
Building Resource Adaptations via Test-Based
Software Minimization: Application, Challenges,

and Opportunities
Arpit Christi

School of Computing
Weber State University

Ogden, UT, USA
arpitchristi@weber.edu

Alex Groce
School of Informatics, Computing, and Cyber Systems

Northern Arizona University
Flagstaff, AZ, USA
agroce@gmail.com

Austin Wellman
Raytheon BBN

Boston, MA, USA
austin.wellman@raytheon.com

Abstract—Building resource adaptive software systems is a
challenging problem. Researchers have proposed many tech-
niques and tools to build such systems. We previously proposed a
technique called Test-based Software Minimization (TBSM) that
relies on using tests to define functionality that can be sacrificed
to achieve resource gain. We demonstrate easy-applicability,
usability, and effectiveness of TBSM by building resource adap-
tations for two real-world scenarios. We also discover significant
challenges associated with the practical application of TBSM.
Based on our attempt to overcome the challenges for two
scenarios, we summarize possible solutions to the challenges, and
note that these solutions are synergistic with a larger goal of
improving software quality.

I. INTRODUCTION

Ultra Large-Scale Systems, Internet of Things applications,
and Cyber-Physical Systems face increased resource vari-
ability compared to programs of the past, with real-world
physical consequences. Resources may be explicit: e.g., CPU,
memory, or storage; or they may be implicit, e.g., libraries
and protocols. The inability of software to handle resource
changes effectively and automatically can produce inferior or
potentially vulnerable systems [1].

Self-Adaptive Software Systems (SAS) modify their own
behavior in response to changes in operating conditions.
Resource Adaptive Software Systems (RASS) are a subset
of SAS where the trigger for adaptation is variability or
unavailability of resources. For longevity and survivability of
modern systems, self-adaptation for resource changes is essen-
tial: hence the problem of self-adaptation is well studied [2].
To this end, DARPA started the BRASS (Building Resource
Adaptive Software Systems) program, a major initiative to
bring researchers and practitioners together to solve the prob-
lem of building resource adaptive software.

Researchers have proposed many techniques, approaches,
and tools to build SAS automatically [1], [3], [4]. We previ-
ously proposed a solution called Test-Based Software Min-
imization (TBSM) to build SAS to overcome some of the
limitations of previous approaches based on our work with
Raytheon developers as part of BRASS [5]. In this work, we
applied TBSM to produce adaptations of a mission-critical

military system and the popular NetBeans Java IDE. Based
on our observations:

1) We demonstrate that unlike most other previous ap-
proaches, resource adaptation via TBSM is a concep-
tually simple, usable, and applicable technique.

2) We present challenges we faced while attempting to
produce accurate resource adaptations automatically.

3) We present the solutions we employed to solve some of
those challenges.

4) We explore a synergy between some of the solutions
to the problems of TBSM and the problems of reliable
software development.

In the process, we identify opportunities to further aid
developers in effectively employing test-based minimization
to achieve resource adaptations.

II. BACKGROUND

While working with developers attempting to build SAS
for a real-world, mission-critical system, we observed that (1)
most developers speak the language of tests fluently, unlike
that of formal methods or architectural descriptions, (2) tests
are thus, for most complex projects in the real world, the
only semi-formal specification available. To exploit both the
widespread availability of tests for mission-critical systems
and developers’ familiarity with tests, we proposed capturing
resource adaptation specifications using tests. TBSM relies on
developers’ understanding of tests, and how tests relate to
program features and resource usage. Developers encode this
information by simply labeling the tests. Test labels can be
a multi-dimensional space in feature, resource, and priority.
To demonstrate the concept, we assume a single adaptation
objective: a single resource faces variability or unavailibility.
The concept is demonstrated in Fig. 1 (a simplified version of
Fig 2. in the original paper proposing TBSM [5]. We reuse
this figure from our previous work to keep the paper self-
contained. [6]). Labeled tests define functionality that can be
sacrificed to reduce resource usage. Unlabeled tests define
the functionality that is to be retained and not modified. A
tool called hddRASS takes as its input the test suite with



Fig. 1: TBSM approach to build adaptation for single adaptation objective scenario. Labeled tests encode adaptation specification
for single resource variability.

labeled and unlabeled tests and the original program, and
produces a minimized program such that the functionality
marked by labeled tests is removed. hddRASS achieves this
by temporarily removing the labeled tests from the suite and
using the Hierarchical Delta Debugging (HDD) algorithm to
find a minimal program, such that retained tests continue to
pass [7]. The basic idea is that if the labeled tests define a
functionality that uses resources, removing that functionality
will ensure resource adaptation. TBSM builds adaptations, in
a sense, in the same way that Automatic Program Repair fixes
faults. In APR, the goal is to modify the program to pass a set
of previously failing tests (without failing previously passing
tests) [8]. In TBSM, the goal is to modify the program while
removing as much code as possible, while still passing a set
of unlabeled tests.

III. CASE STUDY

Building an adaptive software system is not (yet) a common
practice. The example benchmarks available as part of self-
adaptive exemplars are unfortunately not applicable to TBSM,
due to the nature of their tests and the resources adapted [9].
Hence, we rely on two real-world case studies.

We worked with a group of developers attempting to build
adaptations for a mission-critical system called the Tactical
Situational Awareness System (TSAS). To focus our discus-
sion, we present one adaptation scenario, the Elevation API
scenario. The resource under consideration is a library (an
implicit resource) that has been updated to a new version.
Developers labeled tests in terms of the feature tested. Certain
features were marked as sacrificial (able to be “sacrificed”,
i.e., removed) because the new version of the library provides
functionality that was originally part of the TSAS code, the

functionality these features was intended to provide. The
sandboxed TSAS version that we used consists of 70 Java
files, with 5,571 LOC, and developers labeled 5 tests as
representing sacrificial functionality; the remaining tests were
considered unlabeled. The developers used TBSM/hddRASS
to build an adaptation.

For our next case study, we used the popular NetBeans IDE
for Java. We discussed the NetBeans IDE case study in detail
in our original work [5]. The resource under consideration
in this case was memory. To save memory, we adapted the
IDE by disabling undo-redo functionality, which is potentially
memory-intensive. Developers working in a memory-limited
setting would prefer to lose undo-redo rather than face constant
crashes due to memory exhaustion. Our target for adaptation
is the openide.awt module, which consists of 69 Java
files, 11,284 LOC, and 146 tests. After carefully studying the
code and tests we labeled 3 tests as undo-redo related. We then
applied TBSM to build a memory adaptive NetBeans IDE. As
most of the 69 Java files are clearly not related to the undo-
redo feature, we chose the two most likely files as reduction
targets to reduce processing time [5].

IV. EVALUATION

We evaluate resource adaptation via TBSM/hddRASS along
several dimensions: effectiveness, usability, applicability, and
scalability.

A. Effectiveness

For the Elevation API scenario, all 4 necessary modifica-
tions were correctly performed automatically by TBSM. The
development team was able to confirm the adaptations for the



library update by (1) examining the code for necessary modi-
fications (2) running the tests and (3) using the application. As
TSAS is a proprietary system, we have to rely on conformation
from the development team. All the necessary modifications
to adapt the NetBeans IDE were also performed correctly.
We observe that all 19 resource consuming statements (as
identified in previous work [10]), the statements that fill the
undo-redo buffers, were correctly modified by the technique.
We have shown previously that the adapted IDE 1) cannot
perform undo-redo operations and 2) uses far less memory, in
a controlled experiment setting allowing only edits to a single
text file [5]. We also confirm otherwise normal operation of
the IDE.

B. Usability
Most adaptation approaches require developers to learn a

new specification language or add complex annotations to
code. To use such techniques, developers typically need to
use modeling approaches, architectural specifications, formal
methods, etc., to map their application to a view that the
adaptation technique supports; this is obviously a time con-
suming and error-prone task [3], [4]. TBSM only requires
developers to look at their tests and make a “good guess” about
the feature(s)/resource(s) relevant to each test. Developers are
familiar with tests and can likely perform this task without
additional training. For the NetBeans IDE case, it took us
only a few hours to determine 3 tests to label out of 146
tests, despite the fact that we are not developers, or familiar
with the NetBeans code in any way before we examined it.
For the Elevation API, actual developers were almost instantly
able to determine the tests pertaining to certain features.

C. Applicability
While developing the RAINBOW framework, Garlan et al.

noted that most previous approaches for SASS were scenario-
based or application-specific, and not very reusable [11].
To evaluate applicability, we measured the effectiveness of
hddRASS as a tool. We believe hddRASS to be complete
for Java 7: it applies to any programs written in Java
7. To confirm this, we checked for thrown exceptions or
unprocessed statements when minimizing real-world systems.
While applying hddRASS to TSAS, we processed 70 Java
files with 338 non-constructor methods. For the NetBeans
IDE, we processed 2 Java files with 38 non-constructor
methods. We also applied hddRASS to 40 randomly selected
classes with a total of 1,207 methods across 10 open source
projects, using a random labeling scheme [10]. We observed
neither exceptions nor unprocessed statements across these
experiments. Based on this, we can say that hddRASS as
a tool, and TBSM as a technique, is generally applicable
to Java applications. To extend it to other programming
languages, one needs to build hddRASS like tools for those
languages.

D. Scalability
For the Elevation API the application of hddRASS, using no

heuristics, on all 70 Java files took 7 hours and 50 minutes.

For NetBeans IDE, adapting two files in openide.awt using
no heuristics took 2 hours and 35 minutes. As the program size
increases or test suite runtime increases, scalability becomes
the limiting factor in TBSM. For offline adaptations, scalability
may not be a problem; machine time is cheap, programmer
time expensive. But for live systems deployed in the wild, the
system needs to be halted until adaptations are performed and a
long offline period is not normally acceptable. The speed of the
most thorough version of TBSM without heuristics to guide
adaptation is likely acceptable for use before deployment, e.g.,
to prepare a specialized version of a system for a resource-
limited platform, but unsuitable for field use. However, as we
discuss below, even without additional developer effort, use of
heuristics to compute approximate or incremental best-effort
adaptations can mitigate this problem substantially.

V. CHALLENGES

We describe the major challenges that we faced while apply-
ing TBSM to build real-world RASS, and how we attempted
to solve these challenges for the case study scenarios. In the
process, we identify major research challenges in TBSM. We
note the similarity between the challenges in TBSM and the
challenges observed by researchers in APR [12].

A. Search Space

TBSM indiscriminately processes all the statements of a
program, so the search space is accordingly vast. This can
be significantly reduced by selecting only statements likely to
actually be modified. We empirically evaluated a large number
of adaptation related modification for 800 synthetic adapta-
tions to derive heuristics to guide target selection. We derived
statistics-based heuristics (H1, H2) and dynamic-analysis-
based heuristics (CBLS, AdFL) based on our evaluation [10],
[6]. The CBLS heuristic relies on coverage information for
the labeled and unlabeled test suite. We repurpose Spectrum-
Based Fault Localization (SBFL) to derive the more general
AdFL heuristic by establishing equivalence between core
components of SBFL and core components of TBSM. We
found that dynamic-analysis-based heuristics perform better
in empirical analysis. For the Elevation API scenario, CBLS
reduces the search space by 55% and AdFL heuristics reduce
the search space by 92%, bringing the wall clock time to build
adaptations down from 460 minutes to 118 minutes for CBLS
and 49 minutes for AdFL. For the NetBeans IDE scenario,
the CBLS heuristic reduces search space by 90% and AdFL
heuristics reduce search space by 94%, bringing the wall clock
time down from 175 minutes to 61 minutes and 57 minutes
for CBLS and AdFL respectively.

The CBLS heuristic provides search space reduction, while
AdFL prioritizes the search space based on likeliness of
modification. We demonstrated that the likely targets of mod-
ifications would appear earlier in the sorted order if we used
AdFL [6]. We used this fact to circumvent the search space
issue all together, proposing a best-effort incremental TBSM
technique, where developers provide a time limit to finish
the adaptations [6]. The best-effort incremental TBSM will



always produce a useable system in the given amount of
time, with resource adaptation achieved entirely or partially.
For Elevation API and NetBeans IDE scenarios, time limits
of 35 minutes and 20 minutes, respectively, were sufficient
to perform complete resource adaptation using best-effort
incremental TBSM. Best-effort incremental TBSM performs
better than AdFL heuristics with 90% search space reduction
for both scenarios.

B. Test Suite Runtime

Like APR, TBSM is a generate-and-validate technique that
must execute a potentially large test suite to evaluate each
modification. TBSM benefits from a large test suite, but
running all tests is often prohibitively slow. The version of
NetBeans IDE we used has a test suite that requires 7+ hours
to run for all 1193 modules. TSAS also exhibits unacceptably
slow complete test suite runtime. For both case studies, we
observe that running only modified-module-related tests is suf-
ficient, as modules are self-contained and have good individual
test suites. We observe that even such a simple ad-hoc test
selection reduces test runtime to 34 seconds and 18 seconds for
the NetBeans IDE and Elevation API, respectively. For most
resource adaptation scenarios, such an ad-hoc technique is not
feasible and scalable. We need test selection and prioritization
(since early failures also limit runtime) tailored to TBSM.

C. Inefficient Algorithm

Our hddRASS reducer uses a modified HDD∗ algorithm
with worst-case running time of O(n3), where n in our case
is the number of statement nodes of the abstract syntax tree of
the program [7]. We employ HDD∗ as the underlying driver
for TBSM because it guarantees convergence and minimality.
By minimality, we mean that any output program produced by
TBSM is 1-minimal[5]. One solution we employ is to forgo
the minimality guarantee of HDD∗ and use a pure greedy
search, trading accuracy for efficiency. With a greedy search
strategy, we can build resource adaptations 1.72 times faster
while retaining 94% accuracy for the Elevation API and 1.90
times faster while retaining 100% accuracy for NetBeans IDE.
We need further evaluation of different search strategies and
heuristics-based modifications to HDD∗.

D. Overfitting

The issue of overfitting is well studied in APR, and we
face the same problem [13]. TBSM produces test-adequate
adaptations, adaptations that are correct with respect to a test
suite and test labeling scheme. For our case studies, Type 1
errors (missed removals) are rare, and even related statements
are usually removed; e.g., if a single resource consuming
statement is the body of a for loop, the loop is removed as
well. We consider directly or indirectly resource-adaptation-
related modifications as correct modifications. We do observe
a large number of extra modifications, modifications that
are not directly or indirectly related to resource adaptations:
these are the more common Type 2 errors. Indeed, the false
modifications outnumber true ones in our scenarios. A total

of 49 and 121 modifications are performed by TBSM for
the Elevation API and NetBeans IDE scenarios, respectively.
We observe 91% and 51% false modification rates for the
Elevation API and NetBeans IDE adaptations, respectively. As
TBSM generated test-adequate adaptations overfit a given test
suite and labeling scheme, TBSM is vulnerable to both (1)
inadequacy of the test suite and (2) labeling errors. Develop-
ers reported instances where TBSM-generated modifications
removed untested but desired functionality.

VI. TEST ADEQUACY AND ADAPTATION QUALITY

Developers using TBSM expressed more concern over over-
fitting than any other problem. In this section we note the
origins of this problem, and propose that solving it is syn-
ergistic with addressing a long-standing problem in software
development.

A. Test Inadequacy

TBMS only knows what the tests tell it. If tests are grossly
inadequate, it is bound to produce sub-standard adaptations;
in particular, TBSM is aggressive, and if a test does not force
the inclusion of code in the adapted program, TBSM is likely
to remove that functionality. There are two basic sources of
inadequacy. One is true inadequacy, where the feature that
TBSM “accidentaly” removes is simply not tested at all. The
solution to this problem is to test all features of a system
that are of any actual importance, a worthy goal in any case.
The second problem is that there may be some tests for a
feature, but they are all mixed-in with tests for a feature that
is to be removed. That is, the tests for a system are not
well decomposed, and some functionality is only tested in
conjunction with a feature that a developer wants to “adapt
away.” Fortunately, these problems can be addressed by taking
a better approach to tests in general.

B. Code Coverage

TBSM will remove any code that is not covered by any
tests, and not required for compilation. The easiest way to
avoid this problem is to start with a high-coverage, high-
quality test suite. Developers can target poorly covered code
with manual tests or use targeted test generation tools to
cover such code. Improving code coverage using random
testing reduced overfitting by 23% and 8% for Elevation
API and NetBeans IDE respectively. Naı̈ve test generation
will not necessarily improve matters, however. Developers
have to label any generated tests, and if tests mix multiple
features, there still may often be cases where a feature not
to be removed is never tested in isolation. We propose using
delta-debugging, in particular cause reduction to help isolate
features in generated test cases [14]: if a generated test covers
two features, perhaps one can be removed by reducing the
test with respect to targeted code for one feature only. In fact,
in principle, we can automatically take each individual line
of code, and produce a test whose only purpose is to cover
that line of code, with any other behavior required to retain
that coverage. If developers can then label files or functions



in a program by functionality, the targeted code’s location can
automatically provide a label.

C. Better Tests

Based on our study (with the developers) of overfitting, we
identified a few categories covering most of the incorrect re-
movals. For the Elevation API, there were no tests for logging,
and so all LOG statements were removed. This problem is
likely very common, but can be easily remedied by explicitly
testing system logging as a feature. Testing the logging output
for performed actions in the tests for the functionality is a
seldom-performed, but likely beneficial practice. Similarly,
exception-handling code was often inadequately tested.

We worked with the developers to produce a new test cov-
ering each major overfitting category identified. We produced
just three and four (relatively small) tests, respectively, for
the Elevation API and NetBeans IDE scenarios, resulting in
20% and 66% reduction in overfitting. Identifying overfitting
categories can be a highly context-specific task, but we suspect
new automated test generation methods targeting specific
under-tested categories such as logging and exception handling
may be useful here.

D. Motivating Better Tests

Of course, the reason tests are inadequate in the first place
is that developers did not produce extremely high-quality, fine-
grained tests. Developers often fail to test important function-
ality, perhaps on the grounds that it is “only logging” (despite
the fact that logging is, in the long run, the only visibility and
debugging aid for many systems). More seriously, even devel-
opers of high-quality systems may not test certain exceptional
behavior paths. Targeting often-overlooked functionality is a
good future goal for the automated testing community; perhaps
logging code is not tested because developers expect to change
logging output frequently in reponse to debugging needs, and
don’t want to change the tests. Automated methods could
generate (and re-generate) properly labeled tests just to test the
logging output of existing unit or system tests, without making
this a significant burden on developers. Aggressive random
testing and fuzzing is likely to expose untested exceptional
scenarios. Interestingly, TBSM can also be seen as a way to
identify untested code: just run TBSM on a code base with
no labeled tests. Anything removed is a good candidate for
additional testing!

But there is a larger picture here. We suspect that developers
do not put as much effort as TBSM would ideally expect
into testing because the payoff of testing is not always clear.
The relationship between test quality, even measured by mu-
tation testing rather than coarse-grained coverage only, and
detection and anticipation of important defects worth fixing,
is not always extremely strong [15]. However, there is clearly
some relationship between test quality and eventual system
reliability, and one way to see TBSM (and future techniques
of the same kind) is as a new way to get better tests. Because
most code does not have a critical bug, effort to write tests

is currently seen as a burden, a “cost-center,” not a “revenue-
center” for developers, to adapt a business analogy. It may
have to be done, but testing is purely to ward off disaster.
However, TBSM offers a different way to look at tests: high
quality tests allow developers to be more productive, in that
they enable the automation of certain kinds of changes to
the software. Writing high-quality tests may become a much
more pleasant part of software development if the payoff is
not having to write as much complex code to, e.g., adapt
a system to a more limited platform, or handle changes to
system libraries, or produce a more secure version with a
smaller attack surface due to removing insecure functionalities.
If tests can produce “productivity revenue” rather than simply
allowing the detection of faults in previous productivity, they
may be more valued, and receive more attention. The upshot
will be more reliable systems that are also easier to adapt to
resource-limited situations.

VII. TOOL AND DATA AVAILABILITY

The hddRASS tool is available at https://github.com/
amchristi/hddRASS. It supports the baseline TBSM technique
as well as heuristics guidance (H1, H2, CBLS, or AdFL). It
also provides support to execute TBSM in greedy mode. As
TSAS is a proprietary system, we cannot make its source
code, test suite, or tests labels available. The NetBeans
IDE (and hence openide.awt module) source code is
available online. We also provide the exact openide.awt
module source code, test suite and test labels that we used
at https://github.com/amchristi/AdFL. The same link contains
800 synthetic adaptation scenarios with source code, tests, and
test labels for empirical evaluation and comparison.

VIII. ONGOING WORK AND FUTURE DIRECTIONS

As part of the DARPA BRASS project, we work with
multiple software development teams and other collaborators.
Our communication with these stakeholders as well as the
feedback that we received from the development teams using
our work are driving our ongoing efforts.

A. Ongoing Work

1) Improving Applicability: The underlying tool, hd-
dRASS, that drives TBSM only supports Java. Raytheon’s
development team uses TBSM for TSAS, an application
written in Java. We also developed, and plan to release in
the near future, a C++ version of hddRASS. We developed
it specifically for use by ROS (Robotics Operating System)
application developers to adapt against ROS version changes
and other ROS package changes, but it can be applied to any
C++ code base.

2) Minimization vs. Modification: One core current limi-
tation of TBSM is that it only offers minimization (reduc-
tion), rather than code modification. Adaptation, however,
can generally include (1) reduction, (2) replacement, and (3)
enhancement [1]. The published TBSM version only supports
reduction. While developing the C++ version of hddRASS, we
incorporated many modification operators from APR used to

https://github.com/amchristi/hddRASS
https://github.com/amchristi/hddRASS
https://github.com/amchristi/AdFL


fix faults, making some replacement capabilities available [16],
[17], [18]. We plan to continue to improve hddRASS to
provide more modification capabilities.

B. Future Directions

We are currently investigating multiple other ways to speed
up TBSM, including using static and dynamic analysis to
precompute the effects of program statements on test oracles
and using test case selection and prioritization to reduce the
running time of tests in TBSM’s generate-and-validate loop.

The original work in TBSM emphasized the need for a
“good” test suite. Previous heuristics suggested coverage as
a way to define “goodness” of a test suite; the CBLS heuristic
depends on coverage information. Because of the success
of AdFL heuristics in isolating and prioritizing modification
targets, we plan to consider test suite diagnosability metrics
as a more refined way to define the “goodness” of a test suite
for TBSM, using approaches proposed by Baudry et al. and
Perez et al. [19], [20]

For our work, we mostly used existing test suites provided
by the developers. As discussed above, sometimes a test that
a developer labeled as pertaining to one feature may contain
code that exercises other features. Similarly, an unlabeled test,
apart from testing functionality that needs to be retained,
may exercise sacrificial features. Presence of such tests makes
it harder for TBSM to differentiate between an adaptation-
related modification and an accidental modification, resulting
in underfitting or overfitting. To mitigate the situation, we
plan to extend work on test-case purification [21] and test-
case decomposition [14], [22] to automatically produce more
fine-grained tests, and ideally, automatically label them.

IX. CONCLUSIONS

Test-based software minimization offers a conceptually sim-
ple, widely applicable, easily understood approach to gen-
erating resource adaptations. While TBSM faces significant
scalability challenges, and cannot be applied where tests
are impossible to label, or to resources not associated with
removable features, it also benefits from a powerful synergy:
namely, the best way to improve TBSM is to improve software
test suites. Making test suites faster to execute, improving their
granularity so that tests cover distinct features, increasing code
coverage (and other test quality measures), and improving test
prioritization techniques all lead not only to more efficient and
effective TBSM, but to better fault detection and debugging.

Acknowledgments: this work was partly funded by the
DARPA BRASS [1] program, and the authors would like
to thank our collaborators at Oregon State University and
Raytheon/BBN.

REFERENCES

[1] J. Hughes, C. Sparks, A. Stoughton, R. Parikh, A. Reuther, and
S. Jagannathan, “Building resource adaptive software systems (BRASS):
Objectives and system evaluation,” SIGSOFT Softw. Eng. Notes, vol. 41,
no. 1, pp. 1–2, Feb. 2016.

[2] D. Hughes, “Seams 2018 keynote speech,” https://conf.researchr.org/
track/seams-2018/seams-2018-papers#program, accessed: 2018-08-09.

[3] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp.
14:1–14:42, May 2009.

[4] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
Mob. Comput., vol. 17, no. PB, pp. 184–206, Feb. 2015.

[5] A. Christi, A. Groce, and R. Gopinath, “Resource adaptation via
test-based software minimization,” in 2017 IEEE 11th International
Conference on Self-Adaptive and Self-Organizing Systems (SASO), Sept
2017, pp. 61–70.

[6] ——, “Evaluating fault localization for resource adaptation via test-
based software modification,” in IEEE International Conference on
Software Quality, Reliability and Security (QRS), 2019, pp. 26–33.

[7] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,” in Pro-
ceedings of the 28th International Conference on Software Engineering,
ser. ICSE ’06, 2006, pp. 142–151.

[8] M. Monperrus, “Automatic software repair: A bibliography,” ACM
Comput. Surv., vol. 51, no. 1, pp. 17:1–17:24, Jan. 2018.

[9] “Self-adaptive systems artifacts and model problems,” https://www.
hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/, accessed: 2018-
10-05.

[10] A. Christi and A. Groce, “Target selection for test-based resource
adaptation,” in 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS), July 2018, pp. 458–469.

[11] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, pp. 46–54, Oct 2004.

[12] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Software Quality Journal, vol. 21, no. 3,
pp. 421–443, Sep 2013.

[13] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure
worse than the disease? overfitting in automated program repair,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015,
pp. 532–543.

[14] A. Groce, M. A. Alipour, C. Zhang, Y. Chen, and J. Regehr, “Cause
reduction: Delta debugging, even without bugs,” Journal of Software
Testing, Verification, and Reliability, vol. 26, no. 1, pp. 40–68, Jan.
2016.

[15] I. Ahmed, R. Gopinath, C. Brindescu, A. Groce, and C. Jensen, “Can
testedness be effectively measured?” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: ACM, 2016, pp.
547–558.

[16] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic
programming approach to automated software repair,” in Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation,
ser. GECCO ’09. ACM, 2009, pp. 947–954.

[17] A. Arcuri, “Automatic software generation and improvement through
search based techniques,” Ph.D. dissertation, University of Birmingham,
UK, 2009.

[18] V. Debroy and W. E. Wong, “Using mutation to automatically suggest
fixes for faulty programs,” in Proceedings of the 2010 Third Interna-
tional Conference on Software Testing, Verification and Validation, ser.
ICST ’10. IEEE Computer Society, 2010, pp. 65–74.

[19] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for
efficient fault localization,” in Proceedings of the 28th International
Conference on Software Engineering, ser. ICSE ’06. ACM, 2006, pp.
82–91.

[20] A. Perez, R. Abreu, and A. van Deursen, “A test-suite diagnosability
metric for spectrum-based fault localization approaches,” in Proceedings
of the 39th International Conference on Software Engineering, ser. ICSE
’17, 2017, pp. 654–664.

[21] J. Xuan and M. Monperrus, “Test case purification for improving fault
localization,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2014, pp.
52–63.

[22] A. Christi, M. L. Olson, M. A. Alipour, and A. Groce, “Reduce before
you localize: Delta-debugging and spectrum-based fault localization,” in
2018 IEEE International Symposium on Software Reliability Engineer-
ing Workshops, ISSRE Workshops, Memphis, TN, USA, October 15-18,
2018, 2018, pp. 184–191.

https://conf.researchr.org/track/seams-2018/seams-2018-papers#program
https://conf.researchr.org/track/seams-2018/seams-2018-papers#program
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

