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Abstract

Spectrum-based fault localization (SBFL) is one of the
most popular and studied methods for automated debug-
ging. Many formulas have been proposed to improve the
accuracy of SBFL scores. Many of these improvements
are either marginal or context-dependent. This paper pro-
poses that, independent of the scoring method used, the
effectiveness of spectrum-based localization can usually be
dramatically improved by, when possible, delta-debugging
failing test cases and basing localization only on the
reduced test cases. We show that for programs and faults
taken from the standard localization literature, a large case
study of Mozilla’s JavaScript engine using 10 real faults,
and mutants of various open-source projects, localizing
only after reduction often produces much better rankings
for faults than localization without reduction, independent
of the localization formula used, and the improvement is
often even greater than that provided by changing from the
worst to the best localization formula for a subject.

I. Introduction

Debugging is one of the most time-consuming and
difficult aspects of software development [1], [2]. Recent
years have seen a wide variety of research efforts devoted
to easing the burden of debugging by automatically local-
izing faults. The most popular approaches, following the
seminal work of Jones, Harrold, and Stasko [3], [4] use
statistics of spectra [5] of failing and successful executions
to score program entities according to how likely they
are to be faulty. These spectrum-based approaches are
popular in part because they have outperformed competing
approaches, and in part because they are highly efficient
and easy to use — they typically only require the collection

of coverage data and marking of tests as passing and
failing, and thus are both computationally cheap and easy
to fully automate. Many formulas have been proposed as
potentially improving the accuracy of scores [6], [7], [8],
[9], [10] over Tarantula.

Despite this large body of work and continuing interest,
there is recent concern about the long-term value of local-
ization research. Parnin and Orso asked the core question:
“Are automated debugging techniques actually helping
programmers?” [11], and did not receive comforting an-
swers. Parnin and Orso studied how actual programmers
made use of localization techniques [11] and concluded
that 1) absolute rank should be used to measure effec-
tiveness, because developers lose interest in localizations
after a very few incorrect suggestions, and 2) there should
be a focus on using richer information (e.g. actual test
cases) rather than just a raw localization in debugging aids.
Combined with Yoo et al.’s establishment [12] that there
is no truly optimal formula for localization, this suggests
that the most valuable contributions to localization would
be formula-independent methods that potentially result in
extremely large improvements in fault rank rather than
small, incremental average improvements in rank. This
paper, therefore, argues that in many cases there is a
simple, easily applied, improvement to localization that
works with any formula (or other modification to the
method we are aware of), has benefits to developers even
if they ignore the localization, and often produces very
large improvements in what we consider the most impor-
tant quantitative measure of localization effectiveness, the
absolute worst possible ranking of the faulty code.

A. Reduce Before You Localize

Failing test cases usually execute much more non-faulty
code than faulty code, and in a sense it is essentially



this fact that makes fault localization difficult. Due to
the way spectrum-based localizations work, reducing the
amount of non-faulty code executed in failing test cases
should almost always improve localization. Consider the
Tarantula [3], [4] formula. Tarantula, like most spectrum-
based approaches, determines how suspicious (likely to be
faulty) a coverage entity e (typically a statement) is based
on a few values computed over a test suite:
• passed(e): # of tests covering e that pass
• failed(e): # of tests covering e that pass
• totalpassed: the # of passing tests
• totalfailed: the # of failing tests

suspiciousness(e) =
failed(e)
totalfailed

failed(e)
totalfailed + passed(e)

totalpassed

It is easy to see that if we lower failed(e) for all
non-faulty statements, while keeping everything else un-
changed, the rank (in suspiciousness) of faulty statements
will improve. Reducing coverage of non-faulty statements
in failing tests, then, is a potentially very effective and
formula-independent approach to improving localizations.

Unfortunately, there is no method we know of in the
literature for reducing the amount of non-faulty code
executed in a test. However, there is a widely used method
for reducing the size of failing test cases, delta-debugging.

Delta-debugging [13] (DD for short) is an algorithm
for reducing the size of failing test cases. Delta-debugging
algorithms have retained a common core since early pro-
posals [14]: use a variation on binary search to remove
individual components of a failing test case t to produce
a new test case t1min satisfying two properties: (1) t1min

fails and (2) removing any component from t1min results
in a test case that does not fail. Such a test case is
called 1-minimal. Delta-debugging reduces the size of a
test case in terms of its components. Its purpose is to
produce small test cases that are easier for humans to read
and understand, and thus debug. In our long experience
with delta-debugging [15], [16] and in recent work on
variations and applications of delta-debugging [17], [18],
[19], [20], [21], we noticed that in addition to reducing the
“static” human-readable text of a test case, delta-debugging
also almost always reduces the code covered by a failing
test case, often by hundreds or thousands of lines [17].
The core proposal of this paper, therefore, is that failing
test cases should be, when possible, reduced with delta-
debugging before they are used in spectrum-based fault
localization: reduce before you localize. The original,
unreduced, test cases should not be used, as they likely
contain much irrelevant, non-faulty code that may mislead
localization.

Even if reduction does not improve the localization, we
show that under some reasonable assumptions it will not

produce a worse localization, and at least the developer
now has a set of smaller, easier-to-understand test cases to
read. In fact, we believe the only reason not to reduce test
cases before localization, as a best practice, is when it is
too onerous (or not possible) to set up delta-debugging for
test cases.

In this paper, we show that using delta-debugging to
reduce failing test cases, when applicable, does usually
produce improvements in fault ranking, using a variety
of standard localization formula from the literature, and
these improvements are often dramatic. In order to place
our results on a firm empirical footing [22] we provide
results over both SIR/Siemens [23] suite subjects studied
in previous literature, a set of real faults from an industrial-
strength random testing framework for the SpiderMonkey
JavaScript engine [17], [24], and a variety of open source
Java programs. Not only does reducing failing tests pro-
duce improvements; the improvements produced are often
even better than those provided by optimally switching
formula.

II. Related Work

As discussed in the introduction, there is a very large
body of work on spectrum-based fault localization (e.g. [4],
[6], [7], [8], [9], [25], [26], [10], [27], [28], [29]), all of
which informs our work. The most important motivational
results for this paper are the investigation of Parnin and
Orso [11] into the actual use of localizations for program-
mers, which inspired our evaluation methods, and the claim
of Yoo et al. [12] that no single formula is best, which
directed us to seek formula-independent improvements to
localization. Our use of many programs and methods was
inspired by the threats identified by Steimann et al. to
empirical assessments of fault localizations [22].

The most similar actual proposed improvement to local-
ization to ours is the entropy-based approach of Campos
et al. [28] that uses EvoSuite [30] to improve test suites.
The underlying approaches are quite different, but both
aim to improve the spectra used in localization rather than
change their interpretation. The primary advantage of their
approach over ours is that it can be of use when test cases
cannot be reduced; on the other hand, EvoSuite is probably
considerably harder to apply for most developers than
off-the-shelf delta-debugging. Another similar approach
(sharing the same novel aspect of changing the test cases
examined rather than the scoring function) is that of Xuan
and Monperrus, who propose a purification for test cases
[31] that executes omitted assertions and uses dynamic
slicing [32] to remove some code from failing test cases
(parameterized by each assertion). Delta-debugging can
remove code from unit tests that would be in any dynamic
slice, since it does not have to respect any property but that



the test case still fails. A core practical difference is that
their approach only applies to unit tests of method calls
(since the slicing is at the test level, not of the program
tested), and that we believe delta-debugging tools are more
widely used and easily applicable than slicing tools (e.g
they are language-independent).

This paper also follows previous work on delta-
debugging [13], [14], [33] and its value in debugging
tasks. The most relevant recent work is the set of papers
proposing that in addition to producing small test cases for
humans to read, delta-debugging is a valuable tool in fully
automated software engineering algorithms even if humans
do not read the reduced tests: e.g., it is helpful for produc-
ing very fast regression suites [17], for improving coverage
with symbolic execution [18], and for clustering/ranking
test cases by the underlying fault involved [19].

III. Assumptions and Guarantees

In addition to being orthogonal to the spectrum-based
localization formula used, test case reduction has a second
major advantage independent of empirical results. Namely,
under a set of assumptions that hold in many cases,
reduction can only improve, or leave unchanged, the effec-
tiveness of localization. All formulas for localization have
some instances in which they diminish the effectiveness
of localization compared to an alternative formula [12].
Reducing failing tests before applying a formula, however,
at worst leaves the effectiveness of localization unchanged,
for most of the formulas in widespread use that we are
aware of, under three assumptions:

1) all failing test cases used in the localization involve
the same fault,

2) each failing test case reduces to a test case that fails
due to the same fault as the original test case, and

3) reducing the input size (in components) also covers
less code when the test executes.

The first assumption is probably the least likely to hold
in some settings; however, it is also the assumption that
is least relied upon. The second assumption is a usual as-
sumption of delta-debugging. Most delta-debugging setups
are engineered with this goal in mind, often using some
aspect of failure output or test case structure to keep “the
same bug.” Observed “slippage” rates for faults seem to be
fairly low [19], even with little mitigation, and mitigation
strategies have been proposed to reduce even this rate [34].
Note that in the setting where a program has a single
fault, assumptions 1 and 2 always hold. As to the third
assumption, it is uncommon but possible for reduced test
cases to increase coverage; cause reduction can usually be
used to mitigate the rare exceptions [35].

Given these assumptions, we now show that reduction
is, at worst, harmless for most formulas. Recall that

spectrum-based localizations rely on only a few values
relevant to each entity e to be ranked in a localization:
passed(e), failed(e), totalpassed, and totalfailed. Given
assumptions 1-3 above, for faulty statements all of these
formula elements will be unchanged after delta-debugging.
For non-faulty statements, the only possible change is that
failed(e) may be lower than before failing test cases were
reduced. Holding the other values constant, it is trivial
to show that most formulas under consideration are (as
we would expect), monotonically increasing in failed(e).
Therefore, after reduction, the suspiciousness scores for
faulty statements are unchanged and the suspiciousness
scores for non-faulty statements are either unchanged or
lower. The rank of all faulty statements is therefore either
unchanged or improved. There are many spectrum-based
fault localization formulas in use. In our evaluation, we
have used 3 well known examples, in addition to the basic
Tarantula [3] formula, as representative:

Ochiai [6]:
suspiciousness(e)= failed(e)√

(totalfailed)(failed(e)+passed(e))

Jaccard [8]:
suspiciousness(e)= failed(e)

failed(e)+totalfailed

SBI: [26], [9]
suspiciousness(e)= failed(e)

failed(e)+passed(e)

All these formulas are monotonically increasing in
failed(e).Reduction can only theoritically improve fault
localization or in worst case leave it unchanged if the
formula under consideration is monotonically increasing
failed(e). We chose these 4 formulas as they were used
before to study the effects of test suite reduction [26] and
test case purification [31] on fault localization.

IV. Experimental Results

Because we aim to take into account the findings of
Parnin and Orso [11], our evaluation of fault localizations
is based on a pessimistic absolute rank of the highest
ranked faulty statement. That is, for each set of suspi-
ciousness metrics computed, our measure of effectiveness
is the worst possible position at which the first faulty
statement can be reached, when examining the code in
suspiciousness-ranked order. 1 For example, if ten state-
ments all receive a suspiciousness score of 1.0 (the highest
possible suspiciousness), and one of these is the fault, we
assign this localization a rank of 10; an unlucky program-
mer might examine this statement last of the ten highest-
ranked statements. Pessimistic rank nicely distinguishes

1We consider reaching any faulty statement to be sufficient, as in [36].



Subject Avg. Avg. (DD) #Better #Same #Worse
print_tokens 59.7 29.7 18 10 0
print_tokens2 27.0 5.8 19 17 4

replace 24.5 21.8 37 76 11
schedule 7.7 14.3 18 14 4
schedule2 92.4 76.6 28 12 0
tot_info 29.7 17.7 75 16 1

Total 195 145 20

TABLE I. SIR Fault Rank Change Result Fre-
quencies

this result from another localization that also places the bug
at score 1.0, but gives twenty statements a 1.0 score. In our
view, following Parnin and Orso [11], the most important
goal of a localization is to direct the developer to a faulty
statement as rapidly as possible, ignoring the size of the
entire program or even of the faulty execution.

A. SIR Programs

Our initial experiments use the Siemens/SIR [37], [23]
suite programs studied in many previous papers on fault
localization, in particular the classic evaluation of the
Tarantula technique [4]. These subjects provide a large
number of faults, reasonable-sized test suites, and have
historically been used to evaluate localization methods.

Of the seven Siemens programs considered in the em-
pirical evaluation of Tarantula, only one was unsuitable
for delta debugging: TCAS takes as input a fixed-size
vector of integers, and therefore its inputs cannot be
easily decomposed. For the remainder of the programs,
the input is easily considered as either 1) a sequence of
characters or 2) a sequence of lines, when character-level
delta debugging is not efficient (and so unlikely to be
chosen by users in practice), which was required for the
tot_info subject. In all cases, reduction took on average
less than three seconds per failing test case, an essentially
negligible computational cost.

We evaluated our proposal by 1) first computing the
fault ranking for each version of each subject by the five
formulas then 2) performing the same computation, but
using only reduced (by delta-debugging) versions of the
failing tests. Reduction was performed using Zeller’s delta-
debugging scripts, available on the web, and comparing the
output of the original (correct) version of the program and
the faulty version as a pass/fail oracle.

Figures 1 and 2 show the results The lighter shaded
bars show the ranking of the fault, without any reduction.
The darker bars show the ranking after delta-debugging all
failures. The graphs are shown in log-scale due to the range
of rankings involved. In many cases, reducing test cases
before localizing improved the ranking of the fault by a
factor of two or more. Results for individual subject vary:
for print_tokens, the average ranking for faults, over

Better Worse
Subject Min Max Avg. Min Max Avg

print_tokens 6 85 44.6 N/A N/A N/A
print_tokens2 3 67 45.8 6 6 6.0

replace 1 30 9.6 1 3 1.4
schedule 1 15 4.8 85 75 81.3
schedule2 4 35 22.6 N/A N/A N/A
tot_info 1 81 14.7 3 3 3.0

TABLE II. SIR Fault Rank Change Effect Sizes

all bugs and all formulas, is 59.5 without reduction, and
36.4 with reduction. The result is improved by reduction
in 19 cases, remains the same in 15 cases, and is worse in
1 case. Table I shows similar data for all the SIR subjects.

Improvement in fault rank after reduction was 1.3 times
as common as no change in rank, and nearly 10 times
as common as worse rank for the fault. In addition to
the frequency of improvement of fault rank, it is also
important to examine the degree of improvement (or
the opposite) provided by reduction. Table II shows, the
min, max, and average for changes in rank. The effect
size when reduction improved rank was usually much
larger than the effect size when it gave worse results.
For replace, the subject with the most instances where
reduction made fault ranking worse, we see that the effect
size when reduction was harmful was much smaller than
when reduction was helpful. Furthermore, when reduction
helped, it often improved the ranking of the fault by more
than optimally switching formula That is, we can ask:
if we compare taking the worst formula and applying
reduction to improve the localization, how often is this
better than switching to the best localization formula for
that subject and fault? Obviously applying reduction is
more practical, since we don’t know in advance which
formula will perform best, until we know the correct result.
By this comparison, it was better to apply reduction than
switch from worst to best formula in 36 cases over all SIR
subjects; it was better to switch formula in only 22 cases.

B. SpiderMonkey JavaScript Engine

SpiderMonkey is the JavaScript Engine for Mozilla,
an extremely widely used, security-critical interpreter/JIT
compiler. SpiderMonkey has been the target of aggressive
random testing for many years now. A single fuzzing tool,
jsfunfuzz [24], is responsible for identifying more than
1,700 previously unknown bugs in SpiderMonkey [38].
SpiderMonkey is (and was) very actively developed, with
over 6,000 code commits in the period from 1/06 to 9/11
(nearly 4 commits/day). SpiderMonkey is thus ideal for
evaluating how reduction aids localization when using a
sophisticated random testing system, using the last public
release of the original jsfunfuzz tool [24], modified for
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Fig. 1. First Set of SIR Results (Log Scale)

Bug# Revision Fixed #Failures diff size
R60 1.16.2.1 1 115
R95 1.3.2.3.8 7 111
R115 1.4.8.1 4 592
R360 3.117.2.6 3 223
R880 3.17.2.14 28 272
R1172 3.208.2.63 150 214
R1294 3.241.2.1 405 80
R1543 3.36.16.1 146 169
R1561 3.37.2.1.4.1.2.2 2 31
R1873 3.50.2.29 1,041 56

TABLE III. Spidermonkey Bugs

swarm testing [39]. Using a set of faults in SpiderMonkey
1.6 found with random testing [19], we find that reduction
is essential for localization of these complex compiler
bugs, and that the use of reduction is even somewhat more
important than the choice of localization formula.

Figure 3 shows the change in rankings of the faulty code
for 10 SpiderMonkey bugs (Table III). These bugs were
taken from a data set used in previous fault identification
papers [19], [40]. Out of the 28 bugs studied in that paper
we chose 10 random bugs for which, by hand, we could
confirm the true set of faulty lines in the code commit.
Each bug is identified by the revision number of the

commit in which it was fixed: e.g., R0 maps to revision
1.10.4.1, the first commit of Spidermonkey changes under
consideration. Table III shows all bugs studied, the commit
version fixing the bug, the number of failing test cases for
that bug (# Failures), and the size (in lines) of the fixing
commit’s diff. The faults under consideration here are
clearly non-trivial (in fact, most fixes involved changes to
multiple source files). For localization we used the original
and reduced test cases [19] plus 720 additional randomly
generated passing tests generated using the same tool.

Across these 10 bugs, the average ranking for the first
faulty line encountered was 1,550.7 without reduction,
improving to 994.5 with reduction. Reduction improved
the localization in 33 cases, with a minimum improvement
of 1 ranking and a maximum improvement of 2,137
positions. The average improvement was 674 positions.
The results were unchanged in 7 cases. It is important
to note that even with such a challenging setting and real
bugs, fault localization with reduction performs better then
fault localization without reduction irrespective of formula
being used: in the worst case it performed equally well. It
was better to use reduction than to optimally (from worst
to best) switch formula for 5 of the 10 bugs; it was better
to switch formula in 4 cases, and in one case both methods
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Fig. 2. Second Set of SIR Results (Log Scale)
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Fig. 3. SpiderMonkey Results

gave the same result. While the results show that reduction
was extremely effective in improving localization, it is also
true that the localization was still not very helpful in many
of these cases, considering absolute pessimistic rank as
success criteria. Of course, SpiderMonkey 1.6 has over
80KLOC, and even reduced failing tests typically executed
over 8,000 lines of code, so a “poor” localization may be
useful in such a large fault search space. For 6 of the 10
bugs, all scores after reduction gave a fault ranking < 128;
without localization, there were only 4 such bugs.

C. Open Source Projects

Next we applied reduction based localization to five
open source Java programs (shown in Table IV), generating
mutants for each of the projects to simulate bugs, following
previous fault localization papers [41], [31].

Our strategy was to create mutants using the approach
of Xuan and Monperrus [31], using 6 mutant operators.
From each set of mutants generated, we selected 5 or 6
mutants at random that met the following criteria: (1) the



Program Source Test Suite
Subject #Classes #Methods SLOC #Test cases

Apache Commons
Validator 64 578 6,033 434
JExel 1.0.0
beta 13 43 133 1,522 344
JAxen 167 1,078 12,462 2,138
JParser 115 178 3,046 647

Apache Commons
CLI 23 208 2,667 364

TABLE IV. Open Source Subject Programs

mutant was killed by at least one test case and (2) the
mutant generated no errors in JUnit test cases. A JUnit
failure is caused by an unsatisfied assertion, but an error
is caused by another kind of test failure, which may include
some test setup or oracle problems. Using assertion failures
only assured that we retained the intent of the original tests.

Taking all the open source projects and mutants to-
gether, we note that reduction improved fault ranking in 51
cases, left it unchanged in 55 cases, and made it worse in
only 2 cases. The average improvement was 17.62 ranking
positions; the average negative effect size was 2 ranking
positions. The best improvement was 100 rank positions.
The average fault ranking without reduction was 37.64,
and with reduction this improved to 29.36.

D. Threats to Validity

The primary threats to validity here are to external va-
lidity [22], despite our use of a reasonable number of faults
and subjects. Our subjects are all C or Java programs, for
example, and only the SpiderMonkey faults are definitely
real faults that required substantial developer time to de-
bug. To avoid construct threats, we developed independent
experimental code-bases for some of the subjects, executed
both, and compared results to cross-check the shared code
base used for all subjects. Fortunately, most tasks here are
straightforward (test execution, coverage collection, delta-
debugging, and calculation of scores).

A second point (not strictly a threat) is that this paper
focuses on single-fault localization. Even when there are
multiple faults, it may be better to use techniques for
clustering test cases by likely fault [42], [19], [43], [40]
and then perform single-fault localization than to try to
localize multiple faults at once.

V. Conclusions

Our primary conclusion is that, when possible, anyone
attempting to use spectrum-based fault localization should
use delta-debugging to reduce before localizing. Across
Siemens subjects, real Mozilla SpiderMonkey bugs, and
mutants of a set of open source projects, reducing test cases

before localizing was seldom harmful and in the cases
where it caused harm the effect size was much smaller than
in the cases where reduction was helpful. In most cases,
reduction was helpful, and it was sometimes extremely
effective, improving fault ranking by a factor of 2 (or more)
and a very large absolute rank, sometimes hundreds of
lines. This makes sense: if failing test cases only contained
faulty code, fault localization would be trivial. Delta-
debugging, by (usually) reducing the coverage of non-
faulty code, approaches this ideal situation as best we know
how at present. While delta-debugging is not a panacea
for localization, in that it does not apply to some kinds of
inputs and is sometimes not helpful, it often produces a
very large improvement in localization effectiveness, quite
often more so than can be gained by switching from worst
to best formula. We speculate that reduction should also
assist mutation-based fault localization methods [44], [45],
[46], [40], since the mutants that drive localization will
be those that cause failing tests to succeed, and reduction
should limit these as well.

Our larger take-away message is that the lessons of
Parnin and Orso [11] should be taken to heart: rather than
seek incremental improvements in localization effective-
ness, we need large improvements in fault rank, and need
to exploit all sources of information, not just coverage
vectors. Even when reduction does not assist localization,
we believe that the reduced test cases are highly valuable
debugging aids. Furthermore, because no single formula is
“best” for all faults [12], there is much to be gained by
devising aids to fault localization that apply to any formula
and any type of spectrum. If automated fault localization
is to be adopted in real-world settings, we need more
than a competing set of ranking algorithms: we need a
complete ecosystem for localization and debugging. As
future work, we would like to use delta-debugging as a part
of a realistic examination of fault localization in settings
where debugging is genuinely challenging and thus it could
truly improve developer productivity, e.g. compilers [40].
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