Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the
Rust typechecker using CLP (T). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 482-493.
Thomas G Dietterich et al. 2002. Ensemble learning. The handbook of
brain theory and neural networks 2 (2002), 110-125.

Peter Goodman and Alex Groce. 2018. DeepState: Symbolic unit testing
for C and C++. In NDSS Workshop on Binary Analysis Research.

Alex Groce, Mohammad Amin Alipour, and Rahul Gopinath. 2014.
Coverage and Its Discontents. In Proceedings of the 2014 ACM Inter-
national Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software (Portland, Oregon, USA) (Onward2014).

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]
[28]

[29]

[30]

Onward! 21, October 20-22, 2021, Chicago, IL, USA

Association for Computing Machinery, New York, NY, USA, 255-268.
https://doi.org/10.1145/2661136.2661157

Alex Groce and Martin Erwig. 2012. Finding Common Ground: Choose,
Assert, and Assume. In International Workshop on Dynamic Analysis.
12-17.

Alex Groce, Chaoqiang Zhang, Mohammad Amin Alipour, Eric Eide,
Yang Chen, and John Regehr. 2013. Help, help, I'm being suppressed!
The significance of suppressors in software testing. In 2013 IEEE 24th
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 390-399.

Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr.
2012. Swarm Testing. In International Symposium on Software Testing
and Analysis. 78-88.

Josie Holmes, Iftekhar Ahmed, Caius Brindescu, Rahul Gopinath, He
Zhang, and Alex Groce. 2020. Using Relative Lines of Code to Guide Au-
tomated Test Generation for Python. ACM Trans. Softw. Eng. Methodol.
29, 4, Article 28 (Sept. 2020), 38 pages. https://doi.org/10.1145/3408896
Josie Holmes, Alex Groce, Jervis Pinto, Pranjal Mittal, Pooria Azimi,

Kevi n Kellar, and James O’Brien. 2018. TSTL: the Template Scripting
Testing Language. International Journal on Software Tools for Technol-

ogy Transfer 20, 1 (2018), 57-78.

Gerard Holzmann, Rajeev Joshi, and Alex Groce. 2011. Swarm Veri-
fication Techniques. IEEE Transactions on Software Engineering 37, 6
(2011), 845-857.

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation
via equivalence modulo inputs. ACM SIGPLAN Notices 49, 6 (2014),
216-226.

Roderick MacFarquhar. 1966. The Hundred Flowers Campaign and the
Chinese Intellectuals. Praeger.

David R. Maclver. 2013. Hypothesis: Test faster, fix more. http://
hypothesis.works/.

Phil McMinn. 2004. Search-based Software Test Data Generation: A
Survey. Software Testing, Verification and Reliability 14 (2004), 105-156.

Michel de Montaigne. 1595. Essays.

Dan R. Olsen. 2007. Evaluating User Interface Systems Research.
In Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology (Newport, Rhode Island, USA) (UIST ’07).
Association for Computing Machinery, New York, NY, USA, 251-258.
https://doi.org/10.1145/1294211.1294256

Glenn Reeves and Tracy Neilson. 2005. The Mars Rover Spirit Flash
Anomaly. In IEEE Aerospace Conference.

Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex
Miller, Evan Tschannen, Steve Atherton, Andrew] Beamon, Rusty
Sears, John Leach, et al. 2021. FoundationDB: A Distributed Unbundled
Transactional Key Value Store. In ACM SIGMOD.

https://doi.org/10.1109/TSE.2011.44
https://doi.org/10.1109/TSE.2011.44
https://doi.org/10.1145/1831708.1831736
https://doi.org/10.1145/1831708.1831736
http://fuzzbench.com/blog/2021/04/22/special-issue/
https://doi.org/10.1145/2499370.2462173
https://doi.org/10.1145/2661136.2661157
https://doi.org/10.1145/3408896
http://hypothesis.works/
http://hypothesis.works/
https://doi.org/10.1145/1294211.1294256

	Abstract
	1 Introduction
	2 Digression: Diversity in General
	3 Diversity in Practice
	3.1 Test Length
	3.2 Swarm Techniques
	3.3 Ensemble Methods

	4 The Totalizing Nature of the Experimental Results Section
	4.1 How It Is
	4.2 How It Should Be: Taking Diversity Seriously
	4.3 How to Get Around It

	5 Conclusions
	References

