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ABSTRACT
Echidna is a widely used fuzzer for Ethereum Virtual Machine
(EVM) compatible blockchain smart contracts that generates trans-
action sequences of calls to smart contracts. While Echidna is an
essentially single-threaded tool, it is possible for multiple Echidna
processes to communicate by use of a shared transaction sequence
corpus. Echidna provides a very large variety of configuration op-
tions, since each smart contract may be best-tested by a non-default
configuration, and different faults or coverage targets within a sin-
gle contract may also have differing ideal configurations. This paper
presents echidna-parade, a tool that provides pushbutton multicore
fuzzing using Echidna as an underlying fuzzing engine, and auto-
matically provides sophisticated diversification of configurations.
Even without using multiple cores, echidna-parade can improve
the effectiveness of fuzzing with Echidna, due to the advantages
provided by multiple types of test configuration diversity. Using
echidna-parade with multiple cores can produce significantly better
results than Echidna, in less time.
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1 INTRODUCTION
An echidna is a spiny monotreme; Echidna is a widely used open
source fuzzer for Ethereum smart contracts [7]. The collective noun
for echidnae is “parade” ; echidna-parade is a tool for configuring and
running multiple Echidna instances to improve the effectiveness of
smart contract fuzzing.
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Smart contracts for the Ethereum blockchain [4], most often
written in Solidity [16], a JavaScript-like language, support high-
value financial transactions, as well as tracking valuable IP and
even physical goods. It is essential that autonomous financial pro-
grams be reliable and protected against attack. Unfortunately, smart
contracts are often neither correct nor secure [3]. A survey catego-
rizing flaws in critical contracts [8] estimated that fuzzing, using
custom user-defined properties, might detect more than 60% of
the most severe, exploitable flaws in contracts, and that many of
these cannot easily be detected using purely static analysis. Highly
effective fuzzing is therefore essential to smart contract developers
and security auditors, and the Echidna tool is used by both contract
developers and internally auditors at Trail of Bits. Echidna is, to
our understanding, the most popular and best supported fuzzer for
Ethereum smart contracts, with almost an order of magnitude more
GitHub stars than any other open-source EVM fuzzer, and is used
in the testing and/or Continuous Integration for several third-party
contracts, including Uniswap (one of the most prominent decen-
tralized cyptocurrency exchanges, generating fees of between $2-3
million daily).

Echidna is essentially a single-threaded tool that does not make
effective use of multiple cores. However, multiple Echidna indepen-
dent Echidna processes can be run at the same time. An Echidna
process will, upon termination, produce a corpus of transaction
sequences needed to cover all reached contract locations and trans-
action dispositions (whether the transaction succeeded or caused
a revert of the EVM) as a set of files, and an Echidna process can
take as input a set of such transaction sequences to seed fuzzing.

The echidna-parade tool is an open source utility that orches-
trates multiple Echidna processes using this mechanism, to enable
both multicore fuzzing and more effective single-core fuzzing, by
diversifying the configuration of Echidna, in order to cover hard-
to-reach code, and discover subtle flaws. It is available via pypi
(pip install echidna-parade) or on GitHub (https://github.com/
agroce/echidna-parade). The tool is already being used internally
in security audits by Trail of Bits.

2 BASIC USAGE
Using echidna-parade is intended to be a push-button process, re-
quiring no additional expertise for users familiar with the Echidna
tool. For instance, if a user used the command line:
> echidna-test contract.sol --config config.yaml --contract TEST

to test a smart contract, then testing the same contract with echidna-
parade, using all available CPUs for one hour, would require only a
slight modification:
> echidna-parade contract.sol --config config.yaml --contract TEST

In both cases, a contract called TEST in a file called contract.sol
will be tested, based on a configuration file, config.yaml. The
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configuration file specifies the details of the fuzzing campaign to
be run, for Echidna, and specifies a baseline for generating a set
of varying configurations, for echidna-parade. The other major
obvious difference is that Echidna will run using a single core, while,
if called this way, without an --ncores command line argument,
echidna-parade will make use of as many cores as the tool finds
available. Figure 1 shows output from a typical echidna-parade run
from our experiments below.

Part of the need for echidna-parade arises from the complexities
of the configuration file. Echidna currently supports 34 different
configuration options in this file, over 20 of which have complex,
non-boolean values. Some of these parameters relate to the details
of the contract under test, e.g. special Ethereum addresses with
meaning to the contract, or simply determine basic properties of a
run, such as the time allowed for testing, format of the output, or
whether to try to find transactions with high gas prices or check
assertions in addition to user-defined properties. However, there are
configurations for transaction sequence maximum length, which
functions to test, and control of low-level test generation strategies
that have a large impact on test effectiveness, and are either hard to
tune or, for that matter, impossible to “tune” in that different values
are essential to covering different beahviors or bugs.

The echidna-parade tool stores all results from all the separate
Echidna runs it generates in separate directories, so that users can
inspect failed properties and violated assertion. The tool collects all
failures and provides a summary at the end of the run, including
information on where exact failure traces can be found. Users can
use these results to determine if increases in coverage or bugs were
correlated with inclusion or omission of certain functions.

3 ARCHITECTURE AND DIVERSIFICATION
STRATEGIES

The basic architecture of echidna-parade is simple. It uses the Slither
static analysis tool to scan the contract under test and extract needed
information, then examines any custom Echidna configuration
options provided by the user (in the form of a YAML file). After this
initial scan, it runs an initial run of Echidna using default or user-
configuration parameters, to form a starting corpus of transaction
sequences (API call tests, essentially). After this initial run, each
generation involves:

(1) Generating a set of novel configurations (YAML files) up to
the number of cores the tool is allowed to use.

(2) Spawning Echidna processes for each of these configurations.
Each process is seeded with the set of all coverage-enhancing
transaction sequences found by any run thus far.

(3) Collecting any transaction sequences from these runs that
produce new coverage, and adding them to the corpus.

(4) Reporting new corpus sequences discovered and/or new
property failures to the user.

The tool allows users to configure the time allotted to the initial
scan and to each generation, and initialize testing from an existing
corpus. A parade run can also be resumed, with the --resume
option, taking up where the fuzzing left off, a feature that often
proves useful in fuzzers such as afl and libFuzzer.

The core non-bookkeeping element of the tool is the construc-
tion of the novel configurations that provide search diversity and

improve testing. Understanding these sources of diversity is key to
understanding the rationale for the echidna-parade tool.

3.1 Swarm Testing (API Call Omission)
Swarm testing [10] is a method for improving automated test gen-
eration that relies on identifying features of tests, and disabling
some features in each test. For instance, if features are API calls,
and we are testing a stack with push, pop, top, and clear calls,
a non-swarm random test of any significant length will normally
contain multiple calls to all of these functions. In swarm testing,
for each test some of the calls (with probability usually equal to
0.5 for each call) will be disabled, but different calls will be disable
for each generated test. This produces less variance between calls
within a test, but much more variance between tests. Practically, in
the stack example, it will enable the size of the stack to grow much
larger than it ever would have any chance of doing in non-swarm
testing, due to some tests omitting pop and/or clear calls. Swarm
testing is widely used in compiler testing [13] and is a core element
of the testing for FoundationDB [18].

echidna-parade uses the Slither static analysis tool to extract
the set of public functions from tested smart contracts, and auto-
matically configures Echidna to omit some of these functions (the
probability of omission is 50%, by default, but can be configured)
during each run. We believe this provides the most important form
of variation in fuzzing. In particular, given that some bugs and/or
coverage targets are triggered by some function calls but suppressed
by other calls, it is important to perform testing with as many
different call sets as possible [9].

Because users may know that some calls are essential to the
functionality being testing, echidna-parade supports an argument,
--always, specifying function signatures that should never be omit-
ted from configurations.

3.2 Test Length Variance
Another important form of variation is the length of test sequences
[1, 2]. It is known that there is no single best choice for the length
of API call sequences in test generation; different Systems Under
Test (SUTs) and even different bugs and/or coverage targets in the
same SUT may “prefer” different test lengths. For example, a line of
code relating to a resource limit (a check for an array being full, for
example) may require a long test to have any chance of execution.
Another line of code may only execute if another value has not been
initialized by a different API function that can be called. Running a
larger number of shorter tests will enable executing this line more
often, since once the code is initialized, the line can no longer be
covered in a test. echidna-parade therefore varies the maximum
sequence length for each Echidna run as well, in a user-configurable
way (with a bias towards the default, tuned value).

3.3 Mutation and Search Variance
Finally, as Holzmann et al. showed, in hard search problems in
model checking, it is extremely useful to simply vary the under-
lying search methods, given the lack of an optimal solution [11].
The equivalent for Echidna is to vary the sequence mutation strate-
gies used in the coverage-driven GA search and the frequency
with which dictionary constants mined from source code are used.
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Starting echidna-parade with
config=Config(files=[’/Users/adg326/dss/crytic-export/flattening/DogTest.sol’],
name=’2hour.8.parade.experiment.29’, resume=None, contract=’DogTest’,
config=<_io.TextIOWrapper name=’plain.yaml’ mode=’r’
encoding=’UTF-8’>, bases=None, ncores=8, corpus_dir=’/Users/adg326/dss/corpus.2hour.8.parade.experiment.29’, timeout=7200,
gen_time=300, initial_time=300, seed=None, minseqLen=10, maxseqLen=300, PdefaultLen=0.5, PdefaultDict=0.5,
prob=0.5, always=[])

Results will be written to: /Users/adg326/dss/2hour.8.parade.experiment.29
Identified 29 public and external functions: Dog.rely(address), Dog.deny(address), Dog.file(bytes32,address), Dog.file(bytes32,uint256),
Dog.file(bytes32,bytes32,uint256), Dog.file(bytes32,bytes32,address), Dog.chop(bytes32), Dog.bark(bytes32,address,address), Dog.digs(bytes32,uint256),

...

RUNNING INITIAL CORPUS GENERATION
- LAUNCHING echidna-test in 2hour.8.parade.experiment.29/initial blacklisting [ ] with seqLen 100 dictFreq 0.4 and mutConsts [1, 1, 1, 1]

SWARM GENERATION #1: ELAPSED TIME 303.87 SECONDS / 7200
- LAUNCHING echidna-test in 2hour.8.parade.experiment.29/gen.1.0
blacklisting [ Dog.rely(address), Dog.deny(address), Dog.file(bytes32,address), ...
- LAUNCHING echidna-test in 2hour.8.parade.experiment.29/gen.1.1 blacklisting [ Dog.deny(address), Dog.file(bytes32,address), ...
...
COLLECTING NEW COVERAGE: 2hour.8.parade.experiment.29/gen.1.0/corpus/coverage/-7507126444194881135.txt
COLLECTING NEW COVERAGE: 2hour.8.parade.experiment.29/gen.1.0/corpus/coverage/-6907082692337979773.txt
COLLECTING NEW COVERAGE: 2hour.8.parade.experiment.29/gen.1.2/corpus/coverage/-4795647765542071453.txt
...
SWARM GENERATION #2: ELAPSED TIME 612.63 SECONDS / 7200
- LAUNCHING echidna-test in 2hour.8.parade.experiment.29/gen.2.0
...
DONE!
RUNNING FINAL COVERAGE PASS...
- LAUNCHING echidna-test in 2hour.8.parade.experiment.29/coverage blacklisting [ ] with seqLen 100 dictFreq 0.4 and mutConsts [1, 1, 1, 1]
COVERAGE PASS TOOK 62.12 SECONDS
NO FAILURES

Figure 1: Running echidna-parade on the DSS Code

Table 1: DSS Experiment Results

Echidna (5 hours) Parade (1 core, 5 hours) Parade (8 cores, 1 hour) Parade (8 cores, 2 hours)
Mean Fully Covered 88.63 90.33 91.33 94.3
Median Fully Covered 86.0 86.0 86.0 98.0
Std. Dev Fully Covered 7.17 7.36 7.78 7.26
Mean Non-Revert Covered 136.2 138.23 139.7 143.37
Median Non-Revert Covered 133.0 133.0 133.0 148.0
Std. Dev Non-Revert Covered 9.03 9.36 9.95 9.14

echidna-parade therefore also varies these parameters over the full
set of valid values, but with some bias towards the default values.

3.4 User-Controlled Variance
In addition to these automatic variations, a user can also provide a
set of “overlay” YAML Echidna configuration files to echidna-parade,
which will select one of these at random to use in each configura-
tion, replacing that configuration’s choices for any settings included
in the chosen YAML file. This feature makes it possible for users,
with some effort, to diversify any Echidna configuration option,
with any desired probability distribution. In particular, we expect
that some users will want to use this to, e.g., run some fuzzing
in configurations where the sender of transactions is the contract
owner/creator, and some in configurations where unauthorized
users originate calls into the contract. These kinds of diversifica-
tion are inherently contract-specific, unlike the generic forms of
diversity echidna-parade automatically provides.

4 EXPERIMENTAL EVALUATION
We first compared the performance of Echidna and echidna-parade
on the example contract included in the echidna-parade repo to
demonstrate the value of swarm testing. We configured both tools

to use 10 minutes of CPU time (so echidna-parade derived no ad-
vantage in testing cycles from using multiple cores, and in fact paid
a substantial overhead due to having to restart the fuzzer multi-
ple times). There are three detectable assertion violations in the
example. One of the violations is trivial to detect, but detecting
it will also abort the trace and prevent detecting the other issues.
The other two violations require constructing very large arrays
via repeated calls. We configured echidna-parade to always include
the functions with the hard-to-find violations, and three functions
known to be relevant to finding the vulnerabilities. User knowledge
of such “key” functions is common in real analysis of contracts, but
cannot be expressed to Echidna without using echidna-parade.

Over 10 runs, echidna-parade detected a mean of 2.44 of the
violations, with a median of two detected issues. It detected the
hardest-to-trigger violation in 7 of the runs. Echidna alone only
detected a mean of 1.6 issues, with a median detection of 1.5 issues.
Moreover, Echidna only detected the hardest-to-produce problem
twice. The difference between the two approaches was statistically
significant by Mann-Whitney U-test with p ≤ 0.005.

For a more substantial, real-world evaluation, we compared
Echidna without any variance, using a fixed configuration, to a
5 hour single-core echidna-parade run using the default variance, a
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1 hour echidna-parade run using 8 cores, and a 2 hour echidna-
parade run using 8 cores. For our evaluation, we used the liq-
uidation contracts from the Multi Collateral Dai contract code
(https://github.com/makerdao/dss), developed as part of the Mak-
erDAO decentralized autonomous organization’s Dai stablecoin
(market cap as we write of approximately $3.7 billion). The code
is a variant of the repo code used during a security audit [8] https:
//tinyurl.com/dazdu66c. Results in Table 1 show results for 30 runs
of each of these approaches. The first set of results compares fully-
covered lines of code. A line of code in a solidity contract is fully-
covered if it has been executed both in a context where the function
in which it resides runs to completion and a context where the
function reverts. In the Ethereum blockchain, a revert causes a call
to a contract to terminate and roll back any state changes. Testing
revert behavior can be essential for detecting certain bugs, ensur-
ing guards on prohibited functionality are enforced. The second
comparison considers only non-reverting coverage; while covering
reverts is important, it is usually most important for testing to run
all code in a context where the effects propagate to produce state
changes. Despite the large overhead of continually starting up a
new echidna process, writing new coverage results to disk after
each run, and re-executing all corpus transaction sequences, even a
single core parade produces better results over 5 hours. Making use
of multiple cores, which is not supported inside Echidna itself, a 1
or 2 hour echidna-parade run can produce much better results. The
2 hour, 8-core parade run produces statistically significantly better
results for all measures, by the Mann-Whitney U test, with p-values
below 0.001. All other results, due to the notably high variance of
testing, are not significant (0.11 ≤ p ≤ 0.24). Some coverage targets
were only reached during a parade run; we are unsure if these can
be covered by non-diversified Echidna, in any reasonable amount
of time. In fact, even using echidna-parade there were coverage
targets that were only covered once in total experiment runtime of
over 36 CPU days! Clearly for effective and efficient testing of this
contract, use of echidna-parade is required.

5 RELATEDWORK
Smart contract fuzzing has been a popular topic in recent literature.
To our knowledge, ContractFuzzer [12] was the first such tool
described in the literature. Harvey [17], sFuzz [15], and other tools,
in addition to Echidna [7], the basis for our work, have subsequently
appeared, and more are in development.

The foundations for the approach to diversification taken by
echidna-parade are three primary lines of research. The first of these
is the idea of swarm testing [10], which aims to improve testing by
omitting some features uniformly throughout a test, in part because
a feature (e.g. API call) may suppress some behaviors [9]. Second,
there is literature showing that a single test length may not be ideal
for all SUTs or behaviors of an SUT [1, 2]. Finally, there is the swarm
verification approach to model checking [11], a precursor to swarm
testing, which diversifies search strategy parameters themselves.
The only other tool we are aware of that adds swarm testing as a
layer atop an existing fuzzer is the DeepState tool [6], which was
a direct inspiration for echidna-parade. Also related is the idea of

ensemble fuzzing, as in Enfuzz [5] or PAFL [14], though in our work
we “ensemble” Echidna only with diverse instances of Echidna itself,
which more closely resembles swarm verification with SPIN.

6 CONCLUSION
Smart contract fuzzing is a challenging problem, a particularly
high-stakes instance of the general API-sequence test generation
problem. As our experiments above show, high stakes contracts can
be hard to explore, even with multi-hour fuzzing runs. The echidna-
parade tool addresses this problem in two ways. First, it adds easy
multicore support to the essentially single-threaded Echidna smart
contract fuzzer. Second, echidna-parade adds additional value by
automatically diversifying the fuzzing performed by Echidna, which
makes some bugs much easier to find. The tool is open source and
is already being used in security audits at Trail of Bits.
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