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Abstract— Mutation analysis is an established technique for 
measuring the completeness and quality of a test suite. Despite 
four decades of research on this technique, its use in large systems 
is still rare, in part due to computational requirements and high 
numbers of false positives. We present our experiences using 
mutation analysis on the Linux kernel’s RCU (Read Copy Update) 
module, where we adapt existing techniques to constrain the 
complexity and computation requirements. We show that 
mutation analysis can be a useful tool, uncovering gaps in even 
well-tested modules like RCU. This experiment has so far led to 
the identification of 3 gaps in the RCU test harness, and 2 bugs in 
the RCU module masked by those gaps. We argue that mutation 
testing can and should be more extensively used in practice. 
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I.  INTRODUCTION 

Quality is important for software systems. Unfortunately 
evaluating quality, especially the presence of bugs, becomes 
more difficult as the complexity of that software increases. The 
best way to ensure software meets quality requirements is to 
engage in extensive and thorough testing. The goal of testing is 
to discover faults in the System Under Test (SUT) by executing 
tests that create conditions that lead to failure, and detect these.  

Two important “problems” with testing are knowing when 
you have performed sufficient testing and determining whether 
your testing is biased. A well-respected technique for evaluating 
test suites and test coverage is mutation analysis. Unlike code 
coverage and other benchmarking techniques, mutation analysis 
addresses the oracle problem as well as determining the degree 
to which SUT behaviors are explored. By inserting random but 
realistic bugs [6, 10, 22] in the SUT, known as mutants, we can 
determine a tests ability to uncover faults, not just its ability to 
explore behavior. The ratio of mutants found over all mutants, is 
used as the test suite’s effectiveness (mutation score). Mutation 
analysis thus identifies gaps in the test suites and subsumes 
almost every other test adequacy criteria [7, 13, 38, 45]. 

One of the primary reasons mutation analysis is rarely used 
on large and complex programs is that mutation analysis 
generates large numbers of mutants, which must be analyzed, 
though mutant sampling [41, 46, 48] and mutant execution 
optimizations [21, 42, 49] can help to mitigate the problem. 
Another reason is the lack of proof of mutation analysis’ 
applicability to complex real world projects. Thus, mutation 
analysis has been more widely adopted by academia than 
industry, and the technique mostly evaluated using relatively 
simple programs and test suites.  

The Linux kernel is one of today’s more complex software 
systems, evolving so rapidly that maintaining quality assurance 
is hard [12, 40]. Applying techniques such as code analysis and 
model checking on the kernel and its modules is difficult 
because of their size and the complexity of the code. Source code 
analysis generates a large number of false positives and 
warnings [20] which need to be screened by domain experts, 
which is expensive in terms of both time and resources. 

Although mutation analysis can be applied to the kernel, it is 
not trivial to do so. First, one has to generate an enormous set of 
mutants. Second, one needs to compile and run each mutated 
version of the code and put it through the test harness. As with 
many complex systems, execution is probabilistic, meaning that 
the amount of time needed to “kill” a mutant (detecting it with 
the test suite) cannot be determined a priori. Not finding a fault 
at time j could be due to inefficient tests, or insufficient run time. 
Therefore, to avoid false positives, a test suite would need 
infinite run-time on each mutant. This is clearly not feasible, and 
a probabilistic approach must be adopted. 

This paper describes our experience using mutation testing 
on the Linux-kernel’s RCU [44]. Our goal was to determine 
whether: (1) mutation testing RCU is feasible, and (2) whether 
it can uncover bugs in RCU. Locating bugs in RCU is hard 
because RCU is well tested and heavily used: About one in 2,000 
lines of kernel code uses RCU [33], and it has been a favorite 
target for model checkers [2, 15, 29, 30]. If mutation testing can 
locate new bugs, these are likely deep, and the technique can be 
useful for locating bugs in other complex software. 

II. BACKGROUND 

A. Limitations of Mutation Analysis 

It is infeasible to exhaustively test a test suite, as this would 
mean running it on all possible programs. Even running it on all 
mutation operators applied to all statements of a program is non-
trivial. This only gets worse as the size and complexity of a code-
base grows, leading to a combinatorial explosion [19]. Mutation 
testing is even costlier for concurrent code because it must be 
tested against thread schedules and memory reordering.  

One way to tackle complexity is reducing the mutants used. 
Kintis et al. [26] defined the notion of disjoint mutants, i.e., a set 
of mutants that subsumes all the others. Ammann et al. showed 
that minimal mutants [4] reduce the count. Kaminski et al. [24, 
25] and Just et al. [23] used fault-based predicate testing to 
reduce redundancy of relational and logical operators. Sampling 
[41] and searching higher order mutants [17, 18, 28] also helps.  



Mutation can leave semantics unchanged. These “equivalent 
mutants” skew results, and full detection is undecidable [9]. 
Manual equivalence inspection [47] requires significant effort 
and provides an identification rate of only 8% [1]. Automated 
equivalence heuristics are thus attractive, and useful solutions 
have been proposed [36]. One approach is to use the compiler to 
detect equivalent mutants [8]. If the original program and a 
mutant compile to the same object code, no test could reveal a 
difference. Mothra et al. [36] showed that this identifies about 
45% of equivalent mutants. Recently Papadakis et al. proposed 
Trivial Compiler Equivalence (TCE) which groups mutants with 
identical object code into equivalence classes [43], addressing 
the “duplicate mutant” problem. We used TCE to identify both 
equivalent and duplicate mutants.  

B. Read Copy Update (RCU) 

The RCU module of the Linux kernel is a synchronization 
mechanism that allows lightweight readers [31]. RCU read-side 
critical section entry/exit overhead can be exactly zero [31], 
excellent for read-mostly workloads [16, 31, 34]. However, 
RCU updaters cannot exclude readers, and must take care to 
avoid disrupting readers. Updaters typically maintain versions 
of the part of the structure being updated, reclaiming old 
versions only when safe.  

RCU use in the Linux kernel has gone from 0 in 2002 to over 
6,500 calls in 2013 [33]. RCU pervades the kernel, with one in 
every 2,000 lines using an RCU primitive [33]. Given the 
complexity of the code, and its importance, researchers have 
applied model checking techniques to RCU [2, 15, 27, 30], and 
the RCU test harness (rcutorture) is very well developed.  

The bulk of RCU is in 4 files (srcu.c, tiny.c, update.c and 
tree.c). Together, these only total to 5,542 lines of code (LOC), 
with the largest being 3,771 LOC. The RCU is therefore not the 
largest program examined using mutation analysis (Apache 
Commons Math, with 202,000 lines of code, was analyzed by 
Gopinath et al. [14]), but it has the highest complexity, as 
Apache commons is a large but shallow set of library calls. 

RCU’s primary test system, rcutorture, is an automated 
stress-testing mechanism composed of 1,800 lines of code. 
rcutorture can simulate 12 different RCU scheduling variations 
and test on 16 hardware configurations. These configurations are 
specified using parameters such as CONFIG_NR_CPUS, 
CONFIG_HOTPLUG_CPU, CONFIG_SMP, etc. rcutorture 
uses Qemu to load kernels built using these parameters and 
monitors their performance for a user specified period. The test 
periodically outputs status messages via printk(), which can be 
examined via the dmesg command.  Qemu uses KVM, 
essentially running a virtualizer (Qemu) on top of another virtual 
machine, a practice referred to as nested virtualization [35]. 
Interest in rcutorture has grown, with the number of contributors 
growing from 5 to 9 between 2006 and 2014. 

Time dependent and stochastic testing systems such as 
rcutorture are common for critical systems code [39]. The longer 
you run rcutorture, the higher the chances of finding a bug, if 
present. This means that non-trivial mutants need to be run for 
very long periods of time. Because RCU is used on large clusters 
and has been extensively tested, most remaining bugs are likely 
to be in difficult-to-reach parts of the code. 

III. METHODOLOGY 

A. Mutation Generation 

We used the tool developed by Andrews et al. [6] to generate 
mutants. We decided to use this tool as it was evaluated on a set 
of eight well-known subject programs, part of a Siemens suite 
[6].  The tool is also simple in design and implementation; a 350 
LOC Prolog program and a shell script. This tool generates 
mutants from a source file, treating each line of code in sequence 
and applying four classes of “mutation operators”. Every valid 
application of a mutation operator to a line of code results in a 
mutant being generated in a separate file. The four classes of 
mutation operators are given in table I. 

TABLE I.  MUTATION OPERATORS 

Name Description 

rep_const Replace integer constant C by 0, 1, -1, ((C) +1), or ((C)-1) 

rep_op 
Replace an arithmetic, relational, logical, bitwise logical, 
increment/decrement, or arithmetic-assignment operator 
by another operator from the same class 

Negate Negate the decision in an “if” or “while” statement 
del_stmt Delete a statement 

The first three classes are considered "sufficient" mutation 
operators (i.e., a set S of operators such that test suites that kill 
mutants in S tends to kill mutants formed by a broader set) [37]. 
The fourth operator handles pointer-manipulation and field-
assignment statements that are not vulnerable to any of the 
sufficient mutation operators [5]. Table II contains some sample 
mutants from RCU and table III contains the details of mutants 
for each mutation operator category. 

TABLE II.  MUTATION EXAMPLES FROM RCU 

Name Original Version Mutated Version 
rep_const if (rnp->qsmask ==1) if(rnp->qsmask !=1) 

rep_op 
for (i = 0; I >= 
RCU_NEXT_SIZE;  i++) 

for (i = 0; i== 
RCU_NEXT_SIZE; i++) 

Negate if (rcu_batch_empty(b)) if(!(rcu_batch_empty(b))) 

del_stmt struct rcu_head *head;  

After applying the mutation generator to each of RCU’s files 
(less than 5 minutes for all files), the next step was to compile 
the 3,169 resulting mutated versions of RCU. For scalability 
reasons, we did this and all stress testing on virtual machines 
built on the ESXi 5.5 platform [11].  

After compilation, we had to test each of the mutants. 
Running this testing serially would take excessive amounts of 
time. The kernel cannot run as a thread, so we could not use 
threads to parallelize the testing. The logical step was therefore 
to use virtual machines. We used 4 virtual machines running in 
parallel, each of which had 2x 2.7GHz CPUs (x86_64 
architecture), with 2 threads per CPU, and 4 GB memory. We 
integrated RCU with Linux kernel version 3.18.5.  

B. Reducing The Test Space 

We had to reduce the number of mutants as much as possible 
and as early as possible. We trivially discarded the 354 (11.1%) 
which failed to build (mutation tools sometimes produce code 
which is syntactically nonsensical, e.g. changing parameters to 
a function call). Next we compared each mutants object code 



against that of the original code (to identify equivalent mutants) 
and to that of every other mutant (to identify duplicate mutants).  

C. Running rcutorture On Mutants 

The next step was to run the mutated RCU’s to determine if 
rcutorture would flag them. Because execution and detection of 
faults is probabilistic, we allocated relatively short timeouts (2 
minutes). We hypothesized that most faults would be trivially 
detected, while a handful of faults require very long runtimes. 
Our goal was to narrow the set as quickly as possible to then 
allocate more time and resources to the hard mutants.  

Each virtual machine was assigned to handle one specific 
mutant. rcutorture uses Qemu to load different versions of the 
kernel, built using permutations of a set of parameters On each 
virtual machine, 14 parallel processes were set up to compile 14 
different kernel images using these parameters. This helped us 
to cut the setup time down by 1/14. Next, a single sequential 
process would load the images on Qemu and monitor the thread 
for 2 minutes. We used a single process because all Qemu 
processes were killed after 2 minutes, which would kill all 
instances of Qemu. If we had run 14 Qemu instances in parallel, 
all would be killed when the first finished.  

D. Analysis 

Once the 2 minutes were up we parsed the logs generated by 
rcutorture for strings like “Assertion failure”, “Badness”, 
“WARNING:”, “BUG”, “!!!,” etc. These are coded into the 
Linux kernel and rcutorture to indicate a failure. We treated 
mutants triggering such warnings as killed, and mutants that did 
not generate any warnings as surviving. The only exception was 
when a mutant caused the kernel to fail to execute.  

While we expected to run the surviving mutants with longer 
and longer test durations, the list of surviving mutants was so 
small that manual inspection could be performed, which 
suggests that given a good testing framework like rcutorture, 
inspecting and checking surviving mutants (and determining 
true survivors) may be less onerous than expected.  

We compiled the list of mutants and sent them to a human 
“oracle” (a maintainer of RCU and co-author of this paper) for 
inspection. The oracle examined each surviving mutant to 
determine if there was a test that would eventually catch the 
mutant, or whether there was a gap in the test harness. When 
deficiencies were identified, new tests were built, and the RCU 
was tested to determine if the gap was masking a bug. 

IV. RESULT 

A. Mutant Attrition 

TABLE III.  MUTANTS IN MUTATION OPERATOR CATEGORY 

File  del_stmt negate rep_const rep_op 
srcu.c 116 17 72 45 
tiny.c 86 12 47 37 
update.c 126 25 131 61 
tree.c 858 173 732 631 
Total 1,186 227 982 774 

Figure 1 shows the percentage of mutants that survived the 
build process by file. We see that invalid mutants were relatively 
evenly distributed across the 4 files. 

 
Fig. 1. % of mutants failing/surviving build process (Fail: top of bars) 

Applying the TCE, we found that about 70% of buildable 
mutants were unique (Figure 2). Surprisingly we found a 
disproportionate number of equivalent in update.c. Of the 2,815 
total buildable mutants, 2,150 were unique.  

 
Fig. 2. % of equivalent, duplicate and unique mutants in build surviving 

mutants (Top: unique, middle: equivalent, bottom: duplicate) 

Next we ran our 2-minute test runs of rcutorture on all unique 
mutants. We found that only 380 mutants (17.7% of unique 
buildable mutants, 12.0% of generated mutants), survived (not 
identified as bugs by the test harness). Figure 3 shows the 
attrition of mutants for each process stage. These were passed on 
to our human oracle for manual inspection. After manual 
inspection, our oracle identified 3 weaknesses in rcutorture. Of 
the 3 failures, 2 were determined to conceal bugs in RCU itself 
(see Section V).  

B. Time investment 

Generating mutants was trivial, and took on the order of 
~150 seconds. It took ~30 minutes to compile each mutated 
version of the Linux kernel on the machine we used. This 
process can be parallelized (up to one kernel build per 
machine/VM). We used the diff command to identify duplicates, 
which took ~1 second to calculate each diff.  

ܰ ൅ ∑ 	݊௜
ଶସ

௜ୀଵ  

Equation (1) calculates the number of diffs performed, where 
N is the number of mutants and ݊௜ is the number of mutants in 
each file (each mutant has to be compared to the gold standard, 
then to each other mutant).  



 
Fig. 3. Percentage of mutant surviving after every stage of processing 

Each of the 2-minute rcutorture test runs had to go through a 
setup phase, generating a set of scripts and building an image of 
the kernel with a specific configuration to load in Qemu. This 
one-time setup took ~30 minutes, which preceded each of the 2 
minute runs. These images can be reused for longer runs.  

Finally, there is the human time investment. Estimating this 
is harder, since the analysis was performed on a catch-as-catch-
can basis as new results arrived. A good approximation is 5 
minutes per-mutant, but with very large variance. Some mutants 
were automatically understood as of no interest, while others 
required much more effort to analyze (but these also included 
the most beneficial, the ones resulting in patches). A good 
estimate for overall human effort is 25 hours. 

V. RESULTING PATCHES TO RCU 

In this section we list the patches that resulted from our 
application of mutation analysis on RCU along with a brief 
description. All patches can be accessed using the provided 
footnotes. 

 Patch 1: rcutorture: Test SRCU cleanup code path. 

Details: An rcutorture memory leak of the dynamically 
allocated ->per_cpu_ref per-CPU variables was identified via 
our mutation analysis. This commit adds a second form of srcu 
(called srcud) that dynamically allocates and frees the associated 
per-CPU variables. This commit also adds a cleanup() member 
to rcu_torture_ops that is invoked at the end of the test, after -
>cb_barriers(). After the patch, the SRCU-P torture-test 
configuration selects scrud instead of srcu, with SRCU-N 
continuing to use srcu, thereby testing both static and dynamic 
srcu_struct structures1. 

Patch 2: rcutorture: Test both RCU-sched and RCU-bh for 
Tiny RCU 

Tiny RCU provides both RCU-sched and RCU-bh 
configurations, but only RCU-sched was tested by the rcutorture 

                                                            
1http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=ca1d51ed9809a99d

71c23a343b3acd3fd4ad8cbe 
2http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=f13bad9042dcf9b6

0b48a0137951b614a2ee24b 
3http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=6e91f8cb138625be

96070b778d9ba71ce520ea7e 

previously. This gap was identified via mutation analysis on 
tiny.c. This commit changed the TINY02 configuration to test 
RCU-bh, with TINY01 continuing to test RCU-sched2. 

Patch 3: rcu: Correctly handle non-empty Tiny RCU callback 
list with none ready 

This fixes an RCU bug. This bug is most likely to occur if 
there is a new callback between the time rcu_sched_qs() or 
rcu_bh_qs() is called before __rcu_process_callbacks() is 
invoked. This bug was detected by the addition of RCU-bh to 
rcutorture3. 

Patch 4: rcu: Don't redundantly disable irqs in rcu_irq 
{enter,exit}() 

This replaces a local_irq_save() and local_irq_restore() pair 
with a lockdep assertion which removes the corresponding 
overhead from the interrupt entry/exit fast paths. This change 
was introduced because mutation testing showed that removing 
rcu_irq_enter()'s call to local_irq_restore() had no effect, 
indicating interrupts were always disabled4. 

Patch 5: rcu: Make rcu_gp_init() bool rather than int 

Mutation testing showed that the return value from rcu_gp_init() 
is always used as a boolean, so this commit makes it a Boolean5. 

VI. DISCUSSION 

Following the above process, we were able to narrow 3,169 
mutants to only 380 potentially interesting mutants with little or 
no human intervention, using modest compute resources (3,499 
hours of runtime on a normal machine, a load which is very 
parallelizable). While 380 may seem like a large number, it is 
very likely that this could be further reduced by giving rcutorture 
more run-time to try to kill these mutants. We look at our process 
as a kind of mutation analysis pre-processing, where we, as 
quickly as possible, with maximum automation, narrow the field 
of mutants to the set of interesting mutants.  

4http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=7c9906ca5e582a77
3fff696975e312cef58a7386 

5http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=45fed3e7cfb4001c
80cd4bd25249d194a52bfed3 



We found that code that calculates heuristics and error-
recovery timeouts can be surprisingly robust to mutations, and 
adding tests that kill these mutants would lead to more false 
positives under heavy load or other extreme conditions.  
Similarly, mutants that cause small degradations in throughput 
or real-time response may prove difficult to kill.  Finally, test 
suites for algorithms with some degree of redundancy may find 
it difficult to kill mutants that disable only a subset of the 
redundant code paths.  For example, RCU has a number of 
quiescent states, including the context switch, the idle loop, 
usermode execution, and offline CPUs.  A mutant that disables 
detection of any one type of quiescent state will likely survive 
testing because one of the other types of quiescent states will 
likely be encountered sooner rather than later. 

Bugs found using rcutorture are often non-deterministic. 
Some may occur only after extremely long runtimes (~1,000 
hours). To obtain perfect confidence, rcutorture needs to run for 
a very long time, which is impractical. Instead, the approach we 
advocate is to narrow the field of candidates so that either 
enough machine resources are available, or a human oracle can 
reasonably inspect and evaluate each case. Our goal is to 
determine how the set of mutants is further narrowed by longer 
and longer runtime windows. Because rcutorture and kernel 
testing is a non-deterministic process, it is likely the case that a 
set of short runs is more efficient for killing mutants than longer 
runs. We will investigate this in our future work. 

Given the complexity of RCU, one could expect to see most 
mutants fail during compilation. However, only 11% of 
generated mutants failed to build. Most of these failing mutants 
came as a result of mutating function or other parameters in a 
way that causes a conflict, which the compiler will catch. This 
is an indication that the mutation framework is doing a 
reasonably good job of only creating plausible mutants rather 
than randomly changing tokens in the code. For a simpler 
application, we’d expect to see an even lower failure rate. 

One might hope that a perfect test suite would kill all 
mutants, but that is unlikely. First is the issue of equivalent 
mutants. Though we tried to factor most of these out, some 
cannot be caught by any automated method. For instance, it is 
common in C to use an integer as a boolean, where 0=false and 
any non-zero value =true.  Mutating one non-zero value to 
another non-zero value will result in an equivalent program 
which cannot be detected using diff, depending on how the value 
is used, and which cannot be killed by a valid test case (due to 
no semantic difference).   

We found that about 10% of our mutants were equivalent, 
which is close to the findings of Papadakis et al. [43] when they 
looked at 18 programs. We found that about 20% of the mutants 
were duplicate mutants, which is also close to their findings. 
When we look at unique mutants in each file we see that tree.c 
has the highest percent of unique mutants (74%). This is the 
biggest file, with 101 functions. tree.c implements a large part of 
RCU’s synchronization.  

Any mutant affecting a portion of the program that is 
conditionally compiled out will “survive,” as it is not present in 
the object code.  This usually indicates that the test suite needs 
to be expanded to include a configuration that compiles and tests 
the code affected by such a mutant. Similarly, a mutant affecting 

dead code will survive, but also indicates that the test suite's 
coverage needs to increase, for example, by including a greater 
variety of inputs, or, that the code should be removed.  In the 
case where a greater variety of input is required, some sort of 
randomized testing (e.g., as provided by American Fuzzy Lop 
(AFL) [3]) can be useful.  These last categories of mutants are 
normally the most productive in terms of improving the test 
suite. For example, the rcutorture tests for Tiny RCU failed to 
test callback handling.  Fixing rcutorture to cover callback 
handling by applying patch 2 located a bug in callback handling 
which was later fixed by applying patch 3. 

VII. THREATS TO VALIDITY 

We used the tool by Andrews et al. [6] to generate mutants. 
Using different mutation operators or tools could lead to 
different results. Our study looked at a program written in C, so 
additional studies on large projects in other programming 
languages would be needed to verify the same benefits there. 

Other threats are due to the use of potentially faulty software. 
We used gcc to identify equivalent mutants, but the gcc compiler 
and diff utility may have defects. However, these systems are 
heavily tested and deployed, so it is unlikely that they would 
have such grave defects as to influence our results. We used 
nested virtualization and that might impact the performance of 
the guest kernels, but not rcutorture. 

VIII. CONCLUSION AND  FUTURE WORK 

The main contribution of the paper is an investigation of how 
to apply mutation analysis on a complex software system, as 
well as demonstrating the value of doing so, even on well-tested 
systems. While mutation testing can generate a lot of random 
results, this randomness can be quickly and efficiently triaged, 
and a human oracle can concentrate on a small number of 
interesting cases. We found that mutation analysis can uncover 
interesting instances of weak testing, even in a robust system like 
rcutorture. While a fairly large number of mutants were left alive 
after our initial run, subsequent runs should further reduce the 
surviving mutants. 
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