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Abstract—Measuring the distance between two program execu-
tions is a fundamental problem in dynamic analysis of software,
and useful in many test generation and debugging algorithms.
This paper proposes a metric for measuring distance between
executions, and specializes it to an important application: de-
termining similarity of failing test cases for the purpose of
automated fault identification and localization in debugging based
on automatically generated compiler tests. The metric is based
on a causal concept of distance where executions are similar
to the degree that changes in the program itself, introduced
by mutation, cause similar changes in the correctness of the
executions. Specifically, if two failing test cases (for the original
compiler) become successful due to the same mutant, they are
more likely to be due to the same fault. We evaluate our metric
using more than 50 faults and 2,800 test cases for two widely-
used real-world compilers, and demonstrate improvements over
state-of-the-art methods for fault identification and localization.

I. INTRODUCTION

The proposed techniques in this paper are motivated in large
part by progress in automated testing. Recent advances, some
implemented in powerful tools [79], [70], [31], [33], [43], [44],
have made it easier to find subtle faults in modern optimizing
compilers. Unfortunately, the blessing of many failing test
cases can become a curse for a developer. Simply discovering
which test cases in a large set of failures represent distinct
faults (or already known faults) is a very difficult problem [14],
[19]. For simple crashes and assertion violations, bucketing
failures is sometimes easy. When a failure is detected by
differential testing [54], where two compilers or optimization
levels disagree, the problem is so hard that it may turn potential
users away from automated test generation [14]. Even once a
fault is identified, fixing the problem can be very difficult.
Due to complexity of intermediate representation, interaction
of optimizations, subtle language semantics, and other issues,
debugging compiler faults may often be harder than debugging
faults in other kinds of software (this is probably not limited
to compilers; debugging systems software in general is hard
[55]). This paper proposes the use of mutants [3] to assist
debugging based on large sets of automatically generated test
cases. The underlying idea is that if two failures can be
repaired in the same way, even if that repair only avoids the
failure and does not truly fix it, they are likely due to the same
fault. Repairs can also provide information for understanding
and debugging discovered faults.

A. Fuzzer Taming and Debugging Assistance

Automated test generators tend to produce many failures,
which correspond to far fewer faults. The distribution of faults
in a set of failures tends to follow a strong power-law curve,
where a few faults account for most failures, and many or
even most faults have only 1 or 2 associated failures (even
in a set of 1,000 or more test cases) [14], [28]. Looking at
all the failures to find distinct faults is impractical. It is also
impractical to apply the iterative approach: first, fix one test’s
fault; then re-run all tests, until all tests pass. There may be
some (possibly known) faults that are very difficult to fix. As
of 5/8/2017, clang had 107 unresolved, assigned bugs, some
dating to 2008 [1]. Knowing if a randomly generated test case
is an instance of a known failure can be difficult, and fixing
long-standing problems is unlikely. Applying a novel fuzzing
technique [79], [31], [43] may dump dozens of new faults on
a project at once, and high priority faults may be hidden by
stubborn low-priority faults.

Chen et al. defined the fuzzer taming problem: “Given a
potentially large collection of test cases, each of which triggers
a bug, rank them in such a way that test cases triggering
distinct bugs are early in the list.” [14]. Their proposed solution
was to use the Furthest-Point-First [21] (FPF) algorithm. An
FPF ranking of test cases requires a distance metric d on
test cases, and ranks test cases so that dissimilar tests appear
earlier. The hypothesis of Chen et al. was that dissimilar
tests, by a well-chosen metric, will also fail due to different
faults. FPF is a greedy algorithm that proceeds by repeatedly
adding the item with the maximum minimum distance to all
previously ranked items. Given an initial seed item r0, a set
S of items to rank, and a distance metric d, FPF computes ri
as s ∈ S : ∀s′ ∈ S : minj<i(d(s, rj)) ≥ minj<i(d(s

′, rj)).
Fuzzer taming results using FPF were promising, but lim-

ited. Rather than proposing a universal metric for use in fuzzer
taming, Chen et al. offered many possible metrics (based on
ideas in the literature, such as edit distances [46] or coverage
spectra [69] methods), none of which performed notably well
across all three of their benchmark data sets, and some of
which were not even applicable to all data sets. For the two
most difficult benchmarks, none of the metrics performed
extremely well. FPF-based approaches remain in need of a
universal but effective metric, particularly for the critical first



50 test cases examined [14].
One reason fuzzer taming is needed is that debugging

compiler faults is, as noted, difficult. If developers were able
to fix faults quickly once they were identified, it would not
be as important to have very good fault identification. Many
duplicate failures could be removed by fixing the underlying
faults. Ideally, a technique able to provide effective fuzzer
taming should be able to translate its underlying rationale into
some form of automated debugging assistance. A variety of
automated debugging methods [68], [25] have been based on
distance, so there is reason to expect that a high-quality metric
might also contribute to fault localization.

B. Comparison by Response to Mutation

The methods we propose are based on an idea with nu-
merous possible applications: if two test cases that fail can be
made to succeed by the same small modification to the original
program P , this provides evidence that they fail due to the
same fault. The idea is hardly controversial: most developers
determine if they have fixed all faults in a set of failing test
cases by re-running the tests after they fix at least one fault. As
a method for fuzzer taming or debugging assistance, however,
this is useless. Fortunately, developer-provided patches are not
the only source of changes to a program. Mutation analysis
[17], [8] applies large numbers of small syntactic changes to
a program, usually to evaluate a test suite [3], [41]. Some
recent work has also considered these changes as a source of
fixes or localizations for program faults [66], [35], [56], [16].
Published empirical data [23], as well as our data, suggests
that very few compiler faults are due to the kind of simple
syntactic changes found in mutants. However, what should
matter is that failures, which correspond to faults, can be made
to succeed. When a test case t fails for program P but succeeds
for mutant m of P we say that m repairs t (in practice, we
will usually restrict this to unkilled mutants m). In most cases
this does not mean that m is the inverse of a fault, but that m
somehow avoids the consequence of a fault. It is not important
that repairs actually fix anything, if all we seek is a way to
decide whether failures are due to the same fault.

This idea is in fact a consequence of a more general (and
difficult to investigate) hypothesis. What is interesting about
a program execution? For many purposes, the only interesting
properties of an execution are those that in some way relate
to the correctness properties of the program, assuming we
have a good set of correctness properties. These may include
assertions, differential testing [54], [29], timing constraints,
temporal logic formulas, or any other checkable properties.
What, then, makes two executions similar? Our proposal is that
two executions of P are similar to the degree that changes to
P produce the same changes in correctness of the executions.

This leads to the general idea of comparing any two
executions by their response to mutants, since a mutant can
cause a passing or failing test to violate more/different prop-
erties. However, for practical purposes the most interesting
implication is that if two failing test cases can be made to differ
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Fig. 1: Onion-ring shows all repairs for the center-most test case, and all other test
cases repaired by same mutants. Rings represent repairing mutants, and diamonds test
cases. Diamond pattern symbolizes fault. For innermost ring, all failures are due to the
same fault. As rings expand, the set of faults grows (as does distance).

as to whether they fail by a mutant, this provides evidence that
they fail due to different faults.

This not a claim that being repaired by the same mutant
perfectly predicts fault equivalence. To understand why that
seems highly unlikely, consider why a mutant of a compiler
might cause a test case to stop failing. Many, likely most,
compiler faults are due to incorrect optimizations. Turning an
optimization off can cause a program to compile correctly.
Optimizations are generally guarded by conditional switches
— in some cases, so that the optimization can be turned
off by a user, in other cases when a property of the code
in question prevents the optimization. If two failures become
successes due to turning off an optimization, it is presumably
some level of evidence they are the same fault, compared
to the baseline probability. Intuitively, the evidence provided
seems much stronger than the fact that, e.g., the two test cases
execute a shared line of code [69]. However, optimization
guards range from guarding very specific fragments of code to
guarding entire modules with many functions and related sub-
optimizations. If a mutant prevents a very specific optimization
(consisting of a few lines of code) from executing, and repairs
two tests, that is powerful evidence they are related. If a mutant
turns off a large number of optimizations, it is weak evidence.
Must we then characterize mutant granularity? No.

Consider the structure of mutants repairing a failure due
to some optimization. If many mutants repair this failure, by
turning off the optimization or a whole family of optimiza-
tions, some will likely repair failures due to different faults.
Repairs naturally produce an onion-ring structure (Figure 1),
where a failure is repaired by (1) some mutants that are very
specific to its fault (the inner rings) and repair few failures, as
well as other mutants (2) that repair more and more faults, up
to a hypothetical mutant (3) that turns off all optimization in
the compiler (e.g., by effectively adding -O0), the outer ring
of the onion. This does not introduce confusion, because the
more repairs two tests have in common, the more likely they
are to be due to the same fault, and the more they disagree
on, the less likely they are to be due to the same fault. While
especially intuitive as a consequence of disabling compiler
optimizations, it seems likely this structure appears for repairs
in many programs. Disabling an optimization is a code change
that (usually) does not cause any test case that only concerns
semantics, not speed, to fail, but can avoid some failures. For
some oracles, many changes may fall into this classification:
for example, if the only oracle is to detect crashes, a fault can



be avoided by aborting the program early. Turning off a data-
structure invariant checker is another possible false repair that
might cover many different faults. In all these cases, assuming
more interesting and specific ways to repair faults exist, a
distance metric can still work.

The idea of measuring the distance between failures (or
other test cases) by their response to mutants is appealing.
The most important aspect of most applications of distances
between executions is some aspect of causality [47], [81].
Since at least the work of Hume [36], causality has been
understood as answering some question of the form “what
would have made a difference in this effect?” A program mu-
tant is a very direct way to answer this question. The problem
with determining causes of events in computer programs is
that, as in most problems of causality, too many things can
make a difference, most of which are not interesting. Program
mutants are much more likely to be interesting causes for
events in a program than changes to test cases, at least for fault
identification and debugging purposes, because the practical
use of knowing a cause is to change the cause and avoid or
produce an effect. Debugging by changing test cases is not
useful; debugging by altering the program is precisely how we
seek to use the causes we discover. Using mutants as causes
in order to measure similarity “inverts” the ideas of Lewis
[47], [48], where similarity determines causality. One pleasant
side-effect is that execution representation [68], [69] is not a
difficulty for this kind of metric, since an execution is always
represented as a set of correctness evaluations.

This paper investigates the utility of using distance metrics
based on the causal approach suggested above. We show that
such a metric can improve, in a statistically significant way, the
ability to distinguish tests based on which faults they trigger.
Furthermore, fault localization based on the same metrics can
successfully pinpoint the location of some compiler faults
sufficiently to be likely to substantially aid debugging, and,
when applicable, performs very well for some faults studied
in recent papers on mutant-based fault localization [35], [10].

The contributions of this paper include our ideas about
how to measure distance between program executions, but
more importantly some practical proposals for using such
a metric in compiler fuzzer taming and fault localization.
Our experimental results show that, for two realistic complex
compilers, Mozilla’s SpiderMonkey 1.6 JIT for JavaScript and
GCC 4.3.0, using mutant response metrics improves FPF-
based fuzzer taming over best previous results [14], in multiple
ways. Our fault localization approach also compares favorably
to state-of-the-art fault localization techniques [56], [35], [60],
albeit with a more limited applicability (but also a lower cost).

II. A MUTANT-BASED DISTANCE METRIC

For every failing test case, its response to mutants defines
a bit-vector, with length equal to the number of mutants that
repaired any test case, where a 1 bit indicates that the mutant
in question repairs this test case1. These cannot be effectively

1By repairing a failing test we here mean that a mutant causes the test to
pass, and the mutant does not cause other, previously passing tests, to fail.

compared with Hamming distance. Consider t1 and t2, both
repaired by 100 mutants. If these two test cases share 90
common repairing mutants, and disagree for 10, they have a
Hamming distance of 20. This makes them “less similar” than
two test cases, t′1 and t′2, where t′1 is repaired by 5 mutants, t′2
is repaired by 5 mutants, and none of those mutants overlap.
A Jaccard distance, also used (as similarity) in some fault
localization algorithms [11], is a better fit. For bitvectors u
and v of length n:

d(u, v) =


∑n−1

i=0 1 if ui 6=vi else 0∑n−1
i=0 1 if ui 6=0∨vi 6=0 else 0

∃i : ui 6= 0 ∨ vi 6= 0

0 otherwise

This metric, the portion of mismatches over bits that are
1 in either vector, matches our intuitions about the above
comparisons. It essentially formalizes the intuition of the
onion-ring model, where more matching repairs indicates a
much higher probability two failures are due to the same fault,
even if not all repairs match.

Given such a metric, FPF [21] fuzzer taming [14] begins
by ranking as first an arbitrary test case. FPF next ranks the
test case, of all unranked tests, that has the largest minimum
distance from all ranked test cases — the test case most
dissimilar by closest already ranked test — until all tests
are ranked. FPF is boundedly close to optimal under certain
assumptions [21].

More complex metrics are possible, also combining in-
formation such as coverage and language features or test
case tokens [14]. However, mixtures of metrics (combining
different features) other than Levenshteins [46] over test case
+ output never performed well compared to more focused
metrics in earlier work [14]. Therefore, in order to evaluate the
contribution of our repair-based metric we compare it, alone,
to the previous best metrics.

In Section VI we discuss uses of d requiring comparison
of both failing and passing test cases: in this case, we would
use three-valued vectors, with a bit for each property, where 1
indicates a failing property succeeds and -1 that a succeeding
property fails. For such an application, we could remove the
requirement that a repair not be a killed mutant, since the
passing test vectors would encode that information

III. LOCALIZATION AND EXPLANATION

Automated fault localization [76], [40] provides users with
information about the likely location of a fault in a program’s
source code. Parnin and Orso recently suggested that fault
localization methods are not actually providing a great deal
of assistance to real users in debugging [61]. Automated fault
localization has not been widely adopted in industry.

Parnin and Orso note that most popular methods are statisti-
cal and tend to simply provide an ordered list of statements to
examine. These statements are not guaranteed to be essentially
related to the fault — with many techniques, the statements
are, too often, code that executes as a consequence of the
fault, code accidentally executed with the fault, and so forth.
We note that most evaluations of fault localization have been



performed over programs where it is not clear that debugging
is extremely hard, vs. the time spent applying automated
localization and establishing effective (automated) testing to
support automated localization. Compiler debugging, on the
other hand, especially for subtle optimization-based problems
that produce incorrect code (vs. simple crashes) is generally
known to be difficult. Researchers reporting subtle compiler
bugs often observe the time from reporting a fault to its
correction, even once the fault is assigned, to be lengthy,
and the resulting patches are sometimes thousands of lines
[14]. Important compilers, whether JITs where security is
paramount or C compilers used to compile core systems code,
also tend to already be the subjects of extensive automated
testing [70], [79].

Repairing mutants can be used for localization and expla-
nation. While few will be equivalent to actual fixes, they will
sometimes overlap the incorrect code, and will often be closely
related to incorrect code, semantically. Since some tests are
repaired by a large number of mutants, it is important to rank
the mutants to produce a localization. Based on the onion-ring
model proposed above, this is simple: each mutant is ranked
as a localization/explanation based on the most distant failure
it also repairs. If a given mutant only repairs failures that have
similar repair vectors to the test case being localized, it will
be highly ranked. If it repairs even one very dissimilar failure,
then it will be considered a poor localization.

For a set F of failing test cases and m of mutants,
the Repair localization for f ∈ F , where R(f) ∈ m
is the set of mutants repairing f , ranks statements
by the function r:

r(f) =

{
1

1+maxt∈F :m∈R(t)d(t,f)
m ∈ R(f)

0 m 6∈ R(f)

This ranks a mutant m (and associated statement) by the
inverse of the distance from f to the most distant failing
test also repaired by m, adding 1 so that if m only repairs
failures at distance 0 r is well defined (and maximal). If m
does not repair f , it is not ranked at all. One advantage of
this approach over some statistical methods is that by ranking
mutants the localization offers developers not simply a ranked
statement but a kind of “explanation” [25] of the fault: if
this mutant were applied, the fault would not exhibit. As
Kochhar et al. show [42], a large majority (more than 85%)
of developers considered the ability of a localization tool to
provide a rationale or reason for a localization important. A
mutation plus the tests that stop failing when it is applied is a
practical, concrete explanation of a fault localization. Mutants
that repair a failure provide insight into the nature of the fault,
and, we hypothesize, more information the closer they are to
the center of the onion-ring.

An advantage of this method over some statistical ap-
proaches to localization is that it is not potentially confused in
settings with multiple faults. Each localization/explanation is
based on a single failing test case, which in most cases fails

due to only one fault. In fact, other faults (and their failures)
theoretically help Repair rank the mutants.

In general, we expect Repair to be used in the context of
compiler (or other complex system) fuzzing, where there are
numerous failing tests, likely from multiple faults. In such
cases, the f to be localized is presumably selected by FPF.
However, in case our localization approach is used in a setting
where single faults are expected, we propose an alternative
method: let f be an arbitrary test with as few repairing mutants
as possible, to allow the distance metric to focus attention on
a few key mutants.

IV. EXPERIMENTAL RESULTS

Our primary experiments are based on subjects used in the
only previous study of compiler fuzzer taming (from Chen
et al.’s PLDI 2013 paper [14]), which we hereafter refer to
as the FPF benchmark. Of the three data sets examined in
that paper, this paper considers two: faults and tests cases
for SpiderMonkey 1.6, Mozilla’s JavaScript engine, with tests
generated by jsfunfuzz [70], and wrong code faults and
test cases for GCC 4.3.0, with tests generated by Csmith [79].
GCC 4.3.0 crash faults were essentially perfectly localized by
previous approaches. In fact, on examination, only two of the
11 crash bugs are not distinguished by simply examining the
crash message. Faults that produce a crash are also likely to
be much easier to debug than semantic problems such as all of
the GCC wrong code bugs and most of the JavaScript faults
— e.g., following a dynamic slice might well suffice.

Our mutants were produced using the tool written by
Jamie Andrews [3]. Andrews’ tool applies only four operators:
statement deletion, conditional negation, operator replacement,
and constant replacement, chosen as a small set that still
produces good results for C code. Experiments were performed
on a MacBook Pro with 16GB RAM and dual-core 3.1GHz
Intel Core i7; GCC executed on a VirtualBox-hosted Ubuntu
11.04. For GCC, some test cases from the FPF set no longer
failed, presumably due to unknown differences in execution
environment, OS, or memory layout. Discarding these reduced
the set of test cases from 1,275 to 1,117 and the number of
distinct faults to 27 rather than 35. For SpiderMonkey, all
1,749 test cases from the FPF benchmark failed in the new
environment, representing 28 distinct faults.

These data sets, though similar in that both compilers are
written in C, provide some interesting variance for testing
our metrics. The oracle for SpiderMonkey executions is the
set of checks built in to jsfunfuzz plus the requirement
that the execution not crash. This is only a moderately strong
oracle, and allows serious deviations from both the JavaScript
language specification and normal SpiderMonkey behavior,
while checking some complex details, such as eval round-
trips. For GCC, the oracle is a differential check on a hash
code: failure was defined as producing a executable with the
-O3 flag that, when executed, produced a different checksum
than code compiled by either of GCC 4.9.3 or clang 7.0.0,
both using -O0. A repairing mutant must enable GCC 4.3.0
to actually compile code correctly, which is a very strict
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(b) Discovery curves for GCC 4.3.0 wrong-code faults

Fig. 2: Discovery curves compared to best curves from Chen et. al PLDI 2013 data (FPF benchmark)

correctness property, making coincidental correctness [57]
highly unlikely — only missed optimizations are allowed.

We only show results for the first 50 tests in the ranking,
and computed areas under curves for the same limit, since it
seems very unlikely that a user will examine many more than
50 tests, especially given the decreasing slope of the discovery
curves. In practice, after 50 tests, fixing a few faults and then
re-running tests and FPF seems the most likely recourse, and
we confirmed that after removing random subsets of faults, our
metrics still outperform the previous best. We applied X-means
[62] in an attempt to use clustering with our metrics, but, as
with previous results [14] it did not compare well with FPF,
and the runtime was much higher. We confirm the conclusion
[14] that clustering is of limited value in fuzzer taming.

A. Mozilla SpiderMonkey 1.6 Results

There were 96,828 SpiderMonkey mutants, based on 69,634
lines of code in C and header files. Of these mutants, 12,666
were covered by some failing test case. Of these mutants,
10,525 survived a basic set of SpiderMonkey quick tests [26].
Of these mutants, 1,326 (12.6%) repaired at least one test case.
Figure 2a shows the discovery curves for the mutant repair
metric compared to the ideal discovery curve and the best
curve from previous work using FPF, which used a normalized
Levenshtein distance [46] over the failure output and test case
text [14]. A discovery curve is a plot of the number of distinct
faults that a user, examining the tests in the ranked order,
would have seen after N tests (here, N goes up to 50).

The APFD (Average Percent Faults Detected) values in the
graphs are based on the measure introduced by Rothermel et
al. for evaluating test case prioritization methods [18]. APFD
is a somewhat better summary of results than the raw curve
areas used for evaluation in previous work [14]. APFD, as the
name suggests, measures the percent of all faults discovered
at the “average” point on the curve, by comparing the curve’s

area to an ideal curve, with interpolation. A simpler (but less
informative) way to compare the curves is to note that the
mutation-based metric’s curve is above the best previous curve
at 60% of data points.

APFD results are useful summaries, but the curve itself is
also worth examining, since (1) long sequences of tests with
no new faults may discourage users more than an overall less
effective but steadily climbing curve with few “plateaus” as
we call these uninformative sequences of tests and (2) a good
early curve is important to developers. The mutant repair curve
climbs very rapidly in the early portion, with perfect discovery
for the first 12 faults. The largest plateau is 5 tests without a
new fault, ignoring the long period after the 31st test. In fact,
a plateau at the end of the curve is not problematic. Assuming
that few users will examine more than 50 test cases without
fixing some faults, the user may give up after seeing 10 or
more tests without a new fault based on the mutant repair
curve, and in fact lose nothing by doing so. The best FPF
benchmark curve, in contrast, has a plateau of size 17 after
the 17th fault. If we assume a user stops examining tests after a
size 10 or greater plateau, the user will only see 17 faults using
the best benchmark metric, vs. 19 with our metric. Stopping
at a plateau of size 6 produces the same results.

Over all mutants, and all pairs of test cases repaired by
the same mutant (so the same pair may count many times,
if many mutants repair both test cases), the probability of
being due to the same fault was 42.77%, and the probability
of being due to the same fault if two test cases disagreed on
a repair (the mutant repaired one test case but not the other)
was only 20.33%. The baseline rate for same-fault for test
pairs was 33.64%. Just knowing that two test cases have one
shared repairing mutant makes it 1.27x more likely that they
are the same fault, and knowing they differ for one mutant
makes it 0.6 times as likely they are due to the same fault.



Matching non-repair, however, provides very weak evidence:
only a 34.14% chance of matching fault, just over baseline.

An additional measure of effectiveness is to consider how
effective a metric is in producing matched nearest neighbors.
That is, how often is the nearest neighbor of a failure (that
is not due to a singleton fault — a fault detected by only
one test case) due to the same fault? For reduced [82], [14],
[67] test cases, we assume that for a perfect metric, the
nearest neighbor should almost always share the same fault,
since there is little or no extraneous semantic content to
each test beyond the cause of failure. For the SpiderMonkey
failures, 96.3% of non-singleton failures matched their nearest
neighbor(s). For mutants that repaired any failures, the mean
and median number of test cases repaired were 120.6 and 4.0,
respectively. Most mutants repaired a small number of tests,
but a few mutants repaired a very large number of tests. A
few mutants repaired all SpiderMonkey faults; obviously these
mutants were not actual fault fixes, but effectively disabled
the mechanism jsfunfuzz used to detect failure. The mean
and median homogeneity for repairing mutants (% of failures
repaired corresponding to the most common fault repaired)
were 77.96% and 86.36%, respectively.

In order to check our results statistically, we sliced the
FPF benchmark tests into 20 randomly selected equal-sized
(as much as possible) distinct subsets. The repair metric had
a mean APFD (89.23%) for these subsets that was 2.85%
better than the mean APFD for the best benchmark metric
(86.76%), over sets of ∼ 10 faults. The result was statistically
significant (p < 0.05 by Wilcoxon test). Median repair APFD
was 90.05%, vs. 84.75% for the best benchmark metric.

1) Fault Localization: Table I shows a comparison of three
fault localization methods for the SpiderMonkey (and GCC)
faults. The first column is a fault ID. The next three columns
show localization rankings. A dash for a column means that
localization did not rank any faulty statements, or assigned all
faulty statements suspiciousness of 0.0. The three rankings are:
our Repair localization, the MUSE [56] localization, and the
MUSEUM [35] localization. MUSEUM uses the same formula
as MUSE, but works better for multiple faults because it uses
only one failure. The MUSE/MUSEUM formulas normally
make use of information from passing tests as well: when
mutating a statement makes a passing test case fail, it makes
the statement less suspicious, by a weighted amount. The
weight assigned to information from passing tests in our
setting would likely be low (due to the ratios of repairs to
mutation kills). In a limited sense, information from passing
tests is already incorporated in our results. Throwing out
all mutants that are killed by any passing test as potential
repairs/localizations ensures that the rankings of all statements
that are in MUSE/MUSEUM rankings are correct, relative to
each other. By definition, passing tests have no influence on
the suspiciousness of these mutants. However, there may be
other mutants that 1) repair a failure and 2) are killed by
some test case: these could, if enough different ones repaired
the same faulty statement, improve MUSE/MUSEUM results,
though in practice this is extremely unlikely. We reject such

mutants in part to keep costs low, and in part because we
think that the causal information contained in such mutants,
that “fix” a failure but also break some passing test(s), is
problematic. They seem likely to be less useful as explanations
of the causes of a failure, since they do not impact the program
semantics in a way that is only known to be beneficial, and
could potentially even mislead a user if used as explanations.

Discussion with the MUSE/MUSEUM authors confirms that
adding information for passing tests, while costly, would likely
improve the MUSE and MUSEUM results, given the weakness
of our oracles, particularly for SpiderMonkey, and should be
considered essential for ideal application of their approach.
Because the cost of recording the full mutant analysis matrix
for all passing tests (rather than considering a mutant killed
as soon as one test fails, as we do) is very high, and we
would like to produce a comparison over a fixed computational
cost, we give results for MUSE/MUSEUM over failing tests
only, cautioning that we are not sure what the impact of this
choice is on faults that were not localized. For similar reasons
of keeping costs low, we also used the mutation operators
of Andrews vs. the more extensive Proteum [52] operators
used in MUSE/MUSEUM’s evaluations. In Section IV-C we
provide some comparisons with MUSEUM and MUSE fault
localization in the context of a full mutation result matrix using
their preferred set of operators.

Table I only includes 8 of the 28 SpiderMonkey faults.
This is due to a problem with the data set: producing ground
truth patches for a large application, in the sense of finding
a minimal, clearly fault-fixing code change that can be back-
ported to the original code is difficult [14]. While we believe
the 28 faults identified in the FPF benchmark data are correct,
it is very difficult to produce a valid patch of version 1.6 that
captures the fix for most of these faults. In some cases the final
commit that caused tests to stop failing appeared to only be the
end of a complex series of changes that converged on a correct
fix. In other cases, the code was modified so extensively before
the fix that identifying “the incorrect part” of the original
code seemed to owe more to guesswork than certainty. The
evaluation of localization therefore only examines the 8 faults
for which we could be reasonably certain that the patch to 1.6
was correct and characterized the fault in question accurately.
In no case was the patch equivalent to one of the mutants (the
smallest patch modified two statements).

No method performs extremely well — for half the faults,
no methods produced what we consider a useful localization.
Compiler faults are hard to debug, and any help is useful,
but it seems unlikely developers will really benefit from a
localization when it does not rank at least one faulty statement
in the first 25-30 statements. By this measure, MUSE only
provides a helpful localization once, and performs worst of
the methods. Repair and MUSEUM both perform well, with
Repair slightly better.

B. GCC 4.3.0 Wrong Code Results

There were 377,679 GCC mutants, based on 424,186 lines
of code in C and header files. Of these mutants, 73,016 were
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covered by some failing test case. Of these mutants, 41,385
survived a GCC bootstrap build, compiled hello world, and
passed a GCC test suite. Of these mutants, 3,232 (7.8%)
repaired at least one test case. Figure 2b shows discovery
curves for the mutant repair metric vs. the best benchmark
curve, Euclidean distance over function coverage vectors [14].
GCC’s APFD improvement is larger than that for SpiderMon-
key, but its early curve (first 15 tests) is worse compared to
the benchmark curve, but still has a maximum gap of only
2 redundant tests vs. 4 for the benchmark. Over all, again
the curve is better than the best benchmark curve at 60% of
all points. Using the hypothetical model where a user stops
examining tests after a plateau of size 10, the user of the
mutant-based taming will see 18 distinct faults by examining
25 tests, and the user of the function coverage will see 20
faults after 45 tests. If a user gives up after a plateau of size
5, our approach again lets a user examine 18 faults over 25
tests. Function coverage only yields 16 faults over 31 tests.

For GCC wrong code faults, the baseline chance that two
test cases shared an underlying fault was 38.97%. Knowing
that two test cases shared a repairing mutant raised the chance
to 68.5%, and knowing they disagreed on a repair lowered
it to only 19.01%. The respective increase and decrease in
probability of matching fault compared to baseline was thus
1.75 times greater for matching repairs, and less than 0.5 the
chance of being the same fault, given one mismatched repair.
Knowing two test cases were both not fixed by a mutant again
provided marginal evidence of sharing a fault: 39.2% chance
of matching faults. For 99.3% (all but 8) of the 1,090 non-
singleton fault failures in GCC wrong code, the closest test
case(s) by the repair metric showed the same fault. The best
previous reported FPF metric, function coverage vectors, had
a matching rate of 92.2%. The mean and median numbers of
repaired tests per mutant (for mutants that repaired any tests
at all) were 18.4 and 3.0, respectively. A few mutants fixed a
very large number of tests, up to 1,050. These all appear to
be turning off all optimizations — essentially running gcc in
-O0 mode. Most mutants fixed only a few tests, to a greater
extent than was true with SpiderMonkey. Mean homogeneity
was 79.4% (median 100%).

TABLE I: Fault localization for compiler faults

SpiderMonkey GCC
ID Repair MUSE MUSEUM ID Repair MUSE MUSEUM
1 - - - 1 - 157 -
2 - 173 - 2 1 99 14
3 1 22 4 3 - 146 -
4 - - - 4 - - -
5 19 118 26 5 - 109 -
6 28 87 23 6 - - -
7 - - - 7 - - -
8 3 133 5 8 4 158 18

9 - - -
10 - - -
11 10 167 6
12 1 172 195
13 - - -
14 34 170 125
15 5 159 31
16 - - -

Slicing the GCC tests into 20 random equal-sized test
subsets and comparing with function and line coverage metrics
(Figure 3) we find that differences in APFD values are sta-
tistically significant between our metric and both benchmark
metrics, by Wilcoxon test, with p < 0.0005, and the mean
APFD improvement — even for only 55 tests, exposing only
6-11 faults (mean of 7.75 faults) — is more than 3.8% better
than either benchmark metric.

1) Fault Localization: Table I shows localization results for
GCC 4.3.0. Again, only some faults were deemed to have
strong enough ground truth patches for evaluation. MUSE
performed poorly, with no useful (by the standard of having
at least one faulty statement in the top 25) localizations.
MUSEUM provided 3 useful localizations, but no very high
quality localizations. Only Repair performed very well, with
useful localizations for 5 faults, and the fault was in the top
5 statements for 4 of these.

C. Repair Localization for Non-Compiler Faults

The Repair localization was designed for use in compiler
(or at least complex system software) fuzzing. It is not
proposed (or at least, not here evaluated) as a general-purpose
fault localization method. However, it is possible to compare
Repair with other methods, using their full mutation and
experimental set, to provide a more generalizable (and fair)
comparison than the evaluation vs. MUSE and MUSEUM over
compiler faults. We obtained the data from two evaluations
of mutant-based fault localization methods: the set of faults
used to evaluate MUSEUM [35], and a set of CoREBench
[7] faults used in an evaluation of MUSE and Metallaxis-FL
by Chekal et. al [10] (we were unable to obtain the original
MUSE dataset, thus far). These data sets are not ideal for
evaluating Repair: for all but 10 of the faults (all from the
CoREBench set) there is only a single failing test case in the
data. Repair for single failing tests is essentially MUSEUM
without use of passing tests, except to reject any mutation that
breaks a passing test. Repair is meant to operate in the case
where a program either has numerous failing tests associated
with open bugs (e.g., a typical production compiler or complex
system software program) or where a program has just been
fuzzed for the first time, so has numerous failures representing



different faults. The distance metric lets Repair make use of
these other faults, by enabling it to focus on repairing mutants
most relevant to the failing test. Repair can, in many cases,
have a lower cost than MUSEUM or Metallaxis-FL because
it does not need to run mutants that do not repair any failing
tests on the passing tests: analysis can begin with failing tests
and only analyze passing tests covering repairing mutants.

1) MUSEUM Results: For the six faults used in the original
MUSEUM paper (all with a single failing test), Repair gives
the same (perfect) localization for three faults. One of the
other three faults (Bug2) has no repairing mutants (that do not
break some passing test) so Repair provides no localization
information at all. For the remaining two faults, Bug5 and
Bug6, Repair gives best rankings of 12 and 9, respectively,
compared to 8 and 3 for MUSEUM.

2) CoREBench Results: For the full data set in the pa-
per [10], Repair does not perform as well as MUSE and
Metallaxis-FL, as expected. It is only able to rank a faulty
line of code for 12 of 30 faults. However, for these faults,
it performs very well indeed, perfectly localizing 7 of the 12
(vs. 3 total perfect localizations for Metallaxis-FL and 4 for
MUSE). Repair is uniquely best for 5 of the 12, and is tied
for best for another 6; for the remaining fault, it performs
better than Metallaxis-FL but worse than MUSE. Table II
shows full results. The fourth column shows, for those bugs
where Repair did not rank any faulty statement, how many
statements Repair proposed for a user to examine. Note that
in most cases if Repair was not helpful it also provided little
output to waste a user’s time: it only once presented more than
3 statements to examine. In practice, we only suggest using
Repair at all in cases where 1) there is at least one repairing
mutant (not killed by any passing test) for a failing test and 2)
there are multiple failing tests (whether from one or multiple
faults). When the Stmts column shows a bold 0, it indicates
there were no repairs (7 of the 30 faults). The 7 faults meeting
both requirements are bolded. For 4 of these, Repair produces
a perfect localization, and for the other three, it produces no
more than 2 non-faulty statements to examine.

D. Discussion

In one sense, the discovery curve improvements here are
practically very useful, but not extremely large in a relative
sense. The SpiderMonkey curve has an APFD only slightly
more than 2% better than the best result from previous FPF
efforts. For GCC, APFD improves by 6.4%. However, the
comparison is with the very best curve chosen after running
more than 16 different metrics. In practice, users simply do not
know ground truth to rank curves, thus Chen et al. [14] do not
really give a practical approach to distance metric selection.
The best methods for different subjects varied widely, even in
such difficult-to-understand ways as less-fine-grained coverage
providing better results in some cases, but worse in other cases.
In practice, their work established that FPF could produce
good curves, but gave very little useful guidance for choosing
a metric for actual use of the technique, since trying multiple
metrics is impractical: a user has to examine each curve.

TABLE II: Fault localization for CoREBench faults

#Failing
Fault Tests Repair Stmts Metallaxis-FL MUSE

Coreutils 1 2 1 - 1 1
Coreutils 2 3 - 0 86 186
Coreutils 3 1 25 - 47 27
Coreutils 4 1 - 0 28 431
Coreutils 5 5 - 2 4 7
Coreutils 6 1 - 1 5 206
Coreutils 7 1 1 - 5 9
Coreutils 8 1 - 1 22 160
Coreutils 9 5 - 1 10 157
Coreutils 11 1 - 1 2 1
Coreutils 12 2 - 0 6 9
Coreutils 13 1 - 0 905 833
Coreutils 14 1 14 - 19 11
Coreutils 15 2 1 - 1 6
Coreutils 16 1 - 0 569 447
Coreutils 17 3 - 2 37 195
Coreutils 18 1 - 3 27 3
Coreutils 19 1 1 - 3 1
Coreutils 20 7 1 - 12 3
Coreutils 21 2 - 0 20 191
Coreutils 22 2 1 - 6 2
Findutils 27 1 - 9 12 6
Findutils 32 1 - 1 73 70
Findutils 33 1 - 3 10 30
Findutils 35 1 1 - 1 1
Findutils 36 1 9 - 9 19
Findutils 37 1 11 - 22 34

Grep 46 1 - 2 7 10
Grep 47 1 4 - 4 4
Grep 48 1 - 0 26 497

This paper presents a single curve using a universal metric,
and achieves a 2-6% percentage point improvement over the
best of more than 16 different metrics studied in the previous
work; our improvements over any single “reasonable” method
applied to both problems would be considerably larger (for
instance, using the most obvious basis, line coverage, we see
more than 17% improvement). Moreover, the improvement is,
for our subject programs, reliable: choosing random subsets
of the full data set, the difference in mean APFD from best-
previous method is around 3%, and statistically significant.

For fault localization and error explanation, the results
show possible improvement on state-of-the-art mutation-based
approaches. A practical impact of the results reported is that
we suggest users of our techniques examine only the first
few (at most 10, and we propose as few as 5) mutants
and coverage-changing statements, and ignore localization if
none of these results are helpful. This is analogous to our
suggestion that a user abandon the FPF curve if 5-10 test
cases in a row fail to reveal any new faults, as a heuristic.
We suspect the information in the mutants/coverage changes
is probably helpful in some cases where they do not localize a
faulty line, but this is simply based on our highly incomplete
understanding of the faults and patches in question, and not
a solidly established claim. The expertise of compiler devel-
opers would be needed to confirm or reject this belief. Our
suggestion that mutations themselves provide interesting error
explanation is also applicable to MUSE and MUSEUM. There
may be some potential for confusing explanations, however,
if repairs include mutants that also cause some failures, as in
the standard MUSE/MUSEUM approach.

For the compiler faults, if any repair for a failure modified



a faulty statement, Repair always ranked it in the top 34
localizations, ranked it in the top 5 in 6 of 10 such cases,
and 3 times ranked it 1st. MUSEUM, in contrast, ranked one
such repair 195th, never ranked a fault in its top 3 statements,
and only ranked a fault in its top 5 statements twice. Of
course, MUSEUM might be suffering from a lack of mutation
operators, but in some cases this is unlikely due to the nature of
the repairs. For the CoREBench faults, Repair produced more
than twice as many perfect localizations as the other methods,
though it also did not provide any ranking for a fault in a large
number of cases.

There are two ways to consider the performance of Repair.
First, it is using information that other techniques are not
using. If each failure was only repaired by one mutant, MU-
SEUM and Repair would both rank that mutant maximally,
and we speculate that it would usually be faulty code. But
such cases are very rare in compilers: for SpiderMonkey the
mean/median number of mutants repairing each failure were
90.8 and 78, respectively, and for GCC the mean and median
were 54 and 43. Repair can distinguish repairing mutants
in fine-grained ways that MUSE and MUSEUM cannot by
relying on the onion-ring structure: when a repair also repairs
failures that otherwise do not resemble the failure being
localized (in terms of its repairing mutants), Repair assumes
that repair is general to many different faults, and so ranks it
lower than more “relevant” repairs.

The other way to think about Repair for the non-compiler
faults especially, is as a very cautious localization. It only
uses mutants that repair a failure, and, because it is clear that,
in general, failing tests contain far more information about
faults than passing tests, it only uses information from failures
(other than using passing tests to prune mutants that kill
some passing tests, again a principle of discarding potentially
confusing information). This results in Repair either providing
a “useful” localization or almost no localization information
at all to mislead a user, for the non-compiler faults, which
user studies and surveys suggest is the ideal behavior due to
the cost of false positives in localization [61], [42]. This is
basically a trade-off. MUSE, MUSEUM, and Metallaxis-FL
provide localization for many more faults, in a more diverse
range of settings (with single failing tests, no repairs, etc.), and
using more diverse information — but, in cases where Repair
provides a localization, it seems to often be higher quality
due to its restriction to a high-signal source of information
(mutants repairing failing tests, only). In settings, unlike
compilers, where there are relatively few repairs, Repair also
produces very little incorrect information, and so has a low
cost to the user in terms of wasted attention. Note that our
heuristic to stop reading after 5 wrong localizations is not even
needed for all but one CoREBench fault — Repair suggests
1-3 statements at most.

E. Mutation Analysis Costs

The compiler experiments required a large computational
budget. However, our approach is, by design, cheaper than
MUSE or Metallaxis-FL, in that, for a program with up-to-

date mutation testing results (just knowing which mutants are
killed, not a full matrix), it only requires executing mutants
over failing tests. Running each test case under each mutated
version of the compiler is cheap: each execution requires
around 0.05 seconds for SpiderMonkey, and 0.12 seconds
for GCC, on average; moreover, executions can be done in
parallel, most failures do not cover most mutants, and vice
versa, so the total number of repair checks needed is far less
than the product of mutants and failures, and can be spread
over many machines.

Mutation cost reduction techniques are also applicable. E.g.,
trivial compiler equivalence (TCE) [59] can reject equivalent
and redundant mutants, removing almost 30% of mutants for
benchmark subjects. Other techniques, such as using mutant
schemas to avoid having to compile and store each mutant, are
also applicable — almost all of the techniques characterized by
Offutt and Untch [58] as do faster approaches apply. Whether
sampling mutants [22] is applicable is less clear. Even if the
FPF curve remains the same, a critical mutant for localization
might be omitted. We performed some limited experiments,
and found that for a few sample sizes ranging from 13%
of mutants to 50% of mutants or using only some mutation
operators (with the exception of operator-replacement-only),
APFD was always better than benchmark set’s best metric.
However, the improvement in some cases was much smaller
than for the full set, and varied considerably (in some cases it
was up to 2% better than our full results). Fault localization
results were much worse, however (with relative rankings
preserved) for both our techniques and MUSE/MUSEUM.

F. Threats to Validity

The largest threat to validity is that this paper’s conclusions
rely on only two data sets for compilers, and a small number of
non-compiler faults. The compiler ground truths are possibly
imperfect, due to the complex change history, and it was not
possible to produce good patches for all faults, limiting our
analysis of compiler fault localization. The comparison with
other fault localization methods is also limited: our compiler
experiments limit the mutation budget in ways that may
weaken MUSE and MUSEUM effectiveness, and the results
using fault and mutant data sets from other studies provide
few faults, no multi-fault problems, and very few multi-failure
problems, limiting Repair effectiveness. It is also possible that
faults in the framework used for experiments introduced errors
into the data. In order to check for these problems, we will
make the raw data for a re-analysis available on request.

V. RELATED WORK

The most closely related work is that of Chen et. al [14],
whose FPF [21] algorithm and benchmark we use. We extend
their work with a better, and more universal distance metric,
as well as an approach to fault localization in addition to
fuzzer taming.Prior to the FPF-based work, Francis et al. [19],
Podgurski et al. [64] and others [51], [50] used clustering to
attempt to solve similar problems in identifying distinct faults,
on simpler human-generated data sets. Chen et. al [14] provide



an in-depth comparison of clustering and ranking, and the
advantages of ranking (as well as some possible limitations).
Jones et al. discuss general issues in debugging multiple faults
[38]. The work of Groce et al. [28] provides an alternative
approach to fault identification, based on term rewriting to
normalize failures, but is not currently applicable to compiler
fuzzing, as it only supports tests that are sequences of method
calls in Python [30], [34].

Fault localization [76], [68], [49], [50], [15], [40], [39], [38],
[25], [9], [51], [24], [71], [2], [78], [82], even specifically for
compilers [75], is a long-standing field of research. Recently,
fault localization researchers have used program mutants to
improve statistical [40] fault localization techniques [56],
[16], [20], [35], [60], [10]. The work of Hong et al. [35]
on MUSEUM and Moon et al. [56] on MUSE provides a
good summary of other work along these lines. Much fault
localization work is largely (in many cases exclusively) based
on single-fault scenarios; e.g., the MUSE [56] evaluation
includes only 2 of 14 scenarios with multiple faults, and those
scenarios include only a few faults. The statistical approaches
may owe some of their superiority in experiments over other
methods to the use of mostly single-fault evaluations [39].
By focusing on a single failing test case (for us, selected by
fuzzer taming) as the locus of analysis, our work, like some
early efforts [68], [15], [25] may be more suited for situations
involving many faults.

Using program modifications or mutants broadly defined to
repair programs has been a popular topic of recent work as
well [45], [65], [74]. These generate-and-validate approaches
to patching aim to fix programs by generating a large variety
of potential fixes, then using test cases to prune out invalid
fixes. Qi et al. [66] discuss some serious limitations of early
work on this topic, but also demonstrate that effective patching
is possible using a restricted search space that focuses on
removing functionality.

The use of distance metrics in software engineering in-
cludes some of the localization and fault identification efforts
discussed above (e.g., [68], [25], [9], [51]). Vangala et al.
proposed using distance to cluster test cases to improve
diversity and eliminate duplicates [73]. We speculate that
using FPF with our causal metric over passing tests as a
test prioritization (or selection) method might be a fruitful
approach [80]. Adaptive random testing uses distances (usually
between inputs) to choose tests [12], [13], [4], and Artzi et
al. guided test generation for fault localization using path
constraint metrics [5]. Sumner et al. evaluated approaches to
generating execution peers for debugging and understanding
[72] using tree edit distances (and evaluated other distances).
Xin et al. [77] examined methods for indexing program exe-
cutions, useful in all methods involving execution alignments.
To our knowledge, most metrics used are essentially spectrum-
based [69], [6] (using counts over structural entities), while our
metric is essentially causal, based on mutants as counterfactual
[47], [48] versions of a program.

VI. CONCLUSIONS AND FUTURE WORK

By using program changes (produced by mutants) as causes
to determine distance, it is possible to improve on efforts to
identify the set of faults in a large set of redundant compiler
failures [14] and discover the source code locations of faults
[56], [35]. For a set of more than 2,800 tests and more than 50
faults, over the Mozilla SpiderMonkey 1.6 JavaScript compiler
and GCC 4.3.0, our methods improve fault identification
(“fuzzer taming”), in a statistically significant way (with effect
size of about 3% improvement), over the best (for each
subject program) of over 16 metrics considered in previous
work. Preliminary investigation also shows improvement (for
a shared mutation testing budget) over previous mutant-based
fault localization methods, for the same tests and a subset
of 24 faults with known locations. Our Repair method, in
particular, was the only localization approach to provide any
perfect localizations of faults (it produced 3), and provided
three times as many very-high-quality (ranking the fault in
top 5 locations) localizations as the next best method [35] —
6 such localizations, compared to only 2. For GCC wrong-
code faults, only our methods produced any very-high-quality
fault localizations. When applied to non-compiler faults, the
metric tended to either not produce a localization, produce a
very small incorrect localization (1-3 statements), or produce
a very high quality localization. Restricting to the cases where
we consider Repair applicable (7 faults) Repair perfectly
localized 4 of them, and produced a 1 or 2 statement incorrect
localization for the others.

As future work, we plan to apply the mutation-based metric
to other fuzzer taming and fault localization problems. The
highly varying results for even the best fault localization
methods in our experiments demonstrate that further advances
are required before compiler debugging can consistently be
made less onerous through automated assistance.

We also plan to explore other applications of mutant-
based metrics. Many software engineering techniques rely on
measuring distance between program executions [6], [68]. Not
all of these concern only failing executions. For example,
Zhang et al. [83] show that FPF based on a simple Hamming
distance over branches covered can significantly improve the
effectiveness of seeded symbolic execution [53], [63], [37].
Mutation response is likely too expensive to use for this
purpose without modification, but sampling mutants to refine
distance when coarser metrics plateau may be practical. Cost
may be less of a concern when applying our metrics as a
method for prioritizing or selecting regression tests, where the
results can be repeatedly used in test suite execution, without
recomputing distances based on every code change [80]. Our
metrics may also be useful in determining execution peers
[72], for example to help operators of spacecraft find similar
behaviors to telemetry downlinks in testbed history [32], [27].
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