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Abstract—R packages written in the widely used Rcpp frame-
work are typically tested using expected input/output pairs that
are manually coded by package developers. These manually
written tests are validated under various CRAN checks, using
both static and dynamic analysis. Such manually written tests
allow for subtle bugs, since they do not anticipate all possible
inputs and miss important code paths. Fuzzers pass random,
unexpected, potentially invalid inputs to a function, in order to
identify bugs missed by manually written tests.

This paper presents RcppDeepState, an R package that uses
the DeepState framework to provide automatic fuzzing and
symbolic execution for R packages written using the Rcpp
framework. Using RcppDeepState, a package developer can
systematically fuzz test their Rcpp functions, without having
to manually write any inputs nor expected outputs. Randomly
generated inputs are passed to each Rcpp function, and Valgrind
is used to check for various memory access violations and
memory leaks. In our system, a test harness can be used to
fuzz test an Rcpp function using different backend fuzzers
including afl, libFuzzer, and HonggFuzz. For even more flexibility,
R package developers can write their own random generation
functions and assertions.

We implemented random generation functions for 8 of the
most common Rcpp data types, then used these functions to
fuzz test 1,185 Rcpp packages. Valgrind reported issues for more
than 2,000 functions (over nearly 500 packages) which were not
detected using standard CRAN checks on manually specified
test/example inputs. Developers confirmed for several of these
issues that the problem was reproducible and represented missing
or flawed code. These results suggest that RcppDeepState is useful
for finding subtle flaws in Rcpp packages.

Index Terms—fuzzing, R language, C++ libraries, automated
test generation, statistical software, memory errors

I. INTRODUCTION

Effective testing is important for all real-world software sys-
tems, but is especially important for software libraries, since
library code is often used by many other software systems.
Those systems are unlikely to perform their own testing of
library code they use, and any bugs in the libraries may cause
problems for client code. Because developers understand their
own code better than library code they simply make use of,
this also leads to hard-to-debug problems.

Most software testing, including for reused libraries, re-
mains rooted in manual testing. Developers of libraries write
tests that check whether, given certain concrete inputs chosen
by the developer (or a test engineer, for large enough projects)
the software produces expected outputs. Essentially, for many
libraries used in mathematics, statistics, and scientific com-
puting, the basic approach is one of specifying a fixed set of
input/output pairs.

This is basically the use of non-parameterized unit tests.
Parameterized unit tests [1], [2] in contrast apply the ideas
of property-based testing [3], [4] to generalize a test so that
inputs are generated and then the behavior of such arbitrary
inputs is checked. A key problem in parameterized unit testing
or property-based testing is the development of a specification
that can check correctness of arbitrary inputs values. In the
case of mathematical or scientific code, where no easy method
for checking results on arbitrary values may exist, this can be
an especially difficult challenge.

However, drawing from the large body of work on fuzzing,
one important kind of software failure can be identified
without a full specification. First, users of libraries generally
expect that code will return an error code rather than crashing,
given invalid inputs. Thus, crashing on any input can often
be seen as a fault. Second, and perhaps more importantly,
illegal memory accesses and memory leaks, as well as other
kinds of undefined behavior in C and C++ programs, can be
automatically identified. Library code, no matter what input it
is given, should generally not write to memory it is not sup-
posed to write to, or depend on uninitialized memory values.
Such bugs, even if they do not immediately result in incorrect
outputs (and so might be missed by most manual testing in
practice, even if the triggering inputs were identified), can lead
to particularly devastating problems, where immediate results
of the bad call are correct, but memory has been corrupted, so
values later computed (including by code without bugs) can
be incorrect.

Memory leaks may not lead to incorrect results, but in
large-scale scientific applications, a memory leak in a library



function can make it impossible to carry out needed work.

A. R and Rcpp

The R programming language is a free software environ-
ment for statistical computing and graphics [5]. It is widely
used among statisticians and data miners for developing
statistical software and data analysis. An R package is the
fundamental unit of shareable code in the R system [6]. An
R package may include tests that are manually written by the
package author, and which validate the functional requirements
of that package. The standard distribution mechanism for R
packages is the CRAN (Comprehensive R Archive Network).
It is a network of FTP and web servers around the world that
stores identical, up-to-date, versions of code and documenta-
tion for R packages. As of Jan 2021, there are around 10,000
R packages available through CRAN.

Although R is very easy to use it is not the fastest or most
memory efficient language. R is a garbage-collected system,
with the inefficiencies sometimes introduced in managed-
memory settings. For this reason, many widely used R libraries
are actually largely written in C++, a lower-level, faster, and
less safe language. Rcpp is a an R package that facilities
extending R with C++ [7], [8], [9]. Rcpp makes it very simple
to connect C++ to R, by providing C++ versions of all the
data types provided by R. Thousands of R packages make use
of Rcpp, including widely used packages critical to various
scientific efforts. Use of Rcpp is documented in many R
tutorials and books covering advanced usage of R [10].

Because Rcpp-based packages use the C++ language, which
allows for many memory-safety violations and undefined
behaviors in compiling code, often with subtle and hard-to-
predict results, Rcpp introduces the potential for bugs that
can cause frustration to developers in the form of hard-to-
understand crashes or, in the worst case, incorrect results in
important scientific or other applications of R. At heart, the
manual memory management that is a feature of C++ is also
the largest danger to library-developers, and, perhaps more
importantly, library users, relying on C++ to make R more
efficient.

B. DeepState

As noted above, parameterized unit testing generalizes unit
testing by allowing the generation of input values, rather than
relying on a small set of provided values. The most promising
approach to generating bug-inducing inputs to software in
recent years has been fuzzing [11]. Fuzzing is based on
the generation of randomized input data, and is, essentially,
an extension of random testing, which has been practiced
since the earliest days of software testing. Most fuzzers go
beyond pure random testing by incorporating some form of
genetic-algorithm-like feedback, where inputs that are deemed
interesting (due to, e.g., producing novel code coverage) are
mutated to find further interesting inputs.

There are many fuzzing tools, including afl [12], lib-
Fuzzer (https://llvm.org/docs/LibFuzzer.html), Eclipser [13],
and HonggFuzz (https://github.com/google/honggfuzz).

Learning to use each of these tools, and guessing which
one(s) will work best, is difficult. Moreover, fuzzers tend to
expect that software under test takes as input either a file or an
arbitrary byte stream, and provide little or (usually) no support
for testing library functions that take, e.g., multiple parameters
of varying types.

DeepState [14] is a front-end that allows tests to be written
in a format similar to the widely used Google Test unit testing
framework, but with parameterization. DeepState then allows
users to generate input data using a wide variety of fuzzers,
including afl, libFuzzer, Eclipser, and Honggfuzz. DeepState
also includes a very fast brute-force fuzzer that does not use
feedback, but has almost no overhead for input data generation.
DeepState also allows users to apply symbolic execution tools,
such as Manticore [15], again without changing their test
harness.

A test harness [16] is another name for the parameterized
unit test: code that controls the types and constraints on
input values, and the expected test results. A unit test is a
particularly simple form of test harness, and a parameterized
unit test follows a choose/assume/assert framework [16] that
is applicable to a wide variety of test generation tools.

DeepState does not automate the generation of test harness-
es/parameterized unit tests. This is left to developers, and while
DeepState provides an API to generate most base types in
C/C++, and to orchestrate choosing among code fragments to
execute, writing generators for more complex input types, such
as those provided by Rcpp, is a substantial burden on users.
Moreover, using DeepState requires users to drop out of the R
development environment they are likely most familiar with.

C. RcppDeepState

In this paper we propose a library and tool, RcppDeepState.
RcppDeepState (1) provides generators for 8 of the most
commonly used Rcpp data types, (2) automatically produces a
DeepState harness, including some automated assertions, and
(3) orchestrates using various fuzzers to generate data for the
generated harness. RcppDeepState gives R library developers
using Rcpp a push-button solution to fuzzing their code.

1) Valgrind and RcppDeepState: While library developers
can extend the RcppDeepState-generated harnesses with their
own custom assertions, it is essential to give developers
an easy way to look for the most common C++ memory
problems, which are perhaps the largest danger of using Rcpp.
Valgrind [17], [18], [19] is an instrumentation framework
for building dynamic analysis tools. There are Valgrind tools
that can automatically detect many memory management and
threading bugs. RcppDeepState lets users run their fuzzing (or
tests generated by fuzzing without Valgrind) under Valgrind,
to detect memory problems that go beyond simple crashes.

D. Contributions

We applied RcppDeepState to a large number of Rcpp
packages in the CRAN repository, and discovered a number
of potentially dangerous memory safety issues and memory
leaks. We reported these to developers, and while we await



confirmation of many issues, we have received feedback
from multiple developers acknowledging the problems we
discovered. In addition to showing the feasibility of using
RcppDeepState (we were able to apply it to a large number
of packages without any special developer insight into those
packages), our results shed some light on the effectiveness of
various fuzzing tools and methods in the setting of R language
libraries using C++ for speed and memory efficiency.

II. RELATED WORK

We propose a new R package, RcppDeepState: an inte-
grated fuzzing tool that supports advanced automated test
generation for R packages using Rcpp to interface to C++
code. Conventionally, R packages are tested using unit tests
under unit testing frameworks, including testthat [20], RUnit
[21], tinytest [22], and unitizer [23]. In these frameworks, test
cases and expectations are written using R code. Assertions or
expectations must be manually written, and are often basically
input/output pairings.

The CRAN repository also performs automatic additional
analysis of code, running included tests under compiler san-
itizers (e.g., clang/LLVM’s ASAN) and even under Valgrind.
When R packages are deployed to the CRAN repository,
CRAN performs these and other checks using the manual test
included.

Fuzzr [24] is another R package that fuzz tests R functions
by passing in a wide array of pre-defined inputs. It does not
really offer full-featured automated test generation for R code.

DeepState, and thus RcppDeepState, are inspired by the
property-based testing paradigm. Property-based tools, follow-
ing on QuickCheck [3], including PropEr [25], Hypothesis [4],
and ScalaCheck [26], are usually based on some form of ran-
dom data generation, without symbolic execution or feedback-
based fuzzing. Other tools, drawing on a JUnit paradigm, but
providing property-based testing, include Pex/IntelliTest [27]
and UDITA [28].

III. IMPLEMENTATION AND ARCHITECTURE OF
RCPPDEEPSTATE

A. The Test Harness

The most important functionality provided by RcppDeep-
State is the generation of a DeepState harness for testing
a function. Fuzzing itself and other aspects of testing are
provided via DeepState.

In order to explain what RcppDeepState provides, we will
show a simple test harness generated using the tool (Figure 1).

The code begins with three includes that use C++ libraries
essential to RcppDeepstate; only one of these is the RcppDeep-
State library itself. To integrate an external C++ file with an
Rcpp application package, RcppDeepstate uses RInside [29].
To use RInside in any program first we need to create an
instance of the RInside class, which represents an embedded
R interpreter for a C/C++ program. The RInside package is
designed to make it easier to embed R in a C++ class. Second,
the RcppDeepState library itself provides data generators
for commonly used R/Rcpp types. Finally, we include the

# i n c l u d e <R I n s i d e . h>
# i n c l u d e <RcppDeepSta te . h>
# i n c l u d e <D e e p S t a t e . hpp>
I n t e g e r V e c t o r MergeSor t ( I n t e g e r V e c t o r x ,

I n t e g e r V e c t o r y ) ;
TEST ( v e c t o r s o r t , merge ) {

R I n s i d e R ;
x = R c p p D e e p S t a t e I n t e g e r V e c t o r ( ) ;
y = R c p p D e e p S t a t e I n t e g e r V e c t o r ( ) ;
t r y {

MergeSor t ( x , y ) ;
} ca tch ( Rcpp : : e x c e p t i o n& e ) {

c o u t << ” E x c e p t i o n Handled ” << e n d l ;
}

}

Fig. 1. An Example RcppDeepState-Generated Test Harness

DeepState library, which allows access to the DeepState core
API and turns the code into a test harness by automatically
adding either a main or a libFuzzer entry point, depending
on context.

The developer does not have to produce this code; instead
the developer specifies that the function to be tested is Merge-
Sort, which takes as input two integer vectors. RcppDeepState
does the hard work, including adding an exception handler so
that normal Rcpp exceptions do not cause test failure.

B. RcppDeepState Provided Datatypes

We performed an analysis of the frequency of the datatypes
used in Rcpp functions in the R packages on CRAN, in order
to determine the most important generators for RcppDeepState
to implement. Table I shows the frequencies of types in
functions and packages.

Although SEXP and Rcpp::List are very frequently
used datatypes, no random generation functions were
implemented for these types because they are extremely
dynamic and the generation of useful values for these inputs
is library dependent; without further context, fuzzing these
types would generate a large number of false positives. In
contrast, Rcpp::XPtr<XPtrTorchTensor>, also highly
dynamic, is present only in 1 package and 371 functions,
so cannot be seen as a high priority for implementation.
We implemented DeepState generators for the other most
frequently used datatypes (Rcpp::NumericVector,
Rcpp::NumericMatrix, arma::mat,
std::string, Rcpp::CharacterVector, and
Rcpp::IntegerVector). Although DeepState has
built-in generators for int and double we needed to
typecast them from raw byte-based C types to R/Rcpp types.
Implementing generators for these 8 types allowed us to
fuzz 6,860 functions over 1,185 packages. RcppDeepState
generates fuzzer specific inputs only for the 8 most frequently
occurring data types used in Rcpp functions in R packages.
These most frequently occurring data types contribute 70%
of the total tested methods from the packages on CRAN. The
remaining 30% of the methods have at least one argument
whose data type is not frequent or is highly dynamic (SEXP,



Rcpp::List, etc.). When testing thousands of methods the
probability of missing the methods with the least common
data types is acceptable, considering the amount of work that
we need to put into generating useful defaults for those data
types.

TABLE I
DATATYPE FREQUENCIES

Data type # Functions # Packages
SEXP* 455 90
Rcpp::NumericVector 393 174
Rcpp::XPtr<XPtrTorchTensor>* 371 1
Rcpp::NumericMatrix 291 146
arma::mat 286 127
Rcpp::List* 269 86
std::string 216 84
int 123 73
Rcpp::CharacterVector 121 54
Rcpp::IntegerVector 99 43
double 89 50
Total (including *) 9915 1360
Total fuzzable (excluding *) 6860 1185

C. RcppDeepState Architecture

Fig. 2. RcppTestPackage Workflow When Tested Using RcppDeepState.

An Rcpp package has a structure based on a stan-
dard set of folders, namely R (containing the critical file
RcppExports.R), man, src, and, most importantly for our
purposes, standardized description and namespace files. Rcp-
pDeepState operates on this standard organization scheme as
follows:

• First, src\RcppExports.cpp is parsed and a harness
is generated for each exported function call; these are the
functions visible to users of the library, so they are the
functions we need to fuzz. A harness is based on a generic
template, e.g.,

Rcpp: : fun1(datatype1, datatype2)

The compiled test harness, e.g.,

fun1 DeepState TestHarness.o

, is linked against the TestPackage’s dynamic library
(TestPackage.so), producing a fuzzable executable.

• DeepState is used to perform fuzzing, and the output files
for specific fuzzers are processed to bucket results into
.pass, .fail, and .crash files. These can also be
replayed as regression tests, or as a corpus for future
fuzzing.

• Valgrind is used to further analyze passing runs for
memory use problems that do not cause a crash or
property violation.

Figure 2 shows the basic flow, including the underlying
RcppDeepState functions called, for testing a hypothetical
RcppTestPackage using RcppDeepState, including generation
of Valgrind traces for presentation to the user (discussed next).

D. Valgrind Analysis

Valgrind memcheck can detect the use of uninitialized
memory, reading/writing memory after it has been free’d (use-
after-free), reading/writing off the end of malloc’d blocks,
reading/writing inappropriate areas on the stack, and memory
leaks (where pointers to malloc’d blocks are lost forever
or there is mismatched use of malloc/new/new [] vs.
free/delete/delete []).

We run Valgrind not during fuzzing itself, which imposes
too high an overhead for many fuzzers, but on the corpus
of interesting tests generated by each fuzzer, in particular the
.pass files (there is little point in using Valgrind on already-
failing tests).

IV. RCPPDEEPSTATE OVERVIEW

The Figure 2 depicts the stages that include in testing an
Rcpp package using RcppDeepState.

1) Parse & Extract: Once the user has the source code
for the Rcpp test package available in his local machine
that is either downloaded from the CRAN repository or
developed by the user we need to parse the data that is
present in the src folder’s RcppExports.cpp file. This file
contains all the available Rcpp functions defined by the
user along with the list of arguments and their datatypes.

2) Type-Match Extraction: RcppDeepState defines a test
harness only for those functions that only take arguments
from the specified 8 datatypes. After parsing the Rcpp-
Exports.cpp file we match those captured data types and
generate the test harness.

3) Primary Fuzz Run: The system automatically generates
the test harnesses for each function in the package in the
function folder in the inst/testfiles path. This test harness
is stored in the function folder along with the required
makefiles. The system then compiles and runs the test
harness and stores the fuzzer generated inputs in the
outputs folder.



4) Secondary Fuzz Analysis: In this step we analyze the
previously generated outputs from the fuzzers. This anal-
ysis runs the test harness executable using the memory
debugging tool Valgrind.

5) Result Analysis: The Valgrind run stores the obtained
results in an XML format and we parse the XML data
and generate a user-readable data frame with details
including the error kind, error message, and the trace
showing the line number and the file name making it
easier for the user to rectify the error based on the details
provided.

A. RcppDeepState Tool Demo:

In this section we will look at testing of an Rcpp function
mi from the BNSL package. Consider the following function
BNSL::mi where the NumericVectors x and y and int proc are
the ]parameters for the function:

/ / [ [ Rcpp : : e x p o r t ] ]
double mi ( Numer icVec tor x , Numer icVec tor y ,

i n t p roc =0){
i f ( p roc ==0) re turn ( J e f f r e y s m i ( x , y , 0 , 0 ) ) ;
e l s e i f ( p roc ==1) re turn (MDL mi( x , y , 0 , 0 ) ) ;
e l s e i f ( p roc ==2) re turn ( BDeu mi ( x , y , 0 , 0 , 1 ) ) ;
e l s e i f ( p roc ==3) re turn ( e m p i r i c a l m i ( x , y ) ) ;
e l s e i f ( p roc ==9) re turn ( e m p i r i c a l m i ( x , y ) ) ;
e l s e i f ( p roc ==10) re turn ( con t mi ( x , y ) ) ;
e l s e re turn ( J e f f r e y s m i ( x , y , 0 , 0 ) ) ;

}

The inserted code includes a proc estimation that is based
on Jeffrey’s prior, the MDL, BDeu, cont, and empirical prin-
ciple. If the argument proc is missing, proc=0 (Jeffreys’) is
assumed. All Rcpp packages have documentation written by
the developer which provides a short overview of the functions
and exposes the semantics of the function by providing valid
input examples.

mi> n=100
mi> x=rbinom ( n , 1 , 0 . 5 ) ; y=rbinom ( n , 1 , 0 . 5 ) ; mi ( x , y )
[ 1 ] 0
mi> z=rbinom ( n , 1 , 0 . 1 ) ; y =( x+z ) ; mi ( x , y ) ;
[ 1 ] 0 .5204089
mi> x=rnorm ( n ) ; y=rnorm ( n ) ; mi ( x , y , proc =10)
[ 1 ] 0
mi> x=rnorm ( n ) ; z=rnorm ( n ) ; y =0 .9 *x+ s q r t ( 1 − 0 . 9 ˆ 2 ) * z ;

mi ( x , y , proc =10)
[ 1 ] 0 .4281646
>

However, these (trivial) examples/tests don’t explore all the
possible paths of the function. In this case, the inputs only
explore the 2 paths where the proc value is 0 or 10.

> r e s <− d e e p s t a t e read v a l g r i n d xml ( ” mi example . R” )
> r e s
Empty data . t a b l e (0 rows and 5 c o l s ) : e r r . k ind ,

message , f i l e . l i n e , a d d r e s s . msg , a d d r e s s . t r a c e

When we run the predefined examples/tests for the mi
function under Valgrind we don’t see any errors. Testing the
code on these predefined inputs is inadequate for claiming
code is likely bug free. We need to explore all the possible
paths that increase the code coverage by passing randomized

or unexpected inputs to the function. To do that we need to
test the function under RcppDeepState as follows:

> pkg . path <− ” / home / u s e r / BNSL”
> fun <− ” mi ”
> RcppDeepSta te : : d e e p s t a t e f u z z fun ( pkg . path , fun ,

t ime . l i m i t . s e c o n d s =3)
[ 1 ] ” mi ”

The deepstate fuzz fun() call results in test harness gener-
ation for the provided Rcpp function, followed by running the
test harness for the provided Rcpp function. It also generates
.crash, .fail, .pass extension files depending upon the type of
response obtained by running the inputs on the executable.

The next step includes analyzing those generated inputs
under Valgrind looking for the bugs/errors.

> path <− ” / home / u s e r / BNSL / i n s t / t e s t f i l e s / mi ”
> s eed a n a l y z e <− d e e p s t a t e f u z z fun a n a l y z e ( path ,

t ime . l i m i t . s e c o n d s =10)
r u n n i n g t h e e x e c u t a b l e . .

The deepstate fuzz fun analyze() returns a data table with
the inputs and the error messages and the position where the
error occurred.

> s t r ( s eed a n a l y z e $ l o g t a b l e )
L i s t o f 1
$ : C l a s s e s data . t a b l e and data . frame : 1 obs . o f 5

v a r i a b l e s :
. . $ e r r . k ind : c h r ” I n v a l i d R e a d ”
. . $ message : c h r ” I n v a l i d r e a d of s i z e 8 ”
. . $ f i l e . l i n e : c h r ” mi cmi . cpp : 5 5 ”
. . $ a d d r e s s . msg : c h r ” Address 0 x9d66358 i s 0

b y t e s a f t e r a b l o c k of s i z e 184 a l l o c ’ d ”
. . $ a d d r e s s . t r a c e : c h r NA
. . − a t t r ( * , ” . i n t e r n a l . s e l f r e f ” )=<e x t e r n a l p t r >

The output shows there was an issue in file mi cmi.cpp
at line 55. If we trace back to that function line the code
combines vector x and y to produce a new table c xy. If the
size of vectors x and y are not equal the system generates
an issue because we are trying a create a combined table
for two unequal vectors, which causes an invalid read. The
fuzzer specific datatypes produce unequal vectors exposing the
invalid read which was not identified running the predefined
inputs. Therefore we need to specify a condition to check if
the sizes of the vectors x and y are equal.

V. RESULTS AND COMPARISON OF FUZZERS

We applied RcppDeepState, using only the default settings
of the tool and the provided RcppExports.R files to fuzz
a large set of CRAN packages using Rcpp. We restricted our
analysis to functions where all inputs were a type supported
by the RcppDeepState generators.

Our purpose was twofold: first to demonstrate that even
in the absence of additional specification of correctness by
developers, RcppDeepState could find memory safety prob-
lems and memory leaks. Second, we wanted to compare a few
different fuzzers, to see if there was an obvious difference in
performance between fuzzers.



A. Low Budget Random Testing

In real-world fuzzing campaigns against security interfaces
or compilers, it is often important to fuzz a system for hours
or, often, days [?]. This is inconvenient for using fuzzing in a
property-based testing context, or during normal development
of an R package. Many property-based testing tools set a
default timeout of only one minute [30], and this is a short
enough budget that developers can easily perform fuzzing after
every change to their code. However, feedback-based fuzzers
generally require some startup time simply to calibrate which
inputs to focus on, so one minute is somewhat unrealistic.

Because R developers are unlikely to be experienced in
fuzzing, and are more likely to use a tool that provides results
even without a substantial investment of time or attention, we
therefore performed our experiments using a twenty minute
fuzzing budget for each fuzzer. This is a compromise between
the very short testing budgets typical of property-based testing
tools and the multi-hour runs typical of security-oriented
fuzzing campaigns.

B. Fuzzers Compared

We wanted to compare fuzzing using tools likely to be
available to all DeepState users on any unix-like platform, and
tools widely perceived as easy to install and useful. The most
well known fuzzers are afl [12] and libFuzzer, the function-
based fuzzer included with recent versions of LLVM/clang.
We additionally used DeepState’s built-in brute-force fuzzer,
which lacks coverage-driven feedback and mutation of inputs,
but has extremely high throughput for test generation. We
hypothesized that even brute-force fuzzing would work well
for developers looking for memory safety issues in Rcpp-
based packages. Because afl, unlike libFuzzer and DeepState’s
fuzzer, requires an initial seed corpus, we used the example
values that are included in every R package with each function
as initial seeds for afl in one run, in addition to the default
null file corpus provided by DeepState. All experiments were
performed on an Intel Xeon(E)E-2136 CPU 3.30Ghz, with
32GB of RAM, using a single core (the fuzzers are all
essentially single-threaded so multiple cores are only useful
for running multiple fuzzer instances).

C. Experimental Results

We downloaded 2,077 Rcpp packages from CRAN. Of
these, only 1,185 packages could be analyzed, due to our
limited set of generators, or the absence of an RcppExport
s file. We fuzzed 6,860 functions. Of these, 965 produced at
least one Valgrind warning. Table II shows overall data on our
experiments.

The last three rows are the core result. This shows, for each
fuzzer used, the number of packages/functions for which at
least one problem (crash or Valgrind issue) was found. All of
the fuzzers were useful, and as we later show, they identified
different problems in different packages and functions. How-
ever, in terms of raw numbers, afl performed poorly using the
null corpus, and much better when seeded with the data in the
R package test/example directories. However, libFuzzer

TABLE II
SUMMARY OF RESULTS

Type # Packages # Functions
Total Rcpp Packages 2149 19735
No RcppExports 247 NA
At least one unfuzzable type 717 12,875
Executed under RcppDeepState 1,185 6,860
afl (no corpus) 5 8
afl (corpus) 27 59
libFuzzer 73 117
DeepState Fuzzer 478 911

performed better overall than afl, even with a better corpus
than libFuzzer. Finally, the brute force DeepState fuzzer, while
probably less capable of finding complex, deep, bugs requiring
discovery of deep code paths, was extremely effective for
finding corner-case inputs for these functions. In a sense, the
DeepState fuzzer is simply the original Miller et al. [?] fuzzing
proposal, adapted to type-correct function input generation. We
speculate that R code vulnerabilities may have shallow paths
amenable to fast brute-force approaches, and not requiring
large fuzzing budgets or advanced feedback, unlike more
typical fuzzing targets, e.g., media parsers or web browsers.
The last row shows the number of Valgrind warnings produced
for the test code included with each package. None of the
inputs provided as examples resulted in exposing any of the
memory-safety problems.

Most of the problems we identified were Valgrind errors;
afl did not identify any crashing inputs, and the brute force
fuzzer identified 478 only when run under Valgrind; libFuzzer
identified 378 crashes using address sanitizer in place of
Valgrind, however.

TABLE III
VALGRIND ERROR COUNT

Error Type DeepState afl libFuzzer
Invalid read 405 11 20
Invalid write 97 13 53
Use of uninitialized values 6 7 1
Conditional jump or move(s) 113 7 3
Argument size 16 0 0
Possibly lost data 274 34 16

Table III shows detailed data on the types of Valgrind
warnings/errors, for one package. A more detailed explanation
of these error categories makes it easier to understand these
results:

• Invalid read: there was an attempt to read from an invalid
memory address.

• Invalid write: there was an attempt to write to an invalid
memory address.

• Use of uninitialised values: there was a read from an
uninitialized value in memory.

• Conditional jump or move(s): a branch depends on unini-
tialized data.



• Argument size: an incorrect value was passed to a system
call, e.g., malloc(-1)

• Possibly lost data: there is a potential memory leak, where
allocated memory was not deallocated.

While the memory leaks may be harmless in some cases
(Valgrind’s detection of memory leaks can be less precise
than other errors) most of the other problems indicate at
least a potential for serious problems, including reliance of
function values on the compiler version and previous contents
of memory, or potential corruption of memory.

Figures 3 and 4 show Venn diagrams of the overlap in results
between the fuzzers. Note that while the DeepState brute force
fuzzer was the most successful, there were a large number of
functions or packages where problems were only identified
by afl and/or libFuzzer, as well. It is good to make use of all
three fuzzers, which is easy to do with RcppDeepState. It is
likely other fuzzers would find other problems. We did not run
Eclipser, for example, which is good at finding many problems
other fuzzers do not, because its approach really needs a larger
time budget than twenty minutes. For final checks before
submitting a package to CRAN, use of all fuzzers supported,
for longer timeouts (at least an hour) would be a sound
development practice. Scientific or economically important
results can depend on R packages, so for final production
versions, more substantial testing is in order. RcppDeepState
makes that easy.

Fig. 3. A Venn diagram for the Universe(U) of 1,185 test packages,
representing the count of packages that have issues identified by each of
the fuzzers.

Surprisingly, the difference in fuzzer performance is not
obviously attributable to throughput differences. As Table IV
shows, while the DeepState fuzzer was faster than other
fuzzers, the difference was not large, due to the fact that
RcppDeepState writes all tests to disk in order to allow offline
Valgrind analysis. The need to write outputs accounts for the
fact that libFuzzer, which is normally much faster than afl, was
actually somewhat slower in our experiments: the advantages
of function-call fuzzing are reduced in our setting. If users add
custom properties and/or are only interested in actual crashes,
throughput for libFuzzer and the DeepState fuzzer could be
made much higher, and that of afl somewhat higher, by turning
off the writing of non-failing inputs to disk.

Fig. 4. A Venn diagram for the Universe(U) of 6,860 functions, representing
the count of functions that have issues identified by each of the fuzzers.

TABLE IV
INPUTS GENERATED PER MINUTE

Fuzzer Mean Median Standard deviation
afl 86 77 4.94
libFuzzer 79 63 5.15
DeepState 97 81 7.15

We contacted developers with the results of our analysis, and
five developers (so far) responded to us, confirming our results.
In some cases, the response suggested that the library expects
users to provide valid inputs, and our fuzzing results did not
satisfy such preconditions. However, given the potential harm
from memory corruption if users make a mistake in calling a
package function, it would be best for such checks to be added
to the package code, since most seem to be simple, cheap
checks (e.g., two vectors must match in size). Our harness
will not report a problem if a function detects invalid inputs
and gracefully raises an exception, alerting a user that the
input is invalid. And, in fact, three of the developers in their
initial response explicitly noted that we had identified missing
important checks on data validity, that should be added to the
library code.

VI. DISCUSSION:

In this section we discuss our reasoning for the decisions we
made that might call into question the validity of our approach.

A. Threshold Running Time:

The selected approach of running the test harnesses for
a threshold time limit of 20 minutes for each fuzzer comes
with an overhead. Running the fuzzers along with valgrind for
more than the chosen time limit incurs significant performance
issues. R uses a large amount of memory and generates large
vectors and matrices. Fuzzers are incredibly fast; they generate
thousands of inputs in a short span, but the issue occurs when
we are trying to serialize those inputs to R level inputs. The
longer we run the fuzzers the larger the data that needs to be
translated, and the larger the size of vectors to be allocated in
R. On average the fuzzer generated inputs when run for more
than the chosen threshold resulted in inputs of size 1.3GB



which exceed the size of the vectors that could be allocated.
For 61% of the packages the issues were identified under
20m in Table II. The budgets are in some ways arbitrary, and
insufficient for an evaluation of the various fuzzers. However,
we chose budgets that were clearly in scope for practical
use during development by Rcpp developers. Shorter runs
might find too little, but longer runs would discourage some
developers.

B. Exported vs Non-Exported Functions:

There are situations where the corner cases can trigger
a bug inside a method exposed by Rcpp, but the method
itself is effectively guarded by R code. There might be no
practical case for testing those functions as these functions
are not directly exposed to the end-users. Hence, we have
focused our analysis in the paper on the subset of Rcpp
functions that are directly callable from R, for which users can
provide arbitrary inputs. Although our analysis deals with fuzz
testing both exported and unexported functions (as designated
by the R package’s NAMESPACE API), the main focus of
RcppDeepState is to handle issues that come from exported
functions; mostly no run-time checks are performed by the
package developers on the inputs provided to these functions.

RcppDeepState found issues in 156 exported, visible func-
tions from 74 packages (out of 243 exported functions tested).
These are clearly relevant problems because users call those
Rcpp functions directly, and there is no opportunity for R-level
code to protect users from providing bad inputs.

VII. CONCLUSIONS AND FUTURE WORK

R is a widely used (estimates of the number of users range
from 250K to over 2 million, and there are over 200K repos-
itories using the R language on GitHub) statistical analysis
language. R code drives important scientific and commercial
data analysis projects. R packages written in C++, using the
popular Rcpp framework allow R users to take advantage of
the speed and lower-level memory management provided by
C++ code. In some cases, this is essential for handling large
data sets efficiently. However, using manual memory manage-
ment rather than R’s managed garbage collection exposes users
to subtle memory safety flaws, and the possibility of memory
leaks.

Rcpp-based packages are usually tested using a handful of
manually devised input values. Although these tests are run
under tools such as Valgrind that can expose memory safety
issues, the fact that, as with most manual unit tests, the input
values are ones the developer has obviously thought about
when writing the code mean that in practice such tests seldom
expose subtle problems.

We present RcppDeepState, a tool that automatically gen-
erates a test harness given a standard Rcpp-using R package,
based on the function export information. RcppDeepState uses
the DeepState testing front-end to provide push-button fuzzing,
using powerful modern fuzzing tools, for developers of Rcpp-
based R packages. RcppDeepState provides generators for the
most commonly used Rcpp data types that are amenable to

automated fuzzing. Using RcppDeepState, we analyzed 1,185
Rcpp-based packages and 6,860 functions in those packages.
Our efforts exposed a large number of potential memory
vulnerabilities.

As future work, we would like to mine R code, including
example code included in packages, to determine implicit con-
straints on input values, in order to avoid some false positives
(or at least mark them as likely involving invalid inputs). Such
implicit type inference would also make it possible to effec-
tively support widely used, but hard-to-generate, R types such
as SEXP and List. We would also like to add further tools
for developers to write their own custom properties to check,
including algorithmic complexity checks. RcppDeepState is
available at https://github.com/akhikolla/RcppDeepState.
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