
Contextual Predictive Mutation Testing
Kush Jain

Carnegie Mellon University
United States

Uri Alon
Carnegie Mellon University

United States

Alex Groce
Northern Arizona University

United States

Claire Le Goues
Carnegie Mellon University

United States

ABSTRACT
Mutation testing is a powerful technique for assessing and improv-
ing test suite quality that artificially introduces bugs and checks
whether the test suites catch them. However, it is also computation-
ally expensive and rarely scales to large projects. One promising
recent approach to tackling this problem uses machine learning to
predict whether the tests will detect the synthetic bugs, without
actually running those tests. However, existing predictive muta-
tion testing approaches still misclassify 33% of a randomly sampled
set of mutant-test suite pairs. We introduce MutationBERT, an ap-
proach for predictive mutation testing that simultaneously encodes
the source method mutation and test method, capturing key context
in the input representation. Thanks to its higher precision, Mu-
tationBERT saves 33% of the time spent by prior work to verify
live mutants, and improves precision, recall, and F1 score in both
same project and cross project settings. MutationBERT not only
enhances the state-of-the-art in predictive mutation testing, but
also presents practical benefits for real-world applications, both in
saving developer time and finding hard to detect mutants.

CCS CONCEPTS
• Software and its engineering → Dynamic analysis; Soft-
ware testing and debugging.

KEYWORDS
test oracles, code coverage, mutation analysis

ACM Reference Format:
Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues. 2023. Contextual
Predictive Mutation Testing. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3611643.3616289

1 INTRODUCTION
Mutation testing is a well established technique for evaluating test
suite quality [7, 12, 15]. Mutation testing works by introducing
synthetic bugs based on a fixed set of rules (“mutation operators”),
ranging from inverting conditional statements to changing unary

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616289

and binary operators. The test suite is then run on each buggy code
copy (also referred to as a “mutant” of the original program. If the
test suite fails on a mutant, the mutant is considered “detected”
(or “killed”; this is the desired outcome), otherwise the mutant is
“undetected” (a “live” mutant).

Empirically, mutation testing has been shown to improve test
suites in ways correlated with real world fault detection [17, 25].
However, one of its major limitations is its computational cost:
test suites must be run on each mutant, in principle. Large-scale
systems commonly have hundreds of thousands of mutants [9, 11],
since mutants scale with size of the codebase and mutation opera-
tors considered. Myriad approaches, including weak mutation [14],
meta mutation [31], mutation sampling [9], and mutant prioriti-
zation [19], have been proposed to tackle this computational cost.
However, they typically require still intractably expensive instru-
mentation or static and dynamic analyses, and usually rely on some
kind of random sampling, compromising their usefulness in prac-
tice. Mutation testing has begun to achieve industry adoption [4, 26]
at companies like Meta and Google, leveraging additional heuris-
tics and idle compute time. However, current industrial practice
is focused on identifying undetected mutants in newly committed
code. This is, in essence, the tip of the iceberg; the vast underwa-
ter domain of undetected mutants (and, thus, test weaknesses) in
existing code pre-dates the adoption of limited mutation analysis.
Running all mutants on existing large codebases to surface these
problems is still too expensive.

Research on Predictive Mutation Testing1 [20, 22, 36] takes a
different approach to scalable mutation testing, using machine
learning to predict whether a mutant will be detected or not with-
out actually running the tests. The initial PMT work [36] empirically
demonstrated a correlation between static and dynamic code fea-
tures and mutant detection, but falls short of practical utility [1] in
terms of actual F1 or accuracy of the resulting model. Seshat [20]
improves on the original PMT model by using “natural language
channels”, including the modified code (pre- and post-mutation),
and keywords from the test method and source method name. This
eliminates the expensive dynamic analyses from the PMT approach
and providesmore detailed prediction of which tests detect amutant
in particular (the mutant-test matrix). However, although Seshat
outperforms the original PMT model, it still suffers from significant
false postives, with a precision of 0.66 on our test set (Section 4),
costing valuable developer time.

1The first publication [36] both named the problem “Predictive Mutation Testing” and
introduced a model/approach to solve it named “PMT”. In general in this paper, we use
“PMT” to refer to the problem of predicting whether a test/suite will detect a mutant,
rather than the specific model proposed in that paper.

https://doi.org/10.1145/3611643.3616289
https://doi.org/10.1145/3611643.3616289

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues

Code Files

Test Files

M1 M2

T1

T2

Mutant-Test Matrix

 Mutation Testing
Tool

Data
Preprocessing

MutationBERT
Model

Mutated Method-Covered
Test Suite Pairs

Mutant-Test
Method File Pair

1 2 3 4

Figure 1: An overview of MutationBERT’s workflow. Step 1○ provides source and test files to a mutation testing tool. In Step
2○, the mutation tool generates mutants and correspondng covering tests, which are preprocessed, tokenized, and formatted.
In Step 3○, MutationBERT takes these inputs to produce (Step 4○) the full mutant-test matrix.

We observe that there is significant additional contextual infor-
mation embedded in both source and test code well beyond simply
the mutated line and method names considered in prior work. By
context, we mean both the method surrounding a modified line
for a given mutant, as well as the body of the test method, in their
entirety. This intuition is supported by the fact that code and test
context are strongly correlated with how useful a mutant is (in
terms of whether a mutant is redundant, equivalent, or trivial) [18].
In this paper, we build on this insight to enable effective and efficient
contextual predictive mutation testing.

We introduce MutationBERT, a model for predictive mutation
testing that takes as input the mutated source method and cor-
responding test method. MutationBERT learns the relationship
between them to predict whether the test will fail on that modified
method. To this end, we introduce a novel input representation
that encodes each mutation as a token level diff applied to a source
method, followed by the corresponding test. We then use a pre-
trained transformer [32] architecture to encode source and test
methods, and further finetune it for our task.

A transformer maps a sequence of tokens to a contextual em-
bedding that can subsequently be finetuned to downstream tasks.
Transformers have been shown to be highly effective across a wide
range of software engineering tasks, ranging from code completion
to merge conflict resolution [2, 8, 30, 34]. Their highly parallel archi-
tecture means that inference time is low, as compared to RNNs used
in prior work in predictive mutation testing [20]. To our knowledge,
our work is the first to apply this recent advancement to this domain.
As implied by the name, MutationBERT builds on recent advance-
ments in pretrained code models by finetuning CodeBERT [8] for
mutation testing. Due to having seen so much code, pretrained mod-
els have a better representation and understanding of source code
syntax and semantics, and thus are better equipped for tackling
source-intensive tasks such as mutation testing.

Like Seshat, MutationBERT requires no computationally expen-
sive static or dynamic analysis, nor instrumentation, as Mutation-
BERT operates entirely on source text. MutationBERT can also
generate the full mutant-test matrix. Generating the full matrix is
essential for many applications of mutation testing. For example, if
a mutant is predicted to be detected by only a very small number of
tests, the prediction can be confirmed by running just those tests.
Mutants predicted to be undetected can similarly be checked by

running the tests considered most likely (though still unlikely) to
detect them. Importantly in practice, a developer who wants to add
testing to cover an undetected mutant will certainly want to know
which existing tests would be most likely to detect the mutant, since
often the way to fix such a problem is to strengthen the oracle or
extend the behavior of an existing test.

To summarize, our core contributions are as follows:
• An extensive empirical evaluation of predictive mutation
testing tools, measuring both inference time and the runtime
cost savings. We consider the tradeoff between precision and
recall, and discuss its impact on the end user, finding that
MutationBERT’s higher precision saves 33% of the total time
spent checking mutants over prior work. We also evaluate
ability to detect non-trivial mutants, finding MutationBERT
has a 30% improvement in accuracy over the state-of-the-art.

• We introduce MutationBERT, the first predictive mutation
testing model to incorporate source and test code context.
MutationBERT can predict entire mutant-test matrices along
with whether mutants are detected or not by test suites.
MutationBERT has a 8% improvement in F1 score when
predicting test matrices, and over a 12% improvement in
F1 score over the state-of-the-art baseline when predicting
whether a mutant is detected. While recall remains relatively
stable, precision improves by 25%, meaning that mutants
labeled as undetected by MutationBERT are much less likely
to be false postives.

• We perform an extensive analysis of the design decisions, in-
cluding an examination of alternative input representations
that leverage both source and test method context. We find
that token-level diff is the most effective input representation
for mutant prediction.

We release our dataset, source code, and model checkpoints at
https://doi.org/10.5281/zenodo.7600371, including detailed instruc-
tions on how to reproduce all of our results and use our model. We
hope that this will enable the community to deploy our model and
further build upon our work.

2 CONTEXTUAL PREDICTIVE MUTATION
TESTING

Figure 1 overviews the MutationBERT workflow. Our workflow
takes a project and test suite as input, and uses a given source-level

https://doi.org/10.5281/zenodo.7600371

Contextual Predictive Mutation Testing ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

1 public RegularTimePeriod next() {
2 Hour result;
3 - if (this.hour != LAST_HOUR_IN_DAY) {
4 + if (this.hour > LAST_HOUR_IN_DAY) {
5 result = new Hour(this.hour + 1, this.day);
6 }
7 ...
8 }
9
10 public void testNext () {
11 Hour h = new Hour(1, 12, 23, 2000);
12 h = (Hour) h.next();
13 assertEquals (2000, h.getYear ());
14 ...
15 }

(a) Motivating example

1 <CLS>
2 public RegularTimePeriod next() {
3 Hour result;

4 if (this.hour <BEFORE> != <AFTER> > <ENDDIFF>
5 LAST_HOUR_IN_DAY) {
6 result = new Hour(this.hour + 1, this.day);
7 }
8 ...
9 }

10 <SEP>
11 public void testNext () {
12 Hour h = new Hour(1, 12, 23, 2000);
13 h = (Hour) h.next();
14 assertEquals (2000, h.getYear ());
15 ...
16 }

(b) Model encoding of example

Figure 2: A snippet of code from the popular JFreeChart Java project, where a mutation changing != to > is applied (Figure 2a).
The provided test fails to detect thismutant. Figure 2b shows howwe encode thismutant in our approach. Newly added special
tokens are marked in brown .

mutation testing tool (step 1○, Section 2.1) to generate a set of mu-
tants and tests that cover them (step 2○). Most mutation testing
tools provide coverage out of the box, as a way to prune uncov-
ered mutants, which will always be undetected. We encode the
method/test pairs in an input representation (step 3○, Section 2.2),
to be passed as input to our trained model (step 4○, Section 2.3).
The model predicts whether the test will detect or fail to detect
the mutant (step 5○). Over all mutant-test pairs, these predictions
comprise the mutant-test matrix for the program. This output can
be optionally post-processed to aggregate predictions across the
whole test suite. This produces for the user a set of mutants likely
undetected by the test suite; these can be inspected directly, or
ranked by existing mutant prioritization algorithms [4, 19, 26]. As
the developer adds tests, more interesting mutants are identified,
leading to better test suites over time.

As an illustrative example, consider Figure 2a, which shows a
(simplified) code and test snippet from JFreeChart.2 The next()
method returns the next hour for a given RegularTimePeriod.
The testNext method checks that it works correctly for 23:00 on
December 1st, 2000. Although this test method may look compre-
hensive, note that it does not fail if we change the != operator
to > on line 3. A better test suite would include another method
that includes a time that is not the last hour of a day, which would
correctly fail on the mutated code. We will refer to this example
throughout subsequent sections to clarify our contribution.

2.1 (Predictive) Mutation Testing
Mutation testing [7] is the process of synthetically introducing
faults into programs and measuring the effectiveness of tests in
catching them. A set of program transformations, known as “mu-
tation operators” take regular code and create buggy copies of it.
These operators vary [6, 10, 16], but some common operators in-
clude negating conditions (if (a) to if (!a)), replacing arithmetic
operators (a + b to a - b), replacing relational operators (a < b
to a > b), and flipping conditionals (a == b to a || b). Each time
2https://github.com/jfree/jfreechart

one of these rules is applied to a program, a new mutant is created,
each differing only slightly from the original program. The change
in Figure 2a creates one such mutant for the next() method.

Test adequacy is measured by running the entire test suite on
each mutant; the goal is a test suite that detects all mutants, in-
creasing confidence that the suite would detect unintentional bugs
as well. The test suite corresponding to the single test testNext()
in Figure 2a does not detect the mutant; presenting this mutant to
a developer would ideally motivate them to create the necessary
additional tests. Mutation score, or the ratio of detected mutants
to total mutants, provides a rough measure of test adequacy, out-
performing code coverage in terms of correlation with real-world
fault detection [17, 25]. Mutation testing has seen some industry
adoption [4, 26]. Prominent recent uses at Facebook and Google
apply it only to changed code at commit-time, which still requires
large amounts of idle compute [27] because of the massive com-
putational expense of running it over an entire codebase. Tackling
this scalability problem [5] is the core motivation of our work.

Our approach is parametric with respect to existing source-level
mutation testing tool and can integrate with existing approaches
like Major [16] and universalmutator [10]. For our evaluation we
use a set of mutants collected by Major [16] on the Defects4J 2.0
dataset provided by Kim et al. [20] with the Seshat experiments.

Techniques for Predictive mutation testing [20, 22, 36] use ma-
chine learning to predict whether a test or a test suite will detect
a mutant without actually running those tests. We provide more
detailed comparison in Section 7. For the purposes of understand-
ing our technique, however, note that one limitation of the first
ML-based approach for mutation testing prediction [36] is that its
performance degrades significantly when it is not trained/evaluated
on mutants that are not covered (executed) by any of the tests in
the test suite [1]. Uncovered mutants are trivially undetected by
a test suite, since a test cannot fail due to a bug on a line it does
not execute. They are thus not interesting for the task of predictive
mutation testing. We therefore follow precedent set in subsequent
work [20] and exclude uncovered mutants from the task.

https://github.com/jfree/jfreechart

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues

2.2 Input Representation
Our goal is to train a model that predicts whether a given test will
detect a given mutant. Concretely, a mutant is a typically small
modification to a typically much larger code file. Prior efforts to rep-
resent code changes for the purpose of ML, fall into three main cate-
gories: defining a set of features related to the modification [20, 36]
representing the modification with a graph [21, 33, 35] or repre-
senting the “before” and “after” of the modification with multiple
embeddings [30].

For earlier PMT models [20, 36] that did not use pretrained
transformers, defining a set of features and aggregating them into a
single vector made sense. However, to leverage the gains from using
a pretrained model like CodeBERT [8], we need to represent our
inputs in the same way as the pretrained model, making the feature-
based approach unviable. Following best practices in pretrained
transformers, we use the same input embeddings for encoding the
mutated code and the tests.

Thus, we represent each mutant-test pair as a token level diff to
MutationBERT, using the special tokens <BEFORE>, <AFTER> and
<ENDDIFF>. For example, if the line ...if a == b:... is changed
to ...if a != b:..., we encode it in the following manner: ...if
a <BEFORE> == <AFTER> != <ENDDIFF> b:.... This encode diffs
compactly, while preserving original code structure.

Figure 2b shows how our model encodes the motivating exam-
ple. We provide the model with the source method encoded as a
token-level diff, followed by the test method. Our model then out-
puts whether such a mutant is detected or undetected. We follow
CodeBERT [8] in their use of special tokens <CLS> and <SEP>. Code-
BERT uses <CLS> and <SEP> to denote code and natural language
input, using <CLS> token for downstream classification tasks (we
discuss this in more detail in Section 2.3). Similarly, we separate
code and test with the special <SEP> token. We take the hidden
representation of the <CLS> token as the vector which we train the
model to classify whether this mutant is detected or not.

2.3 Model
Our model can predict either the entire mutant-test matrix for a
project, or whether a single mutant is detected by an entire test
suite. Our model is a pre-trained CodeBERTmodel fine-tuned to the
mutation testing task, with a novel input representation. CodeBERT
[8] is a pretrained model that leverages the transformer architec-
ture [32]. It was trained to predict masked tokens (code or natural
language tokens replaced with <MASK>) for both source code and
natural language. CodeBERT uses special <CLS> and <SEP> tokens
to denote code and natural language, using the <CLS> token for
classification in downstream tasks. CodeBERT was pretrained on a
corpus of 6.4 million functions across seven different programming
languages; large pretrained models like CodeBERT are applicable
to a variety of downstream tasks ranging from code completion [8],
to merge conflict resolution [30], and code summarization [2]. To
the best of our knowledge, we are the first to leverage pretrained
models for the task of predictive mutation testing.

We formulate mutation analysis as a binary classification task
to CodeBERT. We provide CodeBERT with both the source method
encoded as a token level diff and the test method (Section 2.2).
After feeding the input to CodeBERT, we pass the encoding of the

<CLS> token through a linear layer, which is then used to make the
final classification. The model is called for each mutant-test pair to
construct the entire mutant-test matrix.

We use the probability output of the model to aggregate pre-
dictions across each mutant’s set of covered tests, and consider a
mutant to be “detected” if the confidence of the model on at least
one of the tests is greater than 0.25:

pred𝑀,𝑇 =

{
“detected” (𝑚𝑎𝑥𝑡 ∈𝑇𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐵𝐸𝑅𝑇 (𝑀, 𝑡)) > 0.25
“undetected” otherwise

(1)
where 𝑀 corresponds to the mutant and 𝑇 corresponds to the

set of tests that cover the mutant. We chose 0.25 as our confidence
threshold, as it was able to reduce the number of false positives
when evaluated on our validation dataset, with a precision of 0.76,
while not reducing the overall F1 score of 0.80.

3 EXPERIMENTAL SETUP
We compare MutationBERT with Seshat [20], the current state-of-
the-art model for PMT, using the dataset from that paper. We ask
the following research questions:

RQ1: Effectiveness: How well does MutationBERT perform
in a same project setting? In a same project setting, a PMT model
is trained on previous versions of a project, and then used to pre-
dict test matrices, unkilled mutants, or mutation scores for subse-
quent versions. We compare MutationBERT to Seshat on a within-
project task, evaluating the models’ correctness when predicting
test-mutant matrices and over the test suite- level aggregation.

RQ2: Generality: How well does MutationBERT perform in
a cross project setting? In a cross project setting, a PMT model is
trained using data from one project and then used to predict test-
mutant behavior for a different project. This is much more difficult
than the same project setting, but could be especially applicable
when starting a new project, for example. We compare Mutation-
BERT to Seshat on the cross-project task using the same metrics as
the same project task.

RQ3: Design Decisions: How do different input representa-
tions and aggregation approaches affect our final model?We
analyze and compare several input representations as well as ag-
gregation approaches to validate the design decisions underlying
MutationBERT.

RQ4:QualitativeAnalysis:What are causes ofMutationBERT
mispredictions?Wemanually examine 100 cases where ourmodel
misclassifies a mutant as detected or undetected to identify common
reasons for failures and better understand limitations.

RQ5: Efficiency: How efficient is MutationBERT compared
to prior work, and regular mutation testing? We address how
MutationBERT compares to Seshat, and characterize the perfor-
mance improvement it provides over regular mutation testing.

RQ6:Mutant Importance: How effective isMutationBERT at
predicting difficult-to-detect mutants?

We address howMutationBERT compares to Seshat with regards
to how many tests detect a mutant, a proxy for mutant difficulty.

Contextual Predictive Mutation Testing ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Our dataset comprising of 6 Defects4J 2.0 projects.

Project Date LOC #tests

commons-lang 2013-07-26 21,788 2,291
jfreechart 2010-02-09 96,382 2,193
gson 2017-05-31 7,826 1,029
commons-cli 2010-06-17 2,497 354
jackson-core 2019-01-06 25,218 573
commons-csv 2017-12-11 1,619 290

3.1 Baseline
We compare against the Seshat baseline [20]. Seshat is a state-
of-the-art model for mutation testing, which has been shown to
outperform PMT [36] by 0.14 to 0.45 F1 score depending on project.
Similar to our model, Seshat has no overhead in static or dynamic
analysis, operating entirely on source level features, unlike the prior
model PMT, which requires both static and dynamic analysis to run.
However, unlike our model, Seshat operates over a set of features:
the source method name, the test method name, the mutated line
before and after, and a one-hot encoding of the mutation operator.
Seshat first encodes the source and test method names with a bidi-
rectional GRU. It then concatinates the resulting embeddings with
a one-hot encoding of the mutation operator to classify the mutant
as detected or undetected by the test.

Like our model, Seshat outputs a confidence score for each
mutant-test pair, which we aggregate to predict whether the mutant
is detected or not by the entire test suite. We aggregate Seshat’s
predictions across each mutant’s set of covered tests by comparing
confidence to a threshold. We set this threshold to 0.10, which in
our experiments produced the highest F1 score for Seshat in valida-
tion (Seshat does not mention a a threshold in their paper, so we
perform the same optimization as we did for MutationBERT). We
thus aggregate as follows:

pred𝑀,𝑇 =

{
“detected” (𝑚𝑎𝑥𝑡 ∈𝑇 𝑆𝑒𝑠ℎ𝑎𝑡 (𝑀, 𝑡)) > 0.10
“undetected” otherwise

(2)

where M corresponds to the mutant and T corresponds to the set of
tests that cover the mutant.

3.2 Dataset
We reuse the dataset released with the Seshat experiments [20].
This dataset consists of a full mutation analysis in Major [16] of
six large scale Java projects, with extensive testing, across multiple
versions, taken from Defects4J v2.0.0 (statistics shown in Table 1).
This dataset considers only mutants that are actually covered by
some test, since uncovered mutants cannot be detected by a given
test suite (and can be discarded with a simple coverage heuristic).

Note that the Seshat evaluation [20] analyzed the cross-version
setting in detail, training models on previous versions of programs
to predict matrices for subsequent versions. The models remain
effective across versions many years apart. This is likely a function
of the fact that code (and mutation behavior) is quite stable over
time, as shown in the dataset description in Kim et al. [20].

Table 2: Tests, mutants and mutant-test pairs (pairs) for
both same project and cross project settings, across training
(train), validation (val), and test (test) sets. Note that mutant-
test pairs only include tests that cover a given mutation.

Split #tests #mutants #pairs

Same Project
train 6,124 68,702 1,522,924
val 5,644 8,688 197,527
test 5,637 8,648 195,140

Cross Project
train 4,725 79,128 1,460,344
val 1,171 5,427 402,296
test 261 1,040 42,687

Thus, in the interest of space and computational effort, we restrict
our attention to single versions per project for all RQs. We select
the latest versions of the six projects in Defects4J 2.0 and perform
a 80-10-10 split between train, validation and test sets. In the same
project setting, we split by mutant-test suite pair. This is in contrast
to the prior evaluation, that is, mutant-test pairs from the same test
suite must be part of the same subset. Practically, our envisioned
application does not include a situation where a PMT model could
be trained on data corresponding to whether half the tests in a
given test suite detect a given mutant, and then used to predict the
behavior of the other half. This explains why we reran Seshat (and
why our numbers may not match those in the original paper). For
the cross project setting, we split by project, where each project
consists of a set of mutant-test suite pairs. We use the exact same
splits for our model and for Seshat. Table 2 shows statistics about
our same project and cross project splits.

3.3 Preprocessing and Training
We use the pretrained RoBERTa tokenizer (BPE tokenizer [29]) with
vocabulary size of 50,000 tokens for all programming languages that
is provided with CodeBERT. We finetune CodeBERT with context
window size of 1024 tokens, and thus only provide MutationBERT
the first 1024 tokens of the code and test combinations. Such cases
account for 14.6% of all mutant test pairs.

We follow the same steps that Kim et al. [20] took to train Seshat.
We train Seshat for 10 epochs, with a batch size of 512, and learning
rate of 3e-3. We trainMutationBERT for eight epochs with learning
rate of 1e-5 and batch size of 64. We use a weighted loss function
according to the distribution of detected and undetected mutant-
test pairs. We use a linear warmup to 1000 steps, followed by a
cosine annealing decay, in accordance with best practices for fine
tuning transformers [28]. Both models’ loss functions converge
using these settings. We fine-tuned our model on a Nvidia GeForce
RTX 3080 for one week for a total of 115k steps.

3.4 Metrics and Settings
One way to use models for predictive mutation testing is to com-
pute mutant-test matrices, which predict, for each mutant, whether
each test passes or fails. In general, most tests pass on most mu-
tants. That is, a test detecting a mutant is the minority class. In this

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues

setting, model precision refers to how accurately mutants are iden-
tified as detected, while recall refers to the proportion of detected
mutants labeled correctly. In the mutant-test matrix setting 72% of
mutant-test pairs are undetected. We care that our model is able to
accurately predict the remaining 28% of detected mutants; the goal
is to identify the few tests that detect each mutant.

Another way to use these models is to predict whether an entire
test suite detects a particular mutant. Here, the majority class is
detected mutants; 61% of mutants are detected. The core goal here is
to accurately identify the undetected mutants, to guide developers
to improve test suites. Therefore, we define precision and recall
differently than in the the mutant-test matrix setting. In the test
suite setting, model precision refers to how accurately mutants are
identified as undetected, while recall refers to the proportion of
undetected mutants that are classified correctly. Precision is thus
important in understanding the potential cost of a PMT model in
terms of time needed to either actual run the test suite to confirm its
predictions, or time wasted by a developer inspecting an ultimately
uninteresting mutant. Recall is also important to overall model
usefulness: if a model misses a large number of undetected mutants,
key gaps in test suite quality could remain.

We report precision, recall and F1 score (which balances the
two) for all models in the first three research questions. For RQ1
(same project) and RQ2 (cross project), we evaluate performance
both on the base test set (195,140 mutant-test pairs). For efficacy of
prediction over the entire test suite, we evaluate MutationBERT on
the same dataset, aggregated at the test suite level (8648 test suites).

For RQ3, we evaluate different aggregation thresholds and input
representation choices on the validation set consisting of 120,710
mutants, again reporting precision, recall, and F1 scores; we evalu-
ate both mutant-test predictions and mutant-test suite predictions.
Due to compute constaints associated with a larger context win-
dow, we use the 512 token context window to evaluate different
thresholds and input representations.

For RQ4, to ensure a representative sample of misclassifications,
we randomly select 100 examples where our model misclassifies
a mutant as being detected or undetected. We manually examine
each example and try to understand the cause of the misprediction.
Finally, we bucket these mispredictions in a series of categories and
discuss these in detail. We do this to inform a general assay of the
limitations of our technique; we do not make strong claims about
the generalizability of this qualitative assessment.

For RQ5, we run 1000 iterations of Seshat and MutationBERT,
with a batch size of one, on a workstation with an Nvidia GeForce
RTX 3080 GPU, with 100 warmup iterations. We report the average
time taken over these 1000 iterations as the inference time for
each model. To compute comparative time and speedups against
regular mutation testing, we use numbers from previous work [20]
in conjunction with our inference time numbers.

For RQ6, we report accuracy of Seshat and MutationBERT with
respect to percentage of tests that kill a mutant. The goal is to
measure whether MutationBERT is only correctly classifying "easy"
to detect or "trivial" mutants where the majority of tests detect the
given mutant or whether MutationBERT is capable of correctly
classifying mutants that are more difficult to detect.

4 RESULTS AND ANALYSIS
We report results for all five RQs, and discuss their implications.

4.1 RQ1: Same Project Performance
Table 3 shows the results of MutationBERT and Seshat on the test
set for the same project setting. The center columns show results
in predicting whether a test will detect a particular mutant, rele-
vant to constructing the overall mutant-test matrix. MutationBERT
outperforms Seshat across all metrics: MutationBERT’s F1 score is
0.75, compared to Seshat’s 0.67. Interestingly, MutationBERT and
Seshat have similar precision (0.66 for Seshat vs 0.72 for Mutation-
BERT); the models report similar numbers of false positives (cases
where the models misclassify a test as detecting a mutant). How-
ever, MutationBERT has higher recall (0.77, versus 0.68), meaning
that MutationBERT is more likely to correctly identify cases where
a test detects a mutant.

When the predictions are aggregated into test suite level predic-
tions (right-hand columns), recall that undetected mutants are the
minority class, flipping the meaning of precision and recall (Sec-
tion 3.4). Seshat and MutationBERT both find similar numbers of
undetected mutants, but MutationBERT has much higher precision,
0.81, compared to Seshat’s 0.56. False positives are costly, as they
cost developers valuable time examining mutants that are in reality
detected by their test suite.

Another way of viewing these results is in terms of the differ-
ence between themutation score estimated by a predictive mutation
model, and the actual mutation score. Recall that mutation score
is the true ratio of detected mutants to total mutants; empirically,
mutation score provides a better measure of test adequacy than
code coverage [17, 25] and thus is useful (albeit usually expensive)
to compute. The gold mutation score (true mutation score) on our
test set is 0.59. Seshat estimates a mutation score of 0.40 over the
entire dataset, an error of 0.19. MutationBERT computes a muta-
tion score of 0.61, a difference of only 0.02 from the true answer.
MutationBERT thus has much lower error in estimating mutation
score on this dataset as compared to Seshat.

4.2 RQ2: Cross Project Performance
Table 3 also shows the cross project setting (bottom rows), where a
model is trained on one set of projects and evaluated on another.
Again, MutationBERT outperforms Seshat (0.68 precision and 0.37
recall for MutationBERT and 0.58 precision and 0.29 recall for Se-
shat). That said, in the mutant-test predictions, both precision and
recall drop significantly for both approaches; this suggests that
training data containing project-specific vocabulary and methods
contribute substantially to the same project performance. This is
consistent with other results showing that projects have distinct
vocabulary and style, making cross project prediction difficult for
many tasks [3, 13]. Precision continues to be quite a bit higher than
recall in the cross project setting, for both models.

At the test suite level, we find that MutationBERT outperforms
Seshat on all metrics. Precision is very low for both tools; Seshat
and MutationBERT both misclassify a significant proportion of
undetected mutants, however MutationBERT has a significantly
higher precision. Recall is also low in the cross project setting, at
0.39 for Seshat and 0.65 for MutationBERT. However, this indicates

Contextual Predictive Mutation Testing ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 3: Comparison between Seshat and MutationBERT on both same project and cross project settings in terms of precision,
recall and F1 score. In both same project and cross project settings, MutationBERT outperforms Seshat across all metrics, with
an F1 score difference of 12% on the same project setting and F1 score difference of 28% on the cross project setting.

Setting Model Mutant-Test Matrix Test Suite
Precision Recall F1 Precision Recall F1

Same Project Seshat 0.66 0.68 0.67 0.56 0.82 0.67
MutationBERT 0.72 0.77 0.75 0.81 0.78 0.79

Cross Project Seshat 0.58 0.29 0.38 0.24 0.39 0.30
MutationBERT 0.68 0.37 0.48 0.52 0.65 0.58

that in a cross project setting MutationBERT is capable of finding
more undetected mutants than Seshat.

On the cross project test set, the gold mutation score is 0.77.
Seshat differs from this value significantly, with a mutation score
of 0.63 (error of 0.14). MutationBERT is much closer, predicting a
mutation score of 0.72 (error of 0.05).

4.3 RQ3: Input Representations and
Aggregation Approaches

We proposed a new input representation for the mutation predic-
tion problem. Here, we describe several alternatives that we then
experimentally evaluate. We also describe alternative aggregation
approaches. Then, we evaluate these alternatives (all on the vali-
dation set) to motivate the input representation and aggregation
approaches in our final model.

4.3.1 Input Representations. We outline various input representa-
tions that incorporate source and test context for our model. For
all input representations, we separate method code and test code
with a <CLS> token, which we use for classification.
No Diff (Binary Task): Our simplest approach is to directly ap-
ply the mutation and feed the model both the mutated version of
the code and unmutated version of the code. For example, when
changing == to != in ...if a == b:... we feed the model both
...if a == b:... and ...if a != b:... (Figure 3b).

Since we have likelihood scores for both the mutated and un-
mutated versions of the code, we try two modes of evaluation. Our
first mode feeds the model the mutated code, and takes its pre-
diction. Our second mode feeds the model both the mutated code
and unmutated code and obtains its probability of being detected.
Then it subtracts these two probabilities from each other (since we
know the first datapoint is always undetected), and compares this
difference against a dynamically set threshold. We try all thresholds
between 0.01 and 0.99 in increments of 0.01 on the validation set,
and select the best performing threshold.
Token Level Diff:We represent each mutation as a token level diff.
For example if a line ...if a == b:... is changed to ...if a !=
b:..., we encode it in the following manner: ...if a <BEFORE>
== <AFTER> != <ENDDIFF> b:... (Figure 3c). This allows for the
most compact footprint in encoding the diffs, allowing our model
to learn how certain diffs coupled with the surrounding code and
test are correlated with a mutant being detected or not detected.
Line Level Diff: For line level diffs, we represent diffs in terms of
change to source lines. This input representation is similar to token

Table 4: Precision, recall and F1 scores of all models at pre-
dicting the mutant-test matrix on the validation set. Token
diff and line diff are the best performing models, with an F1
score of 0.78.

Model Precision Recall F1

Seshat 0.73 0.75 0.74
Token Diff 0.79 0.77 0.78
Line Diff 0.79 0.77 0.78
No Diff (Normal) 0.74 0.72 0.73
No Diff (Threshold - 0.01) 0.73 0.72 0.73

level diff. In our example, we encode the mutation as ...<BEFORE>
if a == b: <AFTER> if a != b: <ENDDIFF> ... (Figure 3d).
We hypothesize that this might perform better than token diff, as
CodeBERT was pretrained for tasks such as next line prediction.

4.3.2 Aggregation Approaches. We outline aggregation approaches
that we tried for our test matrix model. Practically, this aggregation
holds value, as undetected mutants (mutants not detected by the
entire test suite) are ones of interest to developers, as they indi-
cate testing inadequacy. Specifically, in order to use such a model,
aggregate predictions need to be accurate, otherwise undetected
mutants will be identified incorrectly.
Threshold Aggregation: We aggregate the predictions of both
predictive mutation testing models by using various probability
thresholds (0.1, 0.25, 0.5, 0.75 and 0.9). Specifically, we only label
a test as detecting a mutant if the model predicts the test detects
the mutant with probability above the defined threshold. We vary
thresholds to observe their effect on precision, recall, and F1 score.
LearnedAggregation:Wealso tried learning an aggregation based
off of the embeddings of the <CLS> token after CodeBERT encoding.
We use a transformer with three layers to take these embeddings
and aggregate them. We then use a linear layer to classify based off
of this learned aggregate embedding whether the test suite detects
or fails to detect the mutant. We evaluate this learned aggrega-
tion both using a weighted loss function (according to the data
distribution) and using a normal loss function.

4.3.3 Experimental Results. We evaluate input representations on
our validation set for Defects4J 2.0. The data distribution is 72%
undetected and 28% detected for test matrices. The No Diff model

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues

- if (a == b)...
+ if (a != b)...

(a) Example source mutation

<CLS> ...if (a == b)... <SEP> ...

<CLS> ...if (a != b)... <SEP> ...

(b) No Diff

<CLS> ...if (a <BEFORE> == <AFTER> != <ENDDIFF> b)... <SEP> ...

(c) Token Diff

<CLS> ... <BEFORE> if (a == b) <AFTER> if (a != b) <ENDDIFF> ... <SEP> ...

(d) Line Diff

Figure 3: Input representations for encoding mutations applied to source code. Each subfigure shows a different input repre-
sentation on the same example of changing == to !=. Token diff and line diff were the best performing input representations
and we chose to use token diff as the final input representation in MutationBERT.

requires two examples per mutant, making an even more unbal-
anced distribution (86% undetected, 14% detected). Therefore, in
training these models, we use a weighted loss function that penal-
izes missclassfications of detected mutants more than undetected
mutants. The weights are different for the Token Diff and Line Diff
models and the No Diff model.

Table 4 compares our novel input representations against the
baseline Seshat model. Token Diff and Line Diff perform almost
identically, with approximately a 4% improvement in F1 score over
baseline (we use the token diff model for our other results). Some-
what surprisingly, when the diff is not explicitly specified (in the
No Diff models), the model fails to reason about how code relates
to tests passing or failing This is further supported by the thresh-
olding (in the No Diff models) having no effect on validation F1
score (regardless of what the threshold is from 0.01 to 0.99). We
hypothesize that knowing the mutation applied is a key piece of
context for accurate predictions. Both our token and line diff models
have tokens that specify the start and end of the applied operator.

We similarly evaluate aggregation strategies on the validation
set, at the test suite level (the goal of the aggregation strategies is
to predict over test suites). Table 5 shows results of all aggregation
strategies we tried on the validation set.

We find that even with the small change in F1 score between the
two models for test matrix prediction, there is significant change
in F1 score when it is aggregated at the test suite level. This is
due to the compounding effect of errors, as an error in any one of
the tests in the test matrix can cause the whole suite to be labeled
incorrectly, making even a small difference in F1 score equate to
large differences in the aggregated matrix.

To select thresholds, we use the validation set and the F1 score
followed by precision. Precision is more important than recall here,
because the cost of a false postive is high. Specifically, a false posi-
tive means that a developer will see a mutant that is supposed to
indicate test inadequacy when in reality their tests are adequate. We
find that the best threshold for Seshat is 0.10 and the best threshold
for MutationBERT is 0.25.

4.4 RQ4: Tool Misclassifications
To understand our model’s limitations, we examined 100 randomly
sampled examples of MutationBERT misclassifications from our

Table 5: Threshold and aggregation approaches, predicting
test suites on the validation set. The best threshold for Se-
shat is 0.10; for MutationBERT, 0.25. We find that the trans-
former aggregation approaches have lower precision than
the selected threshold approach, meaning more false posi-
tives.

Model Threshold Precision Recall F1

Seshat

0.10 0.57 0.83 0.67
0.25 0.56 0.85 0.67
0.50 0.48 0.92 0.66
0.75 0.52 0.87 0.65
0.90 0.51 0.89 0.65

MutationBERT

0.10 0.76 0.84 0.80
0.25 0.76 0.84 0.80
0.50 0.75 0.86 0.80
0.75 0.74 0.87 0.80
0.90 0.73 0.88 0.80

trans (weighted) N/A 0.75 0.85 0.80
trans (unweighted) N/A 0.75 0.85 0.80

Table 6: Reasons MutationBERT incorrectly classifies mu-
tants. In 71/100 cases, MutationBERT lacks sufficient con-
text, while in the remaining 29/100 cases MutationBERT
misses a contextual clue.

Category Case Count

Not enough context
Helper test method 44
Method 24
Class 3

Missed clue Code 22
Method name 7

validation set. We categorize causes of failures in Table 6. Upon
inspection, we classified each example into two high-level buckets:
Not enough context and Missed clue. Not enough context refers to
cases where the model was missing context that even a human
would need to classify the case correctly. The large majority of

Contextual Predictive Mutation Testing ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

our examples (71/100) fell under this bucket. The second category
consists of Missed clues, where the model missed some crucial clue
to mutant behavior (29/100).

We were able to subdivide the high-level buckets into common
subcategories. For Not enough context these are Helper test method,
Method and Class. Helper test method refers to cases where the test
method consists primarily of invocations to another method. One
example is as follows:

public void testJava2DToValue () {
checkPointsToValue(edge , plotArea);
this.axis.setRange (0.5, 10);
checkPointsToValue(edge , plotArea);
...

}

Testmethod testJava2DToValue invokes helpermethod checkPointsToValue

multiple times. Without the helper method code, MutationBERT
lacks the context (or even knowledge of relevant test assertions) to
make an accurate prediction on any mutant.

The Method category refers to the model lacking necessary
source context. For example:

public <T> TypeAdapter <T> create (...)

public void testDeserializeNullField () throws
IOException {

Truck truck = truckAdapter.fromJson (...);
...

}

This example shows a test that invokes the fromJson method, which
then invokes create. Without the code for fromJson, MutationBERT
cannot reason about how a mutant in create would affect a test
calling fromJson.

Finally Class refers to cases where the constructor of a class is
mutated, but the test invokes a subclass and thus is missing the
subclass constructor context. The following example shows this:

public StrokeMap ()

public void testCloning () {
PiePlot p1 = new PiePlot ();
...

}

In this example, testCloning is invoking the constructor of PiePlot,
which is a subclass of StrokeMap. Without seeing the constructor
of PiePlot, MutationBERT cannot understand how mutants to the
StrokeMap constructor affect the test.

Missed clue is divided into Code and Method name. Code refers
to cases where the model missed a context clue in the source code
that indicated that mutant detetion. For example:
1 public boolean hasNext () throws IOException {
2 ...
3 - return p != PEEKED_END_OBJECT
4 - && p != PEEKED_END_ARRAY;
5 + return true && p != PEEKED_END_ARRAY;
6 }
7
8 public void testDoubleArrayDeserialization () {
9 double [] values = gson.fromJson (...)

10 assertEquals (0.0, values [0]);
11 ...
12 }

In this example, the mutant on line 3, replaces the object check
with true, but the test is only for arrays. Thus, the mutant will not
be detected by the provided test, since the object check is not being

tested. MutationBERT misses the correlation between the object
check and the test asserts all looking at arrays.

Finally, Method name refers to cases where the model fails to
detect an important context clue in the method name. For example:
1 public BufferedImage createBufferedImage (...,

ChartRenderingInfo info) {
2 ...
3 - if (info != null) {
4 + if (true) {
5 info.setRenderingSource (...);
6 }
7 }
8
9 public void testDrawWithNullInfo ()

This example shows a mutant that replaces a null check on infowith
true. Since the test is a case where info is null, on the mutated code,
there will be a null pointer dereference. Thus a NullPointerException

will be thrown and the mutant will be killed. MutationBERT fails to
see the correlation between the test name and the mutant applied.

4.5 RQ5: Efficiency
Finally, we discuss the efficiency and performance benefits of Mu-
tationBERT as compared to Major or Seshat. Table 7 shows time to
run each tool, including Major, for all mutants in a project (center
column), and time to run including a confirmatory check for the
predictive techniques (right-hand columns).

Seshat and MutationBERT have comparable inference time in
our experiments: 34 ms for MutationBERT and 17 ms for Seshat. In
terms of practical impact on a user interested in per-mutant predic-
tion, the difference between 17 and 34 ms is negligible. Meanwhile,
as Table 7 shows, the time required to compute a full mutation
score for a given project is the same order of magnitude (10s of
minutes), while both an order-of-magnitude faster than Major.

However, despite being slower than Seshat on a per-prediction
basis, MutationBERT still offers significant computational savings
for the end-user aiming to improve a test suite (the original goal
of mutation testing, and consistent with its use at companies like
Google and Meta). In this setting, the user receives a list of unde-
tected mutants to inspect and use to create new tests. A practical
application for predictive mutation testing should include a check
of each predicted-undetected mutant before presenting the list to
the developer to filter incorrect predictions; this ensures that the
tool is presenting truly actionable information and saves the de-
veloper time and frustration in confirming the tool’s results. The
right-hand-side of Table 7 shows that because MutationBERT has
higher precision than Seshat (and similar recall), its predictions can
be verified and thus put to use by the developer much more quickly.

4.6 RQ6: Mutant Importance
Figure 4 shows model accuracy of both Seshat and MutationBERT
with respect to percentage of detecting tests in a given mutant’s test
suite. Mutants with a high proportion of detecting tests are likely
to be trivial, while mutants with few detecting tests are more likely
to be interesting. We compare MutationBERT to Seshat in detecting
trivial vs hard to detect mutants by reporting model accuracy as a
function of percentage of detecting tests. Mutants that are killed by
all tests are trivial, and we hypothesize they are easier for models

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues

Table 7: Time to run Major, MutationBERT, and Seshat, over all mutants (center columns), or incorporating a confirmation
check before presenting unkilled mutants to the user (right-hand columns).

No Checking Checking
Project Major (s) MutationBERT (s) Seshat (s) MutationBERT (s) Seshat (s)

commons-lang 12,924 748 374 3324 5767
jfreechart 64,719 1424 712 18458 23838
gson 16,738 150 75 6136 8611
commons-cli 1,290 53 26 542 841
jackson-core 113,343 809 405 33035 52231
commons-csv 5,289 36 18 1458 2550

0.0 0.2 0.4 0.6 0.8 1.0

Percentage of killing tests

0.4

0.5

0.6

0.7

0.8

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

Average accuracy vs percentage of killing tests

(a) Accuracy vs. percentage of killing mutants for Seshat

0.0 0.2 0.4 0.6 0.8 1.0

Percentage of killing tests

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

Average accuracy vs percentage of killing tests

(b) Accuracy vs. percentage of killing mutants for MutationBERT

Figure 4: Accuracy vs. percentage of killing mutants for Se-
shat and MutationBERT
to detect, while mutants with fewer detecting tests are more likely
to be interesting and more difficult for models to detect.

As expected, both approaches are less accurate at detecting mu-
tants that fail fewer tests. Importantly, however, MutationBERT out-
performs Seshat considerably on harder-to-detect mutants (those

failing 1%-20% of the test suite), by 30%. Although Seshat is slightly
more accurate at classifying mutants that fail no tests at all (0.82
accuracy vs. 0.78), MutationBERT’s overall accuracy is higher, by
17%. Overall, MutationBERT is more accurate than prior work in
predicting mutant behavior, especially the hard-to-detect cases.

5 DISCUSSION
Practically, MutationBERT is useful for both of the core end user
tasks in mutation testing: 1) as a more complete measure of testing
adaquacy (computing mutation score) [9, 23] and 2) to identify
undetected mutants that indicate potential inadequacies in existing
testing efforts [4, 26].

In the classical sense, mutation testing serves to evaluate test
suite quality [7, 12, 15]. Mutation score, or the proportion of de-
tected mutants to total mutants, provides a powerful measure of
howwell tested, including in terms of actual oracle strength, a given
piece of code is. MutationBERT drastically reduces the amount of
time needed to compute mutation score, taking approximately 30
ms per mutant test pair, substantially lower than the actual cost
of executing a test (and compiling mutants). The error rate of Mu-
tationBERT is also low, with MutationBERT having below a 5%
error in predicting mutation score for both same and cross project
settings, substantially lower than Seshat. Further note that as Ta-
ble 7 shows, it is plausible that using MutationBERT to approximate
mutation score will be faster (in our data, about twice as fast) as
even approximating score by sampling as few as 10% of mutants.
Sampling 10% of mutants is likely to be no more accurate than
MutationBERT [9], and additionally provides no data on mutants
not sampled, while our approach provides a good approximation
of the result for all mutants.

More recently, companies like Google [26] and Facebook [4] use
mutation testing to pinpoint undetected mutants that reveal issues
with test adaquacy. MutationBERT substantially saves time here, as
unlike Seshat, it still achieves over 60% accuracy in predicting hard
to detect mutants.When shown a set of undetectedmutants, a devel-
oper would be able to trust MutationBERT’s output. Even verifying
the output of all mutants classified as undetected by MutationBERT
first saves 71% of time when compared to regular mutation testing,
significantly more than Seshat’s 57% time savings. We note that
with very high actual mutation scores (where examining unkilled
mutants is most useful), the time required to discover 𝑛 undetected
mutants using MutationBERT is likely to be much better than with
Seshat or traditional mutation testing.

Contextual Predictive Mutation Testing ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

6 LIMITATIONS AND THREATS
Limitations: MutationBERT depends on GPU availablity to effi-
ciently make predictions. On a CPU, MutationBERT takes 84 mil-
liseconds per prediction, or 12 mutant-test pairs per second (a far
cry from the 29 mutant-test pairs per second on a GPU). Note that
both these CPU and GPU times are theoretical worst cases, since
these times were computed using a batch size of one. Many current
CI pipelines are largely CPU-based, potentially compromising prac-
tical utility. However, cloud providers increasingly provide GPU
access; recently, GitHub actions announced plans to do the same for
CI.3 Indeed, GPUs are becoming more broadly accessible, including
via idle GPU time or services like Google Colab. Future testing
approaches are thus increasingly realistic to deploy in practice.
Threats to Validity: The main internal threat to validity is our
implementation of MutationBERT. We used widely available and
popular libraries such as PyTorch and Pandas for managing data
and building the model to help mitigate this threat. We release our
models and implementation for inspection and extension by others.

The external threats to validity lie in our dataset of mutants and
tests. We reused the data produced by prior work on a large dataset
(Defects4J) that has been used and validated in many other studies
in software engineering. Since this dataset is sourced from multiple
different projects, the results are more likely to generalize.

Finally, threats to construct validity lie primarily in our evalua-
tion metrics. We report widely used metrics in machine learning,
i.e., precision, recall and F1 score. We also practically discuss how
these metrics translate to the real world use case.

7 RELATEDWORK
Several approaches have been proposed to tackle the computational
cost of mutant execution, including weak-mutation, meta-mutation,
mutation-sampling, and mutant prioritization. Offutt et. al [23]
propose reducing the set of mutation operators in order to prune
the seach space of mutants. Gopinath et al. [9] demonstrate that
with a small fraction of mutants randomly sampled, one can easily
approximate mutation score. Meta mutation [31] combines multiple
mutants into one larger combined mutant and executes the test on
this combined mutant. Kaufman et. al [19] focus on computing the
probability that mutants advance the adequacy of a given test suite.

Google [26] and Meta [4] apply mutation testing only to changed
code at commit-time, and display undetected mutants as part of
code review. Developers can quickly identify potential testing gaps
before code reaches production. Google further uses heuristics
[26] to avoid mutating arid lines (lines that when mutated create
unproductive mutants, such as logging statements), while Meta uses
a learned targeted set of mutation operators [4]. However, even
this more narrow application (just to changed code in a commit,
restricted to one mutant-per-line or a small set of operators) is
expensive, requiring large amounts of idle compute [27].

Approaches to reducing the cost of mutation analysis were cate-
gorized as do smarter, do faster, and do fewer by Offutt et al. [24].
The do smarter approaches include space-time trade-offs, weak
mutation analysis, and parallelization of mutation analysis. The
do faster approaches include mutant schema generation and other

3https://github.com/github/roadmap/issues/505

methods to make mutants run faster. Finally, do fewer approaches
include selective mutation and mutant sampling.

Recently, PredictiveMutation Testing [36] proposed a newmeans
of tackling these problems through the use of machine learning.
PMT defines a set of features and uses these to predict whether a
given mutant is detected or not by the test suite. The original PMT
approach requires costly instrumentation to collect features. Seshat
[20] achives higher accuracy with lower overhead by exclusively
using information about the source code and mutation itself (source
method, test method, and mutated line).

Similar to Seshat, we also exclusively use information about the
source code and mutation itself; however we exploit CodeBERT
(a model pre-trained on source code) over the context of both the
source and test methods alongwith a representation of themutation
applied. We find that this additional context is helpful in predicting
the outcome of whether a mutant is detected or undetected, in both
same-project and cross-project settings.

8 CONCLUSION
In this paper, we present MutationBERT, a tool for predicting both
test matrices and aggregating these predictions. We perform an
extensive evaluation of our model, finding that we save 33% of
Seshat’s time if a developer were to verify all mutants that either
model predicted as undetected. We also outperform Seshat, the
state of the art model by 8% F1 score in predicting test matrices
and 12% F1 score in predicting the aggregated test suite outcome.
We also achieve similar performance in the cross project setting,
outperforming Seshat by 10% F1 score in predicting test matrices
and 28% F1 score in predicting test suites. Finally, we analyze cases
where our model fails to classify the mutant as detected or unde-
tected. From this analysis, we find that in the majority of cases
where our model incorrectly classfies a test as detecting or failing
to detect a mutant, it lacks sufficient context. This context often lies
in test helper methods, or methods that are invoked by the test that
invoke the source method. MutationBERT has a relatively limited
context window of 1024 tokens, so incorporating this additional
information would likely require using a large language model with
larger context window sizes such as Codex.

9 DATA AVAILABLITY
We make all data, modeling checkpoints, and code publically avail-
able at https://doi.org/10.5281/zenodo.7600371. We include steps
required to reproduce our results in the README file both from
scratch and using our provided checkpoints. The scripts to run our
preprocessing are under preprocessing; scripts to train our model
are under runtime; and scripts to run our evaluation on the test
set are under evaluation. Full information on how to reproduce
our results is available in README.md.

10 ACKNOWLEDGEMENTS
We would like to thank the authors of Seshat for providing us with
data and code for our baseline experiments. This work is supported
in part by the US National Science Foundation, awards CCF-2129388
and CCF-1910067.

https://github.com/github/roadmap/issues/505
https://doi.org/10.5281/zenodo.7600371

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues

REFERENCES
[1] Alireza Aghamohammadi and Seyed-Hassan Mirian-Hosseinabadi. 2020. The

Threat to the Validity of Predictive Mutation Testing: The Impact of Uncovered
Mutants. CoRR abs/2005.11532 (2020). https://doi.org/10.48550/arXiv.2005.11532

[2] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-
fied Pre-training for Program Understanding and Generation. In North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT ’21). 2655–2668. https://doi.org/10.18653/v1/2021.naacl-
main.211

[3] Toufique Ahmed and Premkumar Devanbu. 2023. Few-Shot Training LLMs for
Project-Specific Code-Summarization. In Automated Software Engineering (ASE
’23). Article 177, 5 pages. https://doi.org/10.1145/3551349.3559555

[4] Moritz Beller, Chu-PanWong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. 2021. What It Would Take to Use Mutation
Testing in Industry - A Study at Facebook. In International Conference on Software
Engineering: Software Engineering in Practice (ICSE ’18). IEEE, 268–277. https:
//doi.org/10.1109/ICSE-SEIP52600.2021.00036

[5] N. N. Bokaei and M. R. Keyvanpour. 2019. A Comparative Study of Whole
Issues and Challenges in Mutation Testing. In Conference on Knowledge Based
Engineering and Innovation (KBEI ’19). 745–754. https://doi.org/10.1109/KBEI.
2019.8735019

[6] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: A Practical Mutation Testing Tool for Java (Demo).
In International Symposium on Software Testing and Analysis (ISSTA ’16). 449–452.
https://doi.org/10.1145/2931037.2948707

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. IEEE Computer 11, 4 (Apr 1978), 34–41.
https://doi.org/10.1109/C-M.1978.218136

[8] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP (EMNLP ’20). 1536–1547.
https://doi.org/10.18653/v1/2020.findings-emnlp.139

[9] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce.
2015. How Hard Does Mutation Analysis Have to Be, Anyway?. In Software
Reliability Engineering. 216–227. https://doi.org/10.1109/ISSRE.2015.7381815

[10] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang.
2018. An Extensible, Regular-Expression-Based Tool for Multi-Language Mutant
Generation. In International Conference on Software Engineering (ICSE ’18). 25–28.
https://doi.org/10.1145/3183440.3183485

[11] Alex Groce, Kush Jain, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi,
and Claire Le Goues. 2022. Looking for Lacunae in Bitcoin Core’s Fuzzing Efforts.
In International Conference on Software Engineering: Software Engineering in
Practice (ICSE ’22). https://doi.org/10.1145/3510457.3513072

[12] R.G. Hamlet. 1977. Testing Programswith the Aid of a Compiler. IEEE Transactions
on Software Engineering SE-3, 4 (1977), 279–290. https://doi.org/10.1109/TSE.
1977.231145

[13] Vincent J Hellendoorn and Premkumar Devanbu. 2017. Are Deep Neural Net-
works the Best Choice forModeling Source Code?. In JointMeeting of the European
Software Engineering Conference and the Symposium on the Foundations of Software
Engineering (ESEC/FSE ’17). 763–773. https://doi.org/10.1145/3106237.3106290

[14] W.E. Howden. 1982. Weak Mutation Testing and Completeness of Test Sets. IEEE
Transactions on Software Engineering SE-8, 4 (1982), 371–379. https://doi.org/10.
1109/TSE.1982.235571

[15] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering 37, 5 (2010), 649–678.
https://doi.org/10.1109/TSE.2010.62

[16] René Just. 2014. The Major Mutation Framework: Efficient and Scalable Mutation
Analysis for Java. In International Symposium on Software Testing and Analysis
(ISSTA ’14). Association for Computing Machinery, 433–436. https://doi.org/10.
1145/2610384.2628053

[17] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Symposium on Foundations of Software Engineering (FSE ’14). 654–665.
https://doi.org/10.1145/2635868.2635929

[18] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring Mutant Utility from
Program Context. In ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA ’17). 284–294. https://doi.org/10.1145/3092703.3092732

[19] Samuel J. Kaufman, Ryan Featherman, Justin Alvin, Bob Kurtz, Paul Ammann, and
René Just. 2022. Prioritizing Mutants to Guide Mutation Testing. In International
Conference on Software Engineering (ICSE ’22). https://doi.org/10.1145/3510003.
3510187

[20] Jinhan Kim, Juyoung Jeon, Shin Hong, and Shin Yoo. 2022. Predictive Mutation
Analysis via the Natural Language Channel in Source Code. ACM Transactions
on Software Engineering Methodology 31, 4, Article 73 (2022). https://doi.org/10.
1145/3510417

[21] Wei Ma, Mengjie Zhao, Ezekiel Soremekun, Qiang Hu, Jie M. Zhang, Mike Pa-
padakis, Maxime Cordy, Xiaofei Xie, and Yves Le Traon. 2022. GraphCode2Vec:
Generic Code Embedding via Lexical and Program Dependence Analyses. In
Mining Software Repositories (MSR ’22). 524–536. https://doi.org/10.1145/3524842.
3528456

[22] Dongyu Mao, Lingchao Chen, and Lingming Zhang. 2019. An Extensive Study
on Cross-Project Predictive Mutation Testing. In Software Testing, Validation and
Verification (ICST ’19). 160–171. https://doi.org/10.1109/ICST.2019.00025

[23] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian
Zapf. 1996. An Experimental Determination of Sufficient Mutant Operators. ACM
Transactions on Software Engineering Methodology 5, 2 (1996), 99–118. https:
//doi.org/10.1145/227607.227610

[24] A. Jefferson Offutt and Roland H. Untch. 2001. Mutation 2000: Uniting the
Orthogonal. In Mutation Testing for the New Century. Springer, 34–44. https:
//doi.org/10.5555/571305.571314

[25] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2018. Are
Mutation Scores Correlated with Real Fault Detection? A Large Scale Empirical
Study on the Relationship between Mutants and Real Faults. In International
Conference on Software Engineering (ICSE ’18). 537–548. https://doi.org/10.1145/
3180155.3180183

[26] Goran Petrovic and Marko Ivankovic. 2018. State of Mutation Testing at Google.
In International Conference on Software Engineering: Software Engineering in
Practice (ICSE ’18). 163–171. https://doi.org/10.1145/3183519.3183521

[27] Goran Petrovic, Marko Ivankovic, Bob Kurtz, Paul Ammann, and René Just. 2018.
An Industrial Application of Mutation Testing: Lessons, Challenges, and Research
Directions. In Software Testing, Verification and Validation Workshops (ICSTW
’18). 47–53. https://doi.org/10.1109/ICSTW.2018.00027

[28] Martin Popel and Ondrej Bojar. 2018. Training Tips for the Transformer Model.
CoRR abs/1804.00247 (2018). https://doi.org/10.48550/arXiv.1804.00247

[29] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Association for Computational
Linguistics (ACL ’16). 1715–1725. https://doi.org/10.18653/v1/P16-1162

[30] Alexey Svyatkovskiy, Sarah Fakhoury, Negar Ghorbani, Todd Mytkowicz, Eliz-
abeth Dinella, Christian Bird, Jinu Jang, Neel Sundaresan, and Shuvendu K.
Lahiri. 2022. Program Merge Conflict Resolution via Neural Transformers.
In Symposium on the Foundations of Software Engineering (FSE ’22). 822–833.
https://doi.org/10.1145/3540250.3549163

[31] Roland H. Untch, A. Jefferson Offutt, and Mary Jean Harrold. 1993. Mutation
Analysis Using Mutant Schemata. ACM SIGSOFT Software Engineering Notes 18,
3 (1993), 139–148. https://doi.org/10.1145/154183.154265

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. Advances in Neural Information Processing Systems 30 (2017).
https://doi.org/10.5555/3295222.3295349

[33] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code Clones
with Graph Neural Network and Flow-Augmented Abstract Syntax Tree. CoRR
abs/2002.08653 (2020). https://doi.org/10.48550/arXiv.2002.08653

[34] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. In Empirical Methods in Natural Language Pro-
cessing (EMNLP ’21). Association for Computational Linguistics, 8696–8708.
https://doi.org/10.18653/v1/2021.emnlp-main.685

[35] Michihiro Yasunaga and Percy Liang. 2020. Graph-Based, Self-Supervised Pro-
gram Repair from Diagnostic Feedback. In International Conference on Machine
Learning (ICML’20). Article 1001. https://doi.org/10.5555/3524938.3525939

[36] Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei Zang, Shiyang Cheng,
and Lu Zhang. 2016. Predictive Mutation Testing. In International Symposium
on Software Testing and Analysis (ISSTA ’16). 342–353. https://doi.org/10.1145/
2931037.2931038

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.48550/arXiv.2005.11532
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1109/ICSE-SEIP52600.2021.00036
https://doi.org/10.1109/ICSE-SEIP52600.2021.00036
https://doi.org/10.1109/KBEI.2019.8735019
https://doi.org/10.1109/KBEI.2019.8735019
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/ISSRE.2015.7381815
https://doi.org/10.1145/3183440.3183485
https://doi.org/10.1145/3510457.3513072
https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1109/TSE.1982.235571
https://doi.org/10.1109/TSE.1982.235571
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/2610384.2628053
https://doi.org/10.1145/2610384.2628053
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1145/3510003.3510187
https://doi.org/10.1145/3510003.3510187
https://doi.org/10.1145/3510417
https://doi.org/10.1145/3510417
https://doi.org/10.1145/3524842.3528456
https://doi.org/10.1145/3524842.3528456
https://doi.org/10.1109/ICST.2019.00025
https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/227607.227610
https://doi.org/10.5555/571305.571314
https://doi.org/10.5555/571305.571314
https://doi.org/10.1145/3180155.3180183
https://doi.org/10.1145/3180155.3180183
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1109/ICSTW.2018.00027
https://doi.org/10.48550/arXiv.1804.00247
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1145/3540250.3549163
https://doi.org/10.1145/154183.154265
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.48550/arXiv.2002.08653
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.5555/3524938.3525939
https://doi.org/10.1145/2931037.2931038
https://doi.org/10.1145/2931037.2931038

	Abstract
	1 Introduction
	2 Contextual Predictive Mutation Testing
	2.1 (Predictive) Mutation Testing
	2.2 Input Representation
	2.3 Model

	3 Experimental Setup
	3.1 Baseline
	3.2 Dataset
	3.3 Preprocessing and Training
	3.4 Metrics and Settings

	4 Results and Analysis
	4.1 RQ1: Same Project Performance
	4.2 RQ2: Cross Project Performance
	4.3 RQ3: Input Representations and Aggregation Approaches
	4.4 RQ4: Tool Misclassifications
	4.5 RQ5: Efficiency
	4.6 RQ6: Mutant Importance

	5 Discussion
	6 Limitations and Threats
	7 Related Work
	8 Conclusion
	9 Data Availablity
	10 Acknowledgements
	References

