
Applying Mutation Analysis On Kernel Test Suites:
An Experience Report

Iftekhar Ahmed, Rahul Gopinath,
Carlos Jensen
School of EECS

Oregon State University, Corvallis, USA
{ahmedi, gopinath, cjensen}@eecs.orst.edu

Alex Groce
School of Informatics, Computing, and

Cyber Systems
Northern Arizona University, Flagstaff, USA

agroce@gmail.com

Paul E. McKenney
IBM Linux Technology Center
paulmck@linux.vnet.ibm.com

Abstract— Mutation analysis is an established technique for
measuring the completeness and quality of a test suite. Despite
four decades of research on this technique, its use in large systems
is still rare, in part due to computational requirements and high
numbers of false positives. We present our experiences using
mutation analysis on the Linux kernel’s RCU (Read Copy Update)
module, where we adapt existing techniques to constrain the
complexity and computation requirements. We show that
mutation analysis can be a useful tool, uncovering gaps in even
well-tested modules like RCU. This experiment has so far led to
the identification of 3 gaps in the RCU test harness, and 2 bugs in
the RCU module masked by those gaps. We argue that mutation
testing can and should be more extensively used in practice.

Keywords—Mutation Analysis; Linux kernel

I. INTRODUCTION

Quality is important for software systems. Unfortunately
evaluating quality, especially the presence of bugs, becomes
more difficult as the complexity of that software increases. The
best way to ensure software meets quality requirements is to
engage in extensive and thorough testing. The goal of testing is
to discover faults in the System Under Test (SUT) by executing
tests that create conditions that lead to failure, and detect these.

Two important “problems” with testing are knowing when
you have performed sufficient testing and determining whether
your testing is biased. A well-respected technique for evaluating
test suites and test coverage is mutation analysis. Unlike code
coverage and other benchmarking techniques, mutation analysis
addresses the oracle problem as well as determining the degree
to which SUT behaviors are explored. By inserting random but
realistic bugs [6, 10, 22] in the SUT, known as mutants, we can
determine a tests ability to uncover faults, not just its ability to
explore behavior. The ratio of mutants found over all mutants, is
used as the test suite’s effectiveness (mutation score). Mutation
analysis thus identifies gaps in the test suites and subsumes
almost every other test adequacy criteria [7, 13, 38, 45].

One of the primary reasons mutation analysis is rarely used
on large and complex programs is that mutation analysis
generates large numbers of mutants, which must be analyzed,
though mutant sampling [41, 46, 48] and mutant execution
optimizations [21, 42, 49] can help to mitigate the problem.
Another reason is the lack of proof of mutation analysis’
applicability to complex real world projects. Thus, mutation
analysis has been more widely adopted by academia than
industry, and the technique mostly evaluated using relatively
simple programs and test suites.

The Linux kernel is one of today’s more complex software
systems, evolving so rapidly that maintaining quality assurance
is hard [12, 40]. Applying techniques such as code analysis and
model checking on the kernel and its modules is difficult
because of their size and the complexity of the code. Source code
analysis generates a large number of false positives and
warnings [20] which need to be screened by domain experts,
which is expensive in terms of both time and resources.

Although mutation analysis can be applied to the kernel, it is
not trivial to do so. First, one has to generate an enormous set of
mutants. Second, one needs to compile and run each mutated
version of the code and put it through the test harness. As with
many complex systems, execution is probabilistic, meaning that
the amount of time needed to “kill” a mutant (detecting it with
the test suite) cannot be determined a priori. Not finding a fault
at time j could be due to inefficient tests, or insufficient run time.
Therefore, to avoid false positives, a test suite would need
infinite run-time on each mutant. This is clearly not feasible, and
a probabilistic approach must be adopted.

This paper describes our experience using mutation testing
on the Linux-kernel’s RCU [44]. Our goal was to determine
whether: (1) mutation testing RCU is feasible, and (2) whether
it can uncover bugs in RCU. Locating bugs in RCU is hard
because RCU is well tested and heavily used: About one in 2,000
lines of kernel code uses RCU [33], and it has been a favorite
target for model checkers [2, 15, 29, 30]. If mutation testing can
locate new bugs, these are likely deep, and the technique can be
useful for locating bugs in other complex software.

II. BACKGROUND

A. Limitations of Mutation Analysis

It is infeasible to exhaustively test a test suite, as this would
mean running it on all possible programs. Even running it on all
mutation operators applied to all statements of a program is non-
trivial. This only gets worse as the size and complexity of a code-
base grows, leading to a combinatorial explosion [19]. Mutation
testing is even costlier for concurrent code because it must be
tested against thread schedules and memory reordering.

One way to tackle complexity is reducing the mutants used.
Kintis et al. [26] defined the notion of disjoint mutants, i.e., a set
of mutants that subsumes all the others. Ammann et al. showed
that minimal mutants [4] reduce the count. Kaminski et al. [24,
25] and Just et al. [23] used fault-based predicate testing to
reduce redundancy of relational and logical operators. Sampling
[41] and searching higher order mutants [17, 18, 28] also helps.

Mutation can leave semantics unchanged. These “equivalent
mutants” skew results, and full detection is undecidable [9].
Manual equivalence inspection [47] requires significant effort
and provides an identification rate of only 8% [1]. Automated
equivalence heuristics are thus attractive, and useful solutions
have been proposed [36]. One approach is to use the compiler to
detect equivalent mutants [8]. If the original program and a
mutant compile to the same object code, no test could reveal a
difference. Mothra et al. [36] showed that this identifies about
45% of equivalent mutants. Recently Papadakis et al. proposed
Trivial Compiler Equivalence (TCE) which groups mutants with
identical object code into equivalence classes [43], addressing
the “duplicate mutant” problem. We used TCE to identify both
equivalent and duplicate mutants.

B. Read Copy Update (RCU)

The RCU module of the Linux kernel is a synchronization
mechanism that allows lightweight readers [31]. RCU read-side
critical section entry/exit overhead can be exactly zero [31],
excellent for read-mostly workloads [16, 31, 34]. However,
RCU updaters cannot exclude readers, and must take care to
avoid disrupting readers. Updaters typically maintain versions
of the part of the structure being updated, reclaiming old
versions only when safe.

RCU use in the Linux kernel has gone from 0 in 2002 to over
6,500 calls in 2013 [33]. RCU pervades the kernel, with one in
every 2,000 lines using an RCU primitive [33]. Given the
complexity of the code, and its importance, researchers have
applied model checking techniques to RCU [2, 15, 27, 30], and
the RCU test harness (rcutorture) is very well developed.

The bulk of RCU is in 4 files (srcu.c, tiny.c, update.c and
tree.c). Together, these only total to 5,542 lines of code (LOC),
with the largest being 3,771 LOC. The RCU is therefore not the
largest program examined using mutation analysis (Apache
Commons Math, with 202,000 lines of code, was analyzed by
Gopinath et al. [14]), but it has the highest complexity, as
Apache commons is a large but shallow set of library calls.

RCU’s primary test system, rcutorture, is an automated
stress-testing mechanism composed of 1,800 lines of code.
rcutorture can simulate 12 different RCU scheduling variations
and test on 16 hardware configurations. These configurations are
specified using parameters such as CONFIG_NR_CPUS,
CONFIG_HOTPLUG_CPU, CONFIG_SMP, etc. rcutorture
uses Qemu to load kernels built using these parameters and
monitors their performance for a user specified period. The test
periodically outputs status messages via printk(), which can be
examined via the dmesg command. Qemu uses KVM,
essentially running a virtualizer (Qemu) on top of another virtual
machine, a practice referred to as nested virtualization [35].
Interest in rcutorture has grown, with the number of contributors
growing from 5 to 9 between 2006 and 2014.

Time dependent and stochastic testing systems such as
rcutorture are common for critical systems code [39]. The longer
you run rcutorture, the higher the chances of finding a bug, if
present. This means that non-trivial mutants need to be run for
very long periods of time. Because RCU is used on large clusters
and has been extensively tested, most remaining bugs are likely
to be in difficult-to-reach parts of the code.

III. METHODOLOGY

A. Mutation Generation

We used the tool developed by Andrews et al. [6] to generate
mutants. We decided to use this tool as it was evaluated on a set
of eight well-known subject programs, part of a Siemens suite
[6]. The tool is also simple in design and implementation; a 350
LOC Prolog program and a shell script. This tool generates
mutants from a source file, treating each line of code in sequence
and applying four classes of “mutation operators”. Every valid
application of a mutation operator to a line of code results in a
mutant being generated in a separate file. The four classes of
mutation operators are given in table I.

TABLE I. MUTATION OPERATORS

Name Description

rep_const Replace integer constant C by 0, 1, -1, ((C) +1), or ((C)-1)

rep_op
Replace an arithmetic, relational, logical, bitwise logical,
increment/decrement, or arithmetic-assignment operator
by another operator from the same class

Negate Negate the decision in an “if” or “while” statement
del_stmt Delete a statement

The first three classes are considered "sufficient" mutation
operators (i.e., a set S of operators such that test suites that kill
mutants in S tends to kill mutants formed by a broader set) [37].
The fourth operator handles pointer-manipulation and field-
assignment statements that are not vulnerable to any of the
sufficient mutation operators [5]. Table II contains some sample
mutants from RCU and table III contains the details of mutants
for each mutation operator category.

TABLE II. MUTATION EXAMPLES FROM RCU

Name Original Version Mutated Version
rep_const if (rnp->qsmask ==1) if(rnp->qsmask !=1)

rep_op
for (i = 0; I >=
RCU_NEXT_SIZE; i++)

for (i = 0; i==
RCU_NEXT_SIZE; i++)

Negate if (rcu_batch_empty(b)) if(!(rcu_batch_empty(b)))

del_stmt struct rcu_head *head;

After applying the mutation generator to each of RCU’s files
(less than 5 minutes for all files), the next step was to compile
the 3,169 resulting mutated versions of RCU. For scalability
reasons, we did this and all stress testing on virtual machines
built on the ESXi 5.5 platform [11].

After compilation, we had to test each of the mutants.
Running this testing serially would take excessive amounts of
time. The kernel cannot run as a thread, so we could not use
threads to parallelize the testing. The logical step was therefore
to use virtual machines. We used 4 virtual machines running in
parallel, each of which had 2x 2.7GHz CPUs (x86_64
architecture), with 2 threads per CPU, and 4 GB memory. We
integrated RCU with Linux kernel version 3.18.5.

B. Reducing The Test Space

We had to reduce the number of mutants as much as possible
and as early as possible. We trivially discarded the 354 (11.1%)
which failed to build (mutation tools sometimes produce code
which is syntactically nonsensical, e.g. changing parameters to
a function call). Next we compared each mutants object code

against that of the original code (to identify equivalent mutants)
and to that of every other mutant (to identify duplicate mutants).

C. Running rcutorture On Mutants

The next step was to run the mutated RCU’s to determine if
rcutorture would flag them. Because execution and detection of
faults is probabilistic, we allocated relatively short timeouts (2
minutes). We hypothesized that most faults would be trivially
detected, while a handful of faults require very long runtimes.
Our goal was to narrow the set as quickly as possible to then
allocate more time and resources to the hard mutants.

Each virtual machine was assigned to handle one specific
mutant. rcutorture uses Qemu to load different versions of the
kernel, built using permutations of a set of parameters On each
virtual machine, 14 parallel processes were set up to compile 14
different kernel images using these parameters. This helped us
to cut the setup time down by 1/14. Next, a single sequential
process would load the images on Qemu and monitor the thread
for 2 minutes. We used a single process because all Qemu
processes were killed after 2 minutes, which would kill all
instances of Qemu. If we had run 14 Qemu instances in parallel,
all would be killed when the first finished.

D. Analysis

Once the 2 minutes were up we parsed the logs generated by
rcutorture for strings like “Assertion failure”, “Badness”,
“WARNING:”, “BUG”, “!!!,” etc. These are coded into the
Linux kernel and rcutorture to indicate a failure. We treated
mutants triggering such warnings as killed, and mutants that did
not generate any warnings as surviving. The only exception was
when a mutant caused the kernel to fail to execute.

While we expected to run the surviving mutants with longer
and longer test durations, the list of surviving mutants was so
small that manual inspection could be performed, which
suggests that given a good testing framework like rcutorture,
inspecting and checking surviving mutants (and determining
true survivors) may be less onerous than expected.

We compiled the list of mutants and sent them to a human
“oracle” (a maintainer of RCU and co-author of this paper) for
inspection. The oracle examined each surviving mutant to
determine if there was a test that would eventually catch the
mutant, or whether there was a gap in the test harness. When
deficiencies were identified, new tests were built, and the RCU
was tested to determine if the gap was masking a bug.

IV. RESULT

A. Mutant Attrition

TABLE III. MUTANTS IN MUTATION OPERATOR CATEGORY

File del_stmt negate rep_const rep_op
srcu.c 116 17 72 45
tiny.c 86 12 47 37
update.c 126 25 131 61
tree.c 858 173 732 631
Total 1,186 227 982 774

Figure 1 shows the percentage of mutants that survived the
build process by file. We see that invalid mutants were relatively
evenly distributed across the 4 files.

Fig. 1. % of mutants failing/surviving build process (Fail: top of bars)

Applying the TCE, we found that about 70% of buildable
mutants were unique (Figure 2). Surprisingly we found a
disproportionate number of equivalent in update.c. Of the 2,815
total buildable mutants, 2,150 were unique.

Fig. 2. % of equivalent, duplicate and unique mutants in build surviving

mutants (Top: unique, middle: equivalent, bottom: duplicate)

Next we ran our 2-minute test runs of rcutorture on all unique
mutants. We found that only 380 mutants (17.7% of unique
buildable mutants, 12.0% of generated mutants), survived (not
identified as bugs by the test harness). Figure 3 shows the
attrition of mutants for each process stage. These were passed on
to our human oracle for manual inspection. After manual
inspection, our oracle identified 3 weaknesses in rcutorture. Of
the 3 failures, 2 were determined to conceal bugs in RCU itself
(see Section V).

B. Time investment

Generating mutants was trivial, and took on the order of
~150 seconds. It took ~30 minutes to compile each mutated
version of the Linux kernel on the machine we used. This
process can be parallelized (up to one kernel build per
machine/VM). We used the diff command to identify duplicates,
which took ~1 second to calculate each diff.

ܰ ൅ ∑ 	݊௜
ଶସ

௜ୀଵ  

Equation (1) calculates the number of diffs performed, where
N is the number of mutants and ݊௜ is the number of mutants in
each file (each mutant has to be compared to the gold standard,
then to each other mutant).

Fig. 3. Percentage of mutant surviving after every stage of processing

Each of the 2-minute rcutorture test runs had to go through a
setup phase, generating a set of scripts and building an image of
the kernel with a specific configuration to load in Qemu. This
one-time setup took ~30 minutes, which preceded each of the 2
minute runs. These images can be reused for longer runs.

Finally, there is the human time investment. Estimating this
is harder, since the analysis was performed on a catch-as-catch-
can basis as new results arrived. A good approximation is 5
minutes per-mutant, but with very large variance. Some mutants
were automatically understood as of no interest, while others
required much more effort to analyze (but these also included
the most beneficial, the ones resulting in patches). A good
estimate for overall human effort is 25 hours.

V. RESULTING PATCHES TO RCU

In this section we list the patches that resulted from our
application of mutation analysis on RCU along with a brief
description. All patches can be accessed using the provided
footnotes.

 Patch 1: rcutorture: Test SRCU cleanup code path.

Details: An rcutorture memory leak of the dynamically
allocated ->per_cpu_ref per-CPU variables was identified via
our mutation analysis. This commit adds a second form of srcu
(called srcud) that dynamically allocates and frees the associated
per-CPU variables. This commit also adds a cleanup() member
to rcu_torture_ops that is invoked at the end of the test, after -
>cb_barriers(). After the patch, the SRCU-P torture-test
configuration selects scrud instead of srcu, with SRCU-N
continuing to use srcu, thereby testing both static and dynamic
srcu_struct structures1.

Patch 2: rcutorture: Test both RCU-sched and RCU-bh for
Tiny RCU

Tiny RCU provides both RCU-sched and RCU-bh
configurations, but only RCU-sched was tested by the rcutorture

1http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=ca1d51ed9809a99d

71c23a343b3acd3fd4ad8cbe
2http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=f13bad9042dcf9b6

0b48a0137951b614a2ee24b
3http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=6e91f8cb138625be

96070b778d9ba71ce520ea7e

previously. This gap was identified via mutation analysis on
tiny.c. This commit changed the TINY02 configuration to test
RCU-bh, with TINY01 continuing to test RCU-sched2.

Patch 3: rcu: Correctly handle non-empty Tiny RCU callback
list with none ready

This fixes an RCU bug. This bug is most likely to occur if
there is a new callback between the time rcu_sched_qs() or
rcu_bh_qs() is called before __rcu_process_callbacks() is
invoked. This bug was detected by the addition of RCU-bh to
rcutorture3.

Patch 4: rcu: Don't redundantly disable irqs in rcu_irq
{enter,exit}()

This replaces a local_irq_save() and local_irq_restore() pair
with a lockdep assertion which removes the corresponding
overhead from the interrupt entry/exit fast paths. This change
was introduced because mutation testing showed that removing
rcu_irq_enter()'s call to local_irq_restore() had no effect,
indicating interrupts were always disabled4.

Patch 5: rcu: Make rcu_gp_init() bool rather than int

Mutation testing showed that the return value from rcu_gp_init()
is always used as a boolean, so this commit makes it a Boolean5.

VI. DISCUSSION

Following the above process, we were able to narrow 3,169
mutants to only 380 potentially interesting mutants with little or
no human intervention, using modest compute resources (3,499
hours of runtime on a normal machine, a load which is very
parallelizable). While 380 may seem like a large number, it is
very likely that this could be further reduced by giving rcutorture
more run-time to try to kill these mutants. We look at our process
as a kind of mutation analysis pre-processing, where we, as
quickly as possible, with maximum automation, narrow the field
of mutants to the set of interesting mutants.

4http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=7c9906ca5e582a77
3fff696975e312cef58a7386

5http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=45fed3e7cfb4001c
80cd4bd25249d194a52bfed3

We found that code that calculates heuristics and error-
recovery timeouts can be surprisingly robust to mutations, and
adding tests that kill these mutants would lead to more false
positives under heavy load or other extreme conditions.
Similarly, mutants that cause small degradations in throughput
or real-time response may prove difficult to kill. Finally, test
suites for algorithms with some degree of redundancy may find
it difficult to kill mutants that disable only a subset of the
redundant code paths. For example, RCU has a number of
quiescent states, including the context switch, the idle loop,
usermode execution, and offline CPUs. A mutant that disables
detection of any one type of quiescent state will likely survive
testing because one of the other types of quiescent states will
likely be encountered sooner rather than later.

Bugs found using rcutorture are often non-deterministic.
Some may occur only after extremely long runtimes (~1,000
hours). To obtain perfect confidence, rcutorture needs to run for
a very long time, which is impractical. Instead, the approach we
advocate is to narrow the field of candidates so that either
enough machine resources are available, or a human oracle can
reasonably inspect and evaluate each case. Our goal is to
determine how the set of mutants is further narrowed by longer
and longer runtime windows. Because rcutorture and kernel
testing is a non-deterministic process, it is likely the case that a
set of short runs is more efficient for killing mutants than longer
runs. We will investigate this in our future work.

Given the complexity of RCU, one could expect to see most
mutants fail during compilation. However, only 11% of
generated mutants failed to build. Most of these failing mutants
came as a result of mutating function or other parameters in a
way that causes a conflict, which the compiler will catch. This
is an indication that the mutation framework is doing a
reasonably good job of only creating plausible mutants rather
than randomly changing tokens in the code. For a simpler
application, we’d expect to see an even lower failure rate.

One might hope that a perfect test suite would kill all
mutants, but that is unlikely. First is the issue of equivalent
mutants. Though we tried to factor most of these out, some
cannot be caught by any automated method. For instance, it is
common in C to use an integer as a boolean, where 0=false and
any non-zero value =true. Mutating one non-zero value to
another non-zero value will result in an equivalent program
which cannot be detected using diff, depending on how the value
is used, and which cannot be killed by a valid test case (due to
no semantic difference).

We found that about 10% of our mutants were equivalent,
which is close to the findings of Papadakis et al. [43] when they
looked at 18 programs. We found that about 20% of the mutants
were duplicate mutants, which is also close to their findings.
When we look at unique mutants in each file we see that tree.c
has the highest percent of unique mutants (74%). This is the
biggest file, with 101 functions. tree.c implements a large part of
RCU’s synchronization.

Any mutant affecting a portion of the program that is
conditionally compiled out will “survive,” as it is not present in
the object code. This usually indicates that the test suite needs
to be expanded to include a configuration that compiles and tests
the code affected by such a mutant. Similarly, a mutant affecting

dead code will survive, but also indicates that the test suite's
coverage needs to increase, for example, by including a greater
variety of inputs, or, that the code should be removed. In the
case where a greater variety of input is required, some sort of
randomized testing (e.g., as provided by American Fuzzy Lop
(AFL) [3]) can be useful. These last categories of mutants are
normally the most productive in terms of improving the test
suite. For example, the rcutorture tests for Tiny RCU failed to
test callback handling. Fixing rcutorture to cover callback
handling by applying patch 2 located a bug in callback handling
which was later fixed by applying patch 3.

VII. THREATS TO VALIDITY

We used the tool by Andrews et al. [6] to generate mutants.
Using different mutation operators or tools could lead to
different results. Our study looked at a program written in C, so
additional studies on large projects in other programming
languages would be needed to verify the same benefits there.

Other threats are due to the use of potentially faulty software.
We used gcc to identify equivalent mutants, but the gcc compiler
and diff utility may have defects. However, these systems are
heavily tested and deployed, so it is unlikely that they would
have such grave defects as to influence our results. We used
nested virtualization and that might impact the performance of
the guest kernels, but not rcutorture.

VIII. CONCLUSION AND FUTURE WORK

The main contribution of the paper is an investigation of how
to apply mutation analysis on a complex software system, as
well as demonstrating the value of doing so, even on well-tested
systems. While mutation testing can generate a lot of random
results, this randomness can be quickly and efficiently triaged,
and a human oracle can concentrate on a small number of
interesting cases. We found that mutation analysis can uncover
interesting instances of weak testing, even in a robust system like
rcutorture. While a fairly large number of mutants were left alive
after our initial run, subsequent runs should further reduce the
surviving mutants.

REFERENCES
[1] Acree Jr, & Troy, A. (1980). “On Mutation (No. GIT-ICS-80/12)”. In PhD

Thesis, Georgia Institute of Technology, Atlanta, Georgia.

[2] Alglave, J., Maranget, L., & Tautschnig, M. (2014). “Herding cats:
Modelling, simulation, testing, and data mining for weak memory”. In
Transactions on Programming Languages and Systems (TOPLAS), Vol.
36, No. 2, (pp. 7).ACM.

[3] American Fuzzy Lop (AFL): http://lcamtuf.coredump.cx/afl/

[4] Ammann, P., Delamaro, M. E., & Offutt, J. (2014, March). “Establishing
theoretical minimal sets of mutants”. In Seventh International Conference
on Software Testing, Verification and Validation, (pp. 21-30). IEEE.

[5] Andrews, J. H., & Zhang, Y. (2003). “General test result checking with
log file analysis”. In Transactions on Software Engineering, Vol. 29,
No.7, (pp. 634-648). IEEE

[6] Andrews, J. H., Briand, L. C., & Labiche, Y. (2005). “Is mutation an
appropriate tool for testing experiments?[software testing]”. In
Proceedings of 27th International Conference on Software Engineering,
(pp. 402-411). IEEE.

[7] Baker, R. J., & Habli, I. (2013). “An empirical evaluation of mutation
testing for improving the test quality of safety-critical software”. In
Transactions on Software Engineering, , Vol. 39, No.6, (pp. 787-805).
IEEE.

[8] Baldwin, D., & Sayward, F. (1979). “Heuristics for Determining
Equivalence of Program Mutations”. In PhD Thesis, Georgia Institute of
Technology, Atlanta, Georgia..

[9] Budd, T. A., & Angluin, D. (1982). “Two notions of correctness and their
relation to testing”. In Acta Informatica, Vol. 18, No.1, (pp. 31-45).

[10] Daran, M., & Thévenod-Fosse, P. (1996). “Software error analysis: a real
case study involving real faults and mutations”. In Software Engineering
Notes, Vol. 21, No.3, (pp. 158-171). ACM.

[11] ESXI: http://searchvmware.techtarget.com/definition/VMware-ESXi

[12] Feitelson, D. G. (2012). “Perpetual development: a model of the Linux
kernel life cycle”. In Journal of Systems and Software, Vol. 85, No.4, (pp.
859-875).

[13] Frankl, P. G., Weiss, S. N., & Hu, C. (1997). “All-uses vs mutation
testing: an experimental comparison of effectiveness”. In Journal of
Systems and Software, Vol. 38, No. 3, (pp. 235-253).

[14] Gopinath, R., MA Alipour, Ahmed, I., Jensen, C., & Groce, A. (2016).
“On The Limits of Mutation Reduction Strategies”. In Proceedings of the
38th International Conference on Software Engineering, (pp-511-522).
ACM.

[15] Groce, A., Ahmed, I., Jensen, C., & McKenney, P. E. (2015)."How
Verified is My Code? Falsification-Driven Verification." In Proceedings
of the 30th international conference on Automated software
engineering.IEEE.

[16] Guniguntala, D., McKenney, P. E., Triplett, J., & Walpole, J. (2008). “The
read-copy-update mechanism for supporting real-time applications on
shared-memory multiprocessor systems with Linux”. IBM Systems
Journal, Vol. 47, No. 2, (pp. 221-236).

[17] Harman, M., Jia, Y., Reales Mateo, P., & Polo, M. (2014). “Angels and
monsters: An empirical investigation of potential test effectiveness and
efficiency improvement from strongly subsuming higher order mutation”.
In Proceedings of the 29th international conference on Automated
software engineering, (pp. 397-408). ACM.

[18] Jia, Y., & Harman, M. (2008, September). “Constructing subtle faults
using higher order mutation testing”. In 8th International Working
Conference on Source Code Analysis and Manipulation, (pp. 249-258).
IEEE.

[19] Jia, Y., & Harman, M. (2011). “An analysis and survey of the
development of mutation testing”. In Software Engineering Transactions,
Vol. 37, No. 5, (pp. 649-678). IEEE.

[20] Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013). “Why
don't software developers use static analysis tools to find bugs?”. In
Proceedings of the International Conference on Software Engineering,
(pp. 672-681). IEEE.

[21] Just, R., Ernst, M. D., & Fraser, G. (2014). “Efficient mutation analysis
by propagating and partitioning infected execution states”. In Proceedings
of the International Symposium on Software Testing and Analysis, (pp.
315-326). ACM.

[22] Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes, R., & Fraser,
G. (2014). “Are mutants a valid substitute for real faults in software
testing?”. In Proceedings of the 22nd International Symposium on
Foundations of Software Engineering, (pp. 654-665). ACM.

[23] Just, R., Kapfhammer, G. M., & Schweiggert, F. (2012). “Using non-
redundant mutation operators and test suite prioritization to achieve
efficient and scalable mutation analysis”. In Software Reliability
Engineering, (pp. 11-20). IEEE.

[24] Kaminski, G., Ammann, P., & Offutt, J. (2011).” Better predicate testing”.
In Proceedings of the 6th International Workshop on Automation of
Software Test, (pp. 57-63). ACM

[25] Kaminski, G., Ammann, P., & Offutt, J. (2013). “Improving logic-based
testing”. In Journal of Systems and Software, Vol. 86, No. 8, (pp. 2002-
2012).

[26] Kintis, M., Papadakis, M., & Malevris, N. (2010). “Evaluating mutation
testing alternatives: A collateral experiment”. In Software Engineering
Conference (APSEC), 2010 17th Asia Pacific, (pp. 300-309). IEEE.

[27] Kokologiannakis, M, & Sagonas, K. (2017)."Stateless Model Checking
of the Linux Kernel's Hierarchical Read-Copy Update (Tree RCU)".
Accessible at:https://github.com/michalis-/rcu/blob/master/rcupaper.pdf

[28] Langdon, W. B., Harman, M., & Jia, Y. (2010). “Efficient multi-objective
higher order mutation testing with genetic programming”. In Journal of
systems and Software, Vol. 83, No. 12, (pp. 2416-2430).

[29] Liang, L., McKenney, P. E., Kroening, D., & Melham, T. (2016).
“Verification of the Tree-Based Hierarchical Read-Copy Update in the
Linux Kernel”.In arXiv preprint arXiv:1610.03052.

[30] Lissy, A., Laurière, S., & Martineau, P. (2011). “Verifications around the
Linux kernel”. In Linux Symposium, (p. 37).

[31] McKenney, P. E. (2013). “Structured deferral: synchronization via
procrastination”. In Communications of the ACM, Vol. 56, No. 7, (pp.
40-49).

[32] McKenney, P. E., & Slingwine, J. D. (1998). “Read-copy update: Using
execution history to solve concurrency problems”. In Parallel and
Distributed Computing and Systems, (pp. 509-518).

[33] McKenney, P. E., Boyd-Wickizer, S., & Walpole, J. (2013). “RCU usage
in the Linux kernel: one decade later”.

[34] McKenney, P. E., Eggemann, D., & Randhawa, R. (2013). “Improving
energy efficiency on asymmetric multiprocessing systems”.

[35] Nested Virtualization: https://msdn.microsoft.com/en-us/
virtualization/hyperv_on_windows/user_guide/nesting

[36] Offutt, A. J., & Craft, W. M. (1994). “Using compiler optimization
techniques to detect equivalent mutants”. In Software Testing,
Verification and Reliability, Vol. 4, No. 3, (pp-131-154).

[37] Offutt, A. J., Lee, A., Rothermel, G., Untch, R. H., & Zapf, C. (1996).
“An experimental determination of sufficient mutant operators”. In
Transactions on Software Engineering and Methodology, Vol. 5, No. 2,
(pp. 99-118).

[38] Offutt, A. J., Pan, J., Tewary, K., & Zhang, T. (1996). “An experimental
evaluation of data flow and mutation testing”. In Softw., Pract. Exper,
Vol. 26, No. 2, (pp. 165-176).

[39] Pacheco, C., & Ernst, M. D. (2007). “Randoop: feedback-directed random
testing for Java”. In Companion to the 22nd conference on Object-
oriented programming systems and applications, (pp. 815-816). ACM.

[40] Palix, N., Thomas, G., Saha, S., Calvès, C., Lawall, J., & Muller, G.
(2011). “Faults in linux: ten years later”. In Computer Architecture News,
Vol. 39, No. 1, (pp. 305-318). ACM.

[41] Papadakis, M., & Malevris, N. (2010). “An empirical evaluation of the
first and second order mutation testing strategies”. In Third International
Conference on Software Testing, Verification, and Validation
Workshops, (pp. 90-99). IEEE.

[42] Papadakis, M., & Malevris, N. (2010). “Automatic mutation test case
generation via dynamic symbolic execution”. In 21st international
symposium on Software reliability engineering, (pp. 121-130). IEEE.

[43] Papadakis, M., Jia, Y., Harman, M., & Le Traon, Y. (2015). “Trivial
compiler equivalence: A large scale empirical study of a simple, fast and
effective equivalent mutant detection technique”. In 37th IEEE
International Conference of Software Engineering, (pp. 936-946). IEEE.

[44] Read-copy-Update ((RCU):
https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt

[45] Smith, B. H., & Williams, L. (2009). “On guiding the augmentation of an
automated test suite via mutation analysis”. In Empirical Software
Engineering, Vol. 14, No. 3, (pp. 341-369).

[46] Wong, W. E., & Mathur, A. P. (1995). “Reducing the cost of mutation
testing: An empirical study”. In Journal of Systems and Software, Vol.
31, No. 3, (pp. 185-196).

[47] Yao, X., Harman, M., & Jia, Y. (2014). “A study of equivalent and
stubborn mutation operators using human analysis of equivalence”. In
Proceedings of the 36th International Conference on Software
Engineering, (pp. 919-930). ACM.

[48] Zhang, L., Hou, S. S., Hu, J. J., Xie, T., & Mei, H. (2010). “Is operator-
based mutant selection superior to random mutant selection?”. In
Proceedings of the 32nd International Conference on Software
Engineering, Vol. 1, (pp. 435-444). ACM.

[49] Zhang, L., Marinov, D., & Khurshid, S. (2013). “Faster mutation testing
inspired by test prioritization and reduction”. In Proceedings of the
International Symposium on Software Testing and Analysis, (pp. 235-
245). ACM

