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ABSTRACT
Among the major questions that a practicing tester faces are
deciding where to focus additional testing effort, and decid-
ing when to stop testing. Test the least-tested code, and stop
when all code is well-tested, is a reasonable answer. Many
measures of “testedness” have been proposed; unfortunately,
we do not know whether these are truly effective.

In this paper we propose a novel evaluation of two of the
most important and widely-used measures of test suite qual-
ity. The first measure is statement coverage, the simplest
and best-known code coverage measure. The second mea-
sure is mutation score, a supposedly more powerful, though
expensive, measure.

We evaluate these measures using the actual criteria of
interest: if a program element is (by these measures) well
tested at a given point in time, it should require fewer fu-
ture bug-fixes than a “poorly tested” element. If not, then
it seems likely that we are not effectively measuring tested-
ness. Using a large number of open source Java programs
from Github and Apache, we show that both statement cov-
erage and mutation score have only a weak negative corre-
lation with bug-fixes. Despite the lack of strong correlation,
there are statistically and practically significant differences
between program elements for various binary criteria. Pro-
gram elements (other than classes) covered by any test case
see about half as many bug-fixes as those not covered, and
a similar line can be drawn for mutation score thresholds.
Our results have important implications for both software
engineering practice and research evaluation.

CCS Concepts
•Software and its engineering → Software testing
and debugging; Empirical software validation;

Keywords
test suite evaluation, coverage criteria, mutation testing, sta-
tistical analysis

1. INTRODUCTION
The quality of software artifacts is one of the key concerns

for software practitioners and is typically measured through
effective testing. While it is widely held that “you cannot
test quality into a product,” you can use testing to detect
that the Software Under Test (SUT) has faults, and to esti-
mate its likely overall quality. Moreover, while testing itself
does not produce quality, it leads to the discovery of faults.
When these faults are corrected, software quality improves.

Testing software poses questions. First, how much testing
is needed? Has “enough” testing been done? Second, where
should future test efforts be applied in a partially tested pro-
gram? The typical approach to answering these questions is
to measure the quality of the test suite, not the SUT. Nu-
merous measures, primarily focused on code coverage [20–22]
have been proposed, and numerous organizations set testing
requirements in terms of coverage levels [37]. Both code
coverage and mutation score measure the “testedness” of an
SUT, using the dynamic results of executing a test suite1.
However, it is not established that using such testing re-
quirements, or suite quality measures in general, translates
into an effective practice for producing better software.

While test driven development, in particular, has pushed
testing to new prominence, practicing software programmers
often balk at having to satisfy what they see as arbitrary
coverage requirements. Some go so far as to suggest that
“code coverage is a useless target measure”2. Some studies
seem to support this conclusion, at least in part [25]. The
utility of testing itself has even come under attack3.

Our aim in this paper is to place the evaluation of test
suites (and thus decision-making in testing) on a firmer foot-
ing, using a measure that translates directly into practical
terms. There is, of course, no end to studies measuring
the effectiveness of test suite evaluation techniques. How-
ever, these studies tend to either cover only a few subject
programs or faults, not use real faults, not measure what
developers directly care about, or assume the validity of mu-
tation testing, which is itself a relatively unproven method

1Most studies consider coverage as measuring the test-
edness of the entire SUT for a given suite, but it is also
reasonable to project this concept onto program elements;
most practical applications of coverage assume this.

2For examples, see http://martinfowler.com/bliki/
TestCoverage.html and http://blog.ploeh.dk/2015/11/16/
code-coverage-is-a-useless-target-measure/.

3For examples, see https://pragprog.com/
magazines/2012-10/its-not-about-the-unit-tests and
http://www.rbcs-us.com/documents/Why-Most
unit-Testing-is-Waste.pdf
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for evaluating a test suite. The methodology of such studies
also often involves using tool-generated or randomly-chosen
subset-based test suites to measure correlation. Such suites
may not resemble real-world test suites, and thus be of little
relevance to most developer practice.

We propose a simpler and more direct method of evalua-
tion that eliminates some of the concerns mentioned above.
It can be argued that a correlation between measure of suite
quality and fault detection is meaningless if the faults de-
tected are unimportant, trivial, or artificial. As a recent pa-
per evaluating the ability of automated unit test generators
to detect real faults phrased it “Just because a test suite...
[is effective] does not necessarily mean that it will find the
faults that matter” [38]. It is usually hard to argue that a
bug that has been discovered and fixed did not matter: fix-
ing bugs is difficult and resource-intensive, requiring devel-
opers (and possibly testers) to devote time to implementing
a correction (and, hopefully, validating it). In many cases,
the bug was detected because it caused problems for users.
There is evidence that problems in code, such as those iden-
tified by code smells, that do not have significant immediate
consequences are often never corrected, even at the price of
design degradation [1]. Bug-fixes therefore usually indicate
important defects: in general, developers thought these were
the problems worth addressing. The most practical goal of
testing therefore, is to prevent future bug-fixes, by detecting
faults before release, avoiding impact on users, and usually
lowering development cost.

We should then evaluate test suite quality measures by a
simple process: does a higher measure of testedness for a
program element (in our work, a statement, block, method
or class) correlate with a smaller number of future bug-fixes?
By avoiding whole-project measures and focusing on individ-
ual program elements, we avoid the confounding effects of
test suite size [25]. While a large test suite can produce
higher coverage and detect more faults, even if coverage and
fault detection are not themselves directly related, it cannot
(at least in any way we can imagine) cause statements that
are covered to have fewer faults than those that are not cov-
ered, unless coverage itself is meaningful. Similarly, using
individual program entities as the basis of analysis mitigates
some of the possible effects of, e.g., test suites with good as-
sertions also having better coverage. This can cause a test
suite with high coverage to perform better than one without
high coverage, on average, but it cannot, we claim, plau-
sibly result in covered entities having fewer bug-fixes than
ones not covered, unless coverage itself matters.

The core argument for our analysis is as follows: if a par-
ticular program element is fully tested to conform to its spec-
ification, then that program element should have no bug-
fixes applied (until the element ceases to exist as a result
of a non-bug-fix modification, e.g. adding new functionality
potentially invalidating the old specification). Similarly, a
program element that is not tested at all should on average
have a higher chance of seeing future bug-fixes applied for
the simple reason that a fault had no chance of being caught
through testing. This, on its own, should result in a strong
negative correlation between testedness and future bug-fixes,
if our fundamental assumption about the utility of testing
is correct and our measure of testedness is effective. In gen-
eral, a well-tested program element should require fewer bug
fixes than a less well-tested program element. In this pa-
per we assume (and later, based on empirical data, argue)

that testing itself is beneficial. We therefore primarily aim
to evaluate the measurement of test suite quality/tested-
ness. We focus on two important, widely studied, measures
of suite quality. First, statement coverage is the simplest,
most widely used, and easiest to understand coverage mea-
sure, and has some support as an effective measure of test
suite quality in recent work [21]. Second, mutation score is
not only commonly advocated as the best method for eval-
uating suite quality, but is essential to most other studies of
coverage method effectiveness [22,27].

We evaluate these test suite evaluation methods empiri-
cally using a large representative set of real world programs,
real world test suites, and bug-fixes, and find that while
there is a small (but statistically significant) negative corre-
lation between our testedness measures and future bug-fixes
for program elements, the effect is so small as to be prac-
tically insignificant. There is very little useful continuous
relationship between measures of testedness and actual ten-
dency to not have bugs detected and fixed, and while it is
reasonable to bet that a more-tested element will have fewer
faults, the size of the effect is very small.

However, we do find that there is a consistent and prac-
tically (as well as statistically) significant difference in the
mean number of bug-fixes for code, if we apply selected bi-
nary measures of “well-testedness” based on coverage or mu-
tation score. For example, program elements with at least a
75% mutation score see, on average, only about half as many
future big-fixes (normalized4) as program elements with a
lower mutation score.

One intuitively appealing explanation for the low correla-
tion of testedness to bug-fixes is that, even if “poorly”tested,
unimportant pieces of code are likely to see few future bug
fixes. If very few users execute a program element, or if its
effects have very limited impact, then the bug will likely not
be fixed (even if reported). However, the problem of varying
program element importance is unlikely to be the root cause
for the lack of a useful continuous correlation for suite eval-
uation measures. If it were, we would expect the effects of
importance to also prevent binary testedness criteria based
on mere coverage from predicting future bug-fixes (since no
one will bother to test program elements that are unlikely
to ever exhibit important bugs). However, like program el-
ements with < 75% mutation score, program elements that
are not covered are also likely to see nearly twice as many
future bug-fixes5.

Nonetheless, perhaps a suite quality measure should re-
flect the importance of program elements. However, forcing
developers to annotate code by its importance is impracti-
cal; we need a static measure of importance. One approach
is to say that complex elements are more likely to be impor-
tant, since developing complex code with many operators
and conditionals, but low importance, is an unwise use of
development resources. In this case, in addition to its other
advantages, mutation testing may help take importance of
code into account, in that complex program elements pro-
duce more mutants than simple elements (e.g., a simple log-
ging statement will seldom perform any calculations, and

4By normalized bug-fixes, we mean bug-fixes per state-
ment/line for elements larger than a single statement or line;
unless we indicate otherwise, we always normalize bug-fixes.

5We only demonstrate this result for statements and
methods; there were too few classes that were not covered
by any tests in our data to show a significant relationship.



so often only produce a single statement-deletion mutant).
We therefore also measure whether the number of mutants
(as a measure of code complexity) predicts the number of
bug-fixes applied to a program element, and whether the
number of mutants predicts the mutation score for an ele-
ment. Both effects are significant but small. Surprisingly,
more complex code sees slightly fewer bug-fixes than simple
code. As might be expected if complexity is associated with
importance, more complex code is also slightly more tested,
according to mutation score. Both effects are too weak to
be of much practical value, however.

Our findings with respect to correlation of testedness mea-
sures and bug-fixes are potentially troubling for the research
community. Software testing researchers often use a differ-
ence of a few percentage points in mutation score or a cov-
erage measure as a means to assert that one test generation
or selection technique is superior to another. However, our
data shows that relying on a few percentage points is dan-
gerous, as such small differences may not indicate real im-
pact in terms of defects that are worth fixing. On the other
hand, our data seems to support the types of “arbitrary” ad-
equacy criteria often imposed by managers or governments
(if not the precise values used). Indeed, our data suggests
that while a continuous ranking of testedness for program
elements is not currently possible, using various empirically-
validated “strata” of testedness (not covered, covered but
with poor mutation score, covered with high mutation score)
may provide a simple, practical way to direct testing efforts.

The contributions of this paper are:

• A novel approach to examining the utility of test suite
quality measures that is based on direct practical con-
sequences of testing.

• Analysis of relationships between bug-fixes, test suite
quality (testedness) measures, and code complexity
and importance metrics for 49 sampled projects from
Github and Apache.

• Evidence that there is small negative correlation be-
tween the number of mutants (normalized) and the
number of future bug-fixes to a program element, indi-
cating that complexity alone does not predict impor-
tance well; in fact, more complex program elements
seem to be changed less often than simple ones. How-
ever, this may partly be due to the fact that more
complex elements are also somewhat more well-tested
(in terms of mutation score).

• Evidence that the negative correlation between tested-
ness (by our measures) and number of future normal-
ized bug-fixes is statistically significant, but far too
small to have much practical impact.

• Evidence that well-chosen adequacy criteria (e.g.,is the
mutation score above 75%) can be used to predict fu-
ture normalized bug-fixes in a practical way (leading to
differences of a factor of two in expected future bugs),
and can serve to distinguish untested, poorly tested,
and well-tested elements of an SUT.

Our data is available for inspection and further analysis
at http://eecs.osuosl.org/rahul/fse2016/.

2. RELATED WORK
Ours is not the first study to attempt to evaluate mea-

sures of testedness [22]. Researchers have often attempted to
prove that mutation score is well correlated with real world
faults. DeMillo et al. [13] empirically investigated the rep-
resentativeness of mutations as proxies for real faults. They
examined the 296 errors in TEX and found that 21% were
simple faults, while the rest were complex errors. Daran et
al. [11] investigated the representativeness of mutations em-
pirically using error traces. They studied the 12 real faults
found in a program developed by a student, and 24 first-
order mutants. They found that 85% of the mutants were
similar to real faults.

Another important study by Andrews et al. [2], investi-
gated the ease of detecting a fault (both real faults and
hand seeded faults), and compared it to the ease of detect-
ing faults introduced by mutation operators. The ease was
calculated as the percentage of test cases that killed each
mutant. Their conclusion was that the ease of detection of
mutants was similar to that of real faults. However, they
based this conclusion on the result from a single program,
which makes it unconvincing. Further, their entire test set
was eight C programs, which makes the statistical inference
drawn liable to type I errors. We also note that the programs
and seeded faults were originally from Hutchins et al. [24]
who chose programs that were subject to certain specifica-
tions of understandability, and the seeded faults were se-
lected such that they were neither too easy nor too difficult
to detect. In fact, the study eliminated 168 faults for being
either too easy or too hard to detect, ending up with just 130
faults. This is clearly not an unbiased selection and cannot
really tell us anything about the ease of detection of hand
seeded faults in general (because the criteria of selection it-
self is confounding). A follow up study [3] using a large
number of test suites from a single program, space.c, found
that the mutation detection ratio and fault detection ratio
are related linearly, with similar results for other coverage
criteria (0.83 to 0.9). Linear regression on the mutation kill
and fault detection ratios showed a high correlation (0.9).

The problems with some of these studies were highlighted
in the work of Namin et al. [34] who used the same set of
C programs as Andrews et al. [2], but combined them with
analysis of four more Java classes from the JDK. This study
used a different set of mutation operators and fault seed-
ing by student programmers for the Java programs. Their
analysis concluded that we have to be careful when using
mutation analysis as a stand-in for real faults. The pro-
gramming language, the kind of mutation operators used,
and even the test suite size all have an impact on the re-
lation between mutations introduced by mutation analysis
and real faults. In fact, using a different mutation operator
set, they found that there is only a weak correlation be-
tween real faults and mutations. However, their study was
constrained by the paucity of real faults, which were only
available for a single C program (also used in Andrews et
al. [2]). Thus, they were unable to judge the ease of detec-
tion of real faults in Java programs. Moreover, the students
who seeded the faults had knowledge of mutation analysis
which may have biased the seeded faults (thus resulting in
high correlation between seeded faults and mutants). Fi-
nally, the manually seeded faults in C programs, originally
introduced by Hutchins et al. [24], were again confounded by
a selection criteria which eliminated the majority of faults as

http://eecs.osuosl.org/rahul/fse2016/


being either too easy or too hard to detect. Just et al. [27],
using 357 real faults from 5 projects, showed that 1) adding
more fault-detecting tests to a test suite led to the muta-
tion score increasing more often (73%) than either branch
(50%) or statement coverage (30%) and 2) mutation score
was more positively correlated with fault detection than ei-
ther of the other measures. Multiple studies provide ev-
idence that mutation analysis subsumes different coverage
measures [8, 30, 35], and it is on this basis that mutation
score is often regarded as the “gold standard” for test suite
quality measures.

Besides mutation score, the other metric that is commonly
used to measure the adequacy of testing is code coverage,
that is, a measure of the set of program elements or code
paths that are executed by a set of tests. A large body
of work considers the relationship between coverage criteria
and fault detection — however, the analysis is often “me-
diated” by assuming the validity of mutation analysis (this
is why we discussed mutation above, before turning to code
coverage). Mockus et al. [32] found that increased cover-
age leads to a reduction in the number of post-release defects
but increases the amount of test effort. Gligoric et al. [19,20]
used the same statistical approach as our paper, measuring
both Kendall τ and R2 to examine correlations, for realisti-
cally non-adequate suites. Gligoric et al. found that branch
coverage does the best job, overall, of predicting the best
suite for a given SUT, but that acyclic intra-procedural path
coverage is highly competitive and may better address the
issue of ties, which is important in their research/method
comparison context. Inozemtseva et al. [25] investigated
the relationship of various coverage measures and mutation
score for different random subsets of test suites. They found
that when test suite size is controlled for, only low to mod-
erate correlation is present between coverage and effective-
ness, for all coverage measures used. Frankl and Weiss [16]
compared of branch coverage and def-use coverage, show-
ing that def-use was more effective for fault detection and
there is stronger correlation to fault detection for def-use.
Namin and Andrews [33] showed that fault detection ratio
(non-linearly) correlated well with block coverage, decision
coverage, and two different data-flow criteria. Their research
suggested that test suite size was a significant factor in the
model. Wei et al. [44] examined branch coverage as a quality
measure for suites for 14 Eiffel classes, showing that for ran-
domly generated suites, branch coverage behavior was con-
sistent across many runs, while fault detection varied widely.
In their experiments, early in random testing, when branch
coverage rose rapidly, current branch coverage had high cor-
relation to fault detection, but branch coverage eventually
saturated while fault detection continued to increase; the
correlation at this point became very weak.

Gupta et al. [23] compared the effectiveness and efficiency
of block coverage, branch coverage, and condition coverage,
with mutation kill of adequate test suites as their evalu-
ation metric. They found that branch coverage adequacy
was more effective (killed more mutants) than block cov-
erage in all cases, and condition coverage was better than
branch coverage for methods having composite conditional
statements. The reverse, however, was true when consid-
ering the efficiency of suites (average number of test cases
required to detect a fault). Li et al. [29] compared four
different criteria (mutation, edge pair, all uses, and prime
path), and showed that mutation adequate testing was able

to detect the most hand seeded faults (85%), while other cri-
teria performed similarly to each other (in the range of 65%
detection). Similarly, mutation coverage required the fewest
test cases to satisfy the adequacy criteria, while prime path
coverage required the most. Therefore, while there are no
compellingly large-scale studies of many SUTs selected in
a non-biased way to support the effectiveness of mutation
testing, it is at least highly plausible as a better standard
than other criteria.

Cai et al. [9] investigated correlations between coverage
criteria under different testing profiles: whole test set, func-
tional test, random test, normal test, and exceptional test.
They investigated block coverage, decision coverage, C-use
and P-use criteria. Curiously, they found that the relation-
ship between block coverage and mutant kills was not always
positive. Block coverage and mutant kills had a correlation
of R2 = 0.781 when considering the whole test suite, but as
low as 0.045 for normal testing and as high as 0.944 for ex-
ceptional testing. The correlation between decision coverage
and mutation kills was higher than statement coverage, for
the whole test suite (0.832), ranging from normal test (0.368)
to exceptional test (0.952). Frankl et al. [17] compared the
effectiveness of mutation testing with all-uses coverage, and
found that at the highest coverage levels, mutation test-
ing was more effective. Kakarla [28] and Inozemtseva [26]
demonstrated a linear relationship between mutation detec-
tion ratio and coverage for individual programs. Inozemt-
seva’s study used machine learning techniques to come up
with a regression relation, and found that effectiveness is
dependent on the number of methods in a test suite, with
a correlation coefficient in the range 0.81 ≤ r ≤ 0.93. The
study also found a moderate to high correlation, in the range
0.61 ≤ τ ≤ 0.81, between effectiveness and block coverage
when test suite size was ignored, which reduced when test
suite size was accounted for. Kakarla found that statement
coverage was correlated to mutation coverage in the range
of 0.73 ≤ r ≤ 0.99 and 0.57 ≤ τ ≤ 0.94. Gopinath et al. [21]
found that statement, out of branch, and path coverages,
best correlated with mutation score, and hence may best
predict defect density, in a study that compared suites and
mutation scores across projects, rather than using multiple
suites for the same project.

The study by Tengeri et al. [42] provided a simple (es-
sentially non-statistical) assessment of how statement cov-
erage, mutation score, and reducibility predicted project de-
fect densities for four open source projects, using a limited
set of mutation operators.

None of these studies, to our knowledge, adopted the
method used in this paper, where rather than investigate
faults and their detection, we look at whether being “well
tested” has predictive power with respect to future defects6.
Most also consider a smaller, less representative (at least
of open source projects) set of programs, and the majority
are based on programs chosen opportunistically, rather than
by our more principled sampling approach. The programs
used are often small but well-studied benchmarks such as the
Siemens/SIR [41] suite, partly for purposes of comparison to
earlier papers, and partly due to the lack of easily available
realistic projects with test suites and defects, before the ad-

6It is remotely possible that Tengeri et al. [42] are using a
similar method, but this is not clear from their description,
and the reasoning behind our approach is not elaborated in
their work.
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Figure 1: CLOC vs. tests for our projects.

vent of very large open source repositories. Unfortunately,
as noted by Arcuri and Briand, not at least attempting to
randomize selection of programs to study can greatly reduce
the generalizability of results [6].

3. METHODOLOGY
Our goal was to evaluate various approaches to assessing

the testedness of a program element, using future bug-fixes.

3.1 Collecting the Subjects
For our empirical evaluation, we tried to ensure that the

programs chosen offered a reasonably unbiased representa-
tion of modern software. We also tried to reduce the number
of variables that can contribute to random noise during eval-
uation. With these goals in mind, we chose a sample of Java
projects from Github [18] and the Apache Software Foun-
dation [4]. All projects selected used the popular maven [5]
build system. We randomly selected 1, 800 projects. From
these, we eliminated aggregate projects that were difficult to
analyze, leaving 1, 321 projects, of which only 796 had test
suites. Out of these, 326 remained after eliminating projects
that did not compile (for reasons such as unavailable depen-
dencies, or compilation errors due to syntax or bad config-
urations). Next, the projects that did not pass their own
test suites were eliminated as mutation analysis requires a
passing test suite. Finally, we eliminated projects our AST
walker could not handle. This resulted in 49 projects se-
lected. The distribution of project size vs. test suite size,
and the corresponding mutation score is given in Figure 1.

3.2 Mutant Generation
In the next phase of our analysis, we used PIT [10] for our

mutation analysis. PIT has been used in multiple previous
studies [12, 21, 25, 40]. We extended PIT to provide the full
matrix of test failures over mutants and tests. Mutants can
basically be divided into three groups based on their runtime
behavior: not covered, killed, and live mutants. We used this
basic categorization in our analysis.

3.2.1 Computing Complexity
In order to evaluate the effect of complexity on testedness,

it is necessary to find a reasonable measure for complexity.
While previous research has used cyclomatic complexity [31]
as a measure of complexity, the measure can not be used for
single assignment statements. Further, it was found that

cyclomatic complexity was strongly correlated with the size
of code [39] and provided little extra information. We argue
that a better measure of complexity is the average number
of mutants generated from each statement. When a piece of
code is highly complex, we expect to see a larger number of
mutants compared to simpler code.

3.3 Tracking Program Elements
We started our investigation from an arbitrarily deter-

mined recent, but not too recent, point in time deemed the
“epoch” — December 1, 2014. This was done to provide a
point from which testedness (mutation score and statement
coverage) could be calculated, and with respect to which
bug-fixes could be considered to be “in the future”. For
the source code and test suite at epoch, we computed muta-
tion score and statement coverage for each statement, block,
method, and class in each project.

In order to determine when a program element (statement,
block, method, or class) was changed, and track its history,
we used the GumTree Differencing Algorithm [14]. For each
element of interest, we considered it changed if the corre-
sponding AST node was changed, or had any children that
were added, deleted or modified. The algorithm maps the
correspondence between nodes in two different trees, which
allowed us to accurately track the history of the program
elements.

Using AST differencing gives us three advantages over
simple line based differencing. The first is that the algo-
rithm ignores any whitespace changes. Second, we are able
to track a node even if its position in the file changes (e.g.
because lines have been added or deleted before our node of
interest). Third, we are able to track nodes across refactor-
ings, as long as the node stays in the same file. For example,
we can track a node that has been moved because of an ex-
tract method refactoring.

When considering which statements to track, we used the
version of the source code at epoch to determine which AST
node resided at that particular line. We filtered only the
commits that touch the file of interest. We then tracked
that AST node forward in time, taking note of the commits
that changed that particular node. For Java, it is possible
for multiple statements to be in the same line (for example, a
local variable declaration statement inside an if statement).
In this case, we considered the innermost statement, as this
gives the most precise results.

The epoch is (and can be) arbitrary. Our basic assumption
is is that test coverage increases monotonically (people do
not remove tests very often, and tests don’t lose coverage).
We checked this assumption for 5 random projects, at 1-5
random points (depending on history length) before epoch,
and confirmed: once covered, always covered, in every case.

3.4 Classifying Commits
In order to answer our research questions, we needed to

categorize the code commits. For each program element, we
computed the number of commits that touched that element
starting from the epoch. For our purpose, code commits can
be broadly grouped into one of two categories: (1) bug-fixes
and improvements (modifying existing code), and (2) Other
— commits that introduced new features or functionality
(adding new code) or commits that were related to docu-
mentation, test code, or other concerns. Two key problems
are that it is not always trivial to determine which cate-
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Table 1: Naive Bayes classifier details
Precision Recall f1.score Support

Bug-fix 0.63 0.43 0.51 75.00
Other 0.74 0.86 0.80 140.00

gory a commit falls under, and that larger projects see a
huge amount of activity. Manual classification of all com-
mits was therefore not an option, and we decided to use ma-
chine learning techniques for this purpose, rather than limit
the statistical power of our study (especially as arbitrarily
dropping the most active subjects would clearly potentially
introduce a large bias into our results).

3.4.1 Manual Classification of Fix-inducing Changes
In order to build a classifier for bug-fixing commits, we

randomly sampled commits and manually labeled fix-inducing
commits. Some keywords indicating bug-fixes were Fix, Bug,
and Resolves, along with their derivatives. We should men-
tion that not all bug-fixing commit messages include the
words bug or fix ; indeed, commit messages are written by the
initial contributor of a patch, and there are few guidelines as
to their contents. A similar observation was made by Bird
et al. [7], who performed an empirical study showing that
bias could be introduced due to missing linkages between
commits and bugs. Improvements were manually identified
based on the following keywords: Cleanup, Optimize, and
Simplify or their derivatives. Commits were placed into the
Other category if they had the keywords Add or Introduce.
The number of lines modified was also compared with the
lines added. Those commits with more lines added than
modified were considered more likely to be associated with
new features and were placed in the Other category. Any-
thing that did not fit into this pattern was also marked as
Other. We manually classified a set of 1,500 commits.

3.4.2 Training the Commit Classifier
We used the set of manually classified commits as the

training data for the machine learning classifiers. Two eval-
uators worked independently to classify the commits. Their
datasets had a 33% overlap, which we used to calculate the
inter-rater reliability. This gave us a Cohen’s Kappa of 0.90.
In our training dataset the portion of bug-fixes was 46.30%,
with 53.70% of the commits assigned to the Other category.

We trained a Naive-Bayes (NB) classifier and a Support
Vector Machine (SVM) for automatically classifying the com-
mits, using the scikit [36] platform. We applied the classi-
fiers to the training data with 12-fold cross-validation. Our

goal was to achieve high precision and recall, so we used the
F1-score to measure and compare the performance of the
models. The F1-score considers precision and recall by tak-
ing their harmonic mean. The NB classifier outperformed
the SVM. Tian et al. [43] suggested that for keyword based
classification the F1 score is usually around 0.55 which also
happened in our case. We used the classification identi-
fied by the NB classifier to classify 11566 commits. Table 1
has the quality indicator characteristics of the NB classifier.
While our classifier is far from perfect, it is comparable to
“good” classifiers for this purpose in the literature (over a
larger set of projects), and we believe it is likely that any bi-
ases do not have confounding interactions with the goals of
our project. That is, while we may only analyze about 43%
of bug-fixes, it would be surprising if the missed bug-fixes
relate in some systematic way to the dynamic testedness
measures of program elements, given that the classifier only
sees code commits. Since our analysis only relies on rela-
tive counts of bug-fixes for elements, so long as we do not
systematically undercount bug-fixes for only some elements,
our results should be valid.

The bug-fixes associated with each program element in
our analysis are based on the classifier results in a simple
way. For each element, we count commits that affect that
element that are classified as Bug-fix up to the first commit
that is classified as Other. This is because once an element
has had a change that is not a bug-fix, it is often no longer
valid to assume tests at the epoch apply to that element, or
that it even still exists with the same functionality. However,
so long as only bug-fixes are applied, we assume the tests
still apply to the program element, so all bug-fixes count as
missed by the tests at epoch. Note that our classifier for
Other commits is highly effective.

4. ANALYSIS
We analyze the impact of testedness on program element

bug-fixes using both mutation score and statement coverage
in increasing lexical scope for each statement (except for
statement coverage), block, method, and class.

4.1 Correlation Results
We answer this question in increasing scope from state-

ment, smallest block, method, and then class. In each scope,
we evaluate how the degree of adequacy in both mutation
score and statement coverage affects the total number of
bug-fix commits.
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Figure 4: Mutation score vs. bug-fix commits
for covered methods.
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Figure 5: Mutation score vs. bug-fix commits
for covered classes.

Table 2: Correlation between total number of
bug-fixes per statement and mutation score

(a) R2

Mean Low High p
Statements -0.12 -0.13 -0.11 0.00

Blocks -0.14 -0.15 -0.12 0.00
Methods -0.16 -0.18 -0.14 0.00

Classes -0.13 -0.18 -0.08 0.00

(b) Kendall τb

Mean p
-0.13 0.00
-0.19 0.00
-0.14 0.00
-0.10 0.00

Table 3: Correlation between total number of
bug-fixes per statement and statement coverage

(a) R2

Mean Low High p
Statements -0.11 -0.12 -0.10 0.00

Blocks -0.13 -0.14 -0.12 0.00
Methods -0.14 -0.16 -0.12 0.00

Classes 0.09 0.04 0.13 0.00

(b) Kendall τb

Mean p
-0.13 0.00
-0.21 0.00
-0.13 0.00
-0.04 0.07

4.1.1 Mutation Score (µ)
The correlation between number of bug-fixes per state-

ment and mutation score is given in Table 2.
For statements and methods, there is a statistically sig-

nificant small negative linear correlation between number of
bug-fixes per statement and mutation score. A similar effect
is observed with Kendall τb correlation, where a small but
statistically significant negative correlation is observed for
statements, blocks, methods and classes.

The plot of mutation score vs. normalized bug-fixes for
statements is given in Figure 2, for blocks in Figure 3, for
methods in Figure 4, and for classes in Figure 5.

4.1.2 Statement Coverage (λ)
The correlation between number of bug-fixes per state-

ment and statement coverage is given in Table 3.
For statements, blocks, and methods, there was a small

but statistically significant negative linear correlation be-
tween coverage and bug-fixing commits. Surprisingly, the
classes had a weak but significant positive correlation. A
similar small but statistically significant negative correla-
tion is also observed using Kendall τb, where even classes
showed a small negative (but statistically insignificant) cor-
relation. These correlations (for mutant score and for state-
ment coverage) are much lower than those seen in recent
studies showing good correlation between coverage metrics

Table 4: Difference in bug-fixes between covered
and uncovered program elements

Covered Uncovered p
Statement 0.68 1.20 0.00

Block 0.42 0.83 0.00
Method 0.40 0.87 0.00

Class 0.45 0.32 0.10

and mutation scores [19, 21] (these studies are measuring a
different property, but in some sense aiming for similarly
strong correlations). These correlations are not so small
as to be completely devoid of value, but they do make the
use of these measures dubious when comparing program el-
ements or test suites with only small testedness differences.
Unfortunately, this is a common practice in the evaluation
of software testing experiments. Worse still, these results
might be thought to suggest that testedness cannot be effec-
tively measured, leaving the practicing tester without useful
guidance.

4.2 Binary Testedness: Is It Covered?
However, using testedness as a continuous valuation, where

we expect slightly more tested program elements to have
fewer bug-fixes, is not the only way to make use of test-
edness. Instead of trying to separate very similarly tested
elements, we could simply draw a line between tested and
not-tested program elements. For example, common sense
suggests that if testing is useful at all, then code that is
not covered should probably have more bug-fixes that code
that has at least some test covering it. This rationale is
the intuition behind ideas like “getting to 80% code cover-
age,” though it does not justify any particular target value.
Code that isn’t executed in tests is surely less tested than
code that executes in even very poor tests (since even very
badly designed tests with a weak oracle may catch crashes,
uncaught exceptions, and infinite loops, for example).

We compared the mean number of bug-fixes for covered vs.
uncovered program elements using a t-test. The results are
shown in Table 4. By covered element we mean a program
element which has at least a single statement exercised by
some test case. While this is a reasonable binary distinction
up the method level, a class with only a single statement
covered may not be much more tested than a class that
does not have any statements covered. This may account
for the difference seen for classes in Table 4. We also note
that there is insufficient data for statistical significance in
classes (most classes are covered by at least some test).



4.3 Binary Testedness: Mutation Score and
Coverage Thresholds

While measuring testedness based on mutation score or
statement coverage as a continuous value of limited value, we
can do much better than just drawing a meaningful dividing
line between covered and not-covered program elements.

We can instead evaluate whether the mean number of bug-
fixes differs significantly when the tests reach a given ade-
quacy threshold. Table 5 and Table 6 tabulate the mean
number of normalized bug-fix commits per statement for
both above and below the thresholds µ = {0.25, 0.5, 0.75, 1.0}
and λ = {0.25, 0.5, 0.75, 1.0}. We find that there is a sta-
tistically and practically significant difference between the
mean number of bug-fixes for both measures at all thresh-
olds selected (though with classes perfect statement cover-
age strangely becomes a predictor of more faults). Note that
for individual statements, all thresholds based on statement
coverage are equivalent (coverage is always 0 or 1).

Table 7 shows mutant threshold results if we first remove
all program entities that are not covered. This has little
impact on the ability of thresholds to predict bug-fixes.

4.4 Complexity and Change
We compare the number of mutants, normalized by the

size of the program element (e.g. number of lines), to the
number of post-epoch bug-fixes for that element.

Statements: Comparing the number of bug-fixes to the
number of mutants per statement, we find that the 95%
confidence interval is {−0.004697, 0.013204} p > 0.01.

Methods: Comparing the number of bug-fixes to the num-
ber of mutants per method, we find that the 95% confidence
interval is {−0.087117, −0.048715} p < 0.01.

Classes: Comparing the number of bug-fixes to the num-
ber of mutants per class, we find that the 95% confidence
interval is {−0.096285, −0.000863} p > 0.01.

Summary: Most results are not statistically significant.
Further, there is a weak correlation between the number of
mutants (normalized) and the number of bug-fixes. More
“complex” code as measured by number of mutations has
slightly fewer bug-fixes, but the correlation is even weaker
than between testedness measures and bug-fixes. However,
the difference in correlation is not very large, so another
way to interpret this is that as a continuous measure, sim-
ple number of mutants, normalized, is only slightly worse as
a predictor of bug-fixes than “testedness.” However, unlike
testedness measures, the number of mutants does not pro-
vide a useful binary predictor for bug-fixes. Binary splits
based on a threshold using the mean normalized mutants
(2.79) do not produce significantly different populations.
Setting a threshold of 5 or more normalized mutants does
produce significant differences (p < 0.0001), but the means
are very similar, e.g., 1.1 bug-fixes for less complex state-
ments vs. 0.95 bug-fixes for statements with more mutants.

4.5 Complexity and Testedness
Comparing the normalized number of mutants to the mu-

tation score per program element:
Statements: The 95% confidence interval is {0.008016,

0.025912} p < 0.01.
Methods: The 95% confidence interval is {0.005755, 0.044311}

p > 0.01.
Classes: The 95% confidence interval is {−0.049426, 0.046223}

p > 0.01.

Summary: At the statement level (only) there is a statisti-
cally significant but very weak correlation between the num-
ber of mutants (normalized) and the mutation score. More
complex statements are (very slightly) more well-tested.

5. DISCUSSION
Our empirical results have some potentially important

consequences for testing research and practice.

5.1 The Danger of Relying on Small Tested-
ness Differences

First, there is only a weak correlation between either state-
ment coverage or mutation score and future bug-fixes. This
indirectly suggests that research efforts using coverage or
mutants to evaluate test suite selection, generation, or re-
duction algorithms may draw unwarranted conclusions from
small, significant differences in these measures. In particu-
lar, it may suggest that using mutation to evaluate testing
experiments can potentially fail to reflect the ability of sys-
tems to detect the types of faults that are detected by prac-
titioners and worth correcting in real-life. Given that the
literature supporting the value of code coverage as a predic-
tor of fault detection mostly relies on the ability of muta-
tion testing to reflect real fault detection, and that mutation
testing’s effectiveness is validated by only a small number of
studies, none of which present overwhelming evidence over a
large number of programs, we strongly suggest that testing
experiments, whenever possible, should rely on the use of
some real faults in addition to coverage or mutation-score
based evaluations. In some contexts, where detecting all
possible faults is the goal (e.g., safety critical systems) and
the oracle for correctness is known to be extremely good,
mutation-based analyses may be justified, but even in those
cases data based on real faults would be ideal.

5.2 Practical Application of Thresholds
On the other hand, our results show that numerous simple

percentage thresholds for statement coverage and mutation
score can, in a statistically significant way, predict the num-
ber of bug-fixes (with mean differences between populations
of about 2x). This suggests a simple method for prioritizing
testing targets in a program. The entities with the highest
bug-fix counts were, unsurprisingly, those not even covered
by any tests. As a first priority, covering uncovered program
elements is likely to be the most rewarding way to improve
testedness, since these elements can be expected to have the
most potential undetected bugs that will be revealed in the
near future. Surviving mutants of entities with low mutation
scores can then be used to guide further testing. One obvi-
ous question is, which threshold should be used, since many
thresholds seem effective? Our data shows that it really
does not matter much — the significance and even average
bug-fixes are not radically different for different thresholds.
The simplest answer is to start with low thresholds, keep
improving testing until there are no remaining interesting
elements below the current threshold, then move on to a
higher threshold. Setting a particular threshold for project-
level testing is not supported by our data, however, as there
is no clearly “best” dividing line, only a number of ways
to define “less tested” and “more tested” elements, most of
which equate to more bug-fixes for less tested elements.



Table 5: Mutation score thresholds

(a) 0.25

µ ≥ 0.25 µ < 0.25 p
Statements 0.60 1.20 0.00

Blocks 0.39 0.81 0.00
Methods 0.32 0.87 0.00

Classes 0.11 0.55 0.00

(b) 0.5

µ ≥ 0.5 µ < 0.5 p
0.60 1.19 0.00
0.39 0.79 0.00
0.33 0.85 0.00
0.12 0.51 0.00

(c) 0.75

µ ≥ 0.75 µ < 0.75 p
0.58 1.16 0.00
0.39 0.71 0.00
0.34 0.81 0.00
0.13 0.46 0.00

(d) 1.0

µ ≥ 1 µ < 1 p
0.58 1.14 0.00
0.39 0.67 0.00
0.41 0.75 0.00
0.20 0.40 0.00

Table 6: Statement coverage score thresholds

(a) 0.25

λ ≥ 0.25 λ < 0.25 p
Statements 0.68 1.20 0.00

Blocks 0.42 0.83 0.00
Methods 0.40 0.87 0.00

Classes 0.48 0.31 0.04

(b) 0.5

λ ≥ 0.5 λ < 0.5 p
0.68 1.20 0.00
0.42 0.83 0.00
0.41 0.86 0.00
0.51 0.30 0.01

(c) 0.75

λ ≥ 0.75 λ < 0.75 p
0.68 1.20 0.00
0.42 0.82 0.00
0.42 0.84 0.00
0.59 0.28 0.00

(d) 1.0

λ ≥ 1 λ < 1 p
0.68 1.20 0.00
0.42 0.82 0.00
0.46 0.80 0.00
0.90 0.24 0.00

5.3 Complexity, Bug-Fixes, and Testedness
There does not seem to be any very strong or interest-

ing relationship between complexity (as measured by num-
ber of mutants) and bug-fixes, or between complexity and
testedness. More complex code is (very slightly) less fixed,
perhaps because it is (very slightly) more tested. The main
take-away from the complexity analysis is that the number
of mutants is almost as good a predictor of lack of bug-fixes
as testedness, if used as a simple correlation, but it does not
support useful binary distinctions in likely bug-fixes.

5.4 Testing is Likely Effective
One final point to note is that our data provides fairly

strong support for the idea that testing is effective in forcing
quality improvements in code. Our measures of testedness
are, essentially, based purely on the dynamic properties of a
test suite, not on static properties of program elements (the
number of mutants for an entity depends on static proper-
ties, but all statements with any mutants can achieve or fail
to achieve a score of any particular threshold). This means
that, without using the static properties of code, the degree
to which code is exercised in a test suite can often be used
to predict which of two entities will turn out to require more
bug-fixes. As far as we can determine, there are only a few
potential causes for this ability to use the dynamics of a test
suite to predict bug-fixes:

1) Some unknown property not related to code quality
results in both a tendency to write tests that cover code
and in fewer bug-fixes for that code. 2) A known property
results in both a tendency to write tests that cover code and
in fewer bug-fixes for that code: namely, good developers
write tests for their already more correct code. Testing itself
is more a sign of good code than a cause of good code. 3)
Tests covering code often detect bugs, and developers fix the
bugs, so the code has fewer bugs to fix.

The first possibility is, in our opinion, unlikely — it is
difficult to imagine such an unknown factor. Some obvious
candidate factors do not really bear up on examination. For
example, perhaps code with many bug-fixes is new code, and
so has not yet had tests written for it. If the act of writing
tests for the new code makes it less buggy, however, then
testing is in fact effective. Moreover, the predictive power of
mutation score being over a threshold is present even if we

restrict our domain to entities that have at least one cov-
ering test. New code might be expected to be completely
untested, removing most truly new (no tests) code from this
population. The second possibility is more plausible, and
may well be true to some extent. The third possibility seems
most plausible, and we believe is likely to be the main cause
of the observed effects. However, even if we assume that
the second explanation is the primary cause for the rela-
tionships we observed, notice the peculiar consequences of
this claim: developers who believe testing is worthwhile, and
devote more time to it, are “wrong” in that testing itself is
useless, but on the whole produce statistically better code
than those who do not value testing. This may not be an
appealing argument to those dubious about testing’s value.

While it could be argued that other measures of testedness
such as warnings generated by static analysis tools could be
an even better indicator, we believe that the number of bugs
fixed is the most direct measure of testedness available.

6. THREATS TO VALIDITY
Threats Due to Sampling Bias: To ensure representa-
tiveness of our samples, we opted to use search results from
the Github repository of Java projects that use the Maven

build system. We picked all projects that we could retrieve
given the Github API, and selected from these only based
on necessary constraints (e.g., the project must build, and
tests at epoch must pass). However, our sample of pro-
grams could be biased by skew in the projects returned by
Github. Github's selection mechanisms favoring projects
based on some unknown criteria may be another source of
error. We also handpicked some projects from Apache, such
as commons-lang. As our samples only come from Github
and Apache, this may be a source of bias, and our findings
may be limited to open source programs. However, we be-
lieve that the large number of projects more than adequately
addresses this concern.
Bias Due to Tool Used: For our study, we relied on PIT.
We have done our best to extend PIT to provide a reasonably
sufficient set of mutation operators, ensuring also that the
mutation operators were non-redundant (and have checked
for redundancy in past work using PIT).

Secondly, we used the Gumtree algorithm discussed earlier
for tracking program elements across commits. However, the



Table 7: Mutation score thresholds with uncovered program elements filtered out

(a) 0.25

µ ≥ 0.25 µ < 0.25 p
Statements 0.60 1.16 0.00

Blocks 0.39 0.72 0.00
Methods 0.32 0.90 0.00

Classes 0.11 1.66 0.00

(b) 0.5

µ ≥ 0.5 µ < 0.5 p
0.60 1.11 0.00
0.39 0.64 0.00
0.33 0.71 0.00
0.12 1.13 0.00

(c) 0.75

µ ≥ 0.75 µ < 0.75 p
0.58 0.95 0.00
0.39 0.50 0.00
0.34 0.53 0.00
0.13 0.75 0.00

(d) 1.0

µ ≥ 1 µ < 1 p
0.58 0.89 0.00
0.39 0.47 0.00
0.41 0.39 0.68
0.20 0.50 0.00

algorithm used is unable to track program elements across
renames or movement to another folder. Further, refactoring
that involves modification of scope, such as moving the code
out of the current compilation unit also causes the algorithm
to lose track of the program element after refactoring.

Further, In this study we did not apply a systematic method
for the detection and removal of equivalent mutants. This
might have an impact on the mutation score of some projects.
Bias Due to Commit Classification: Our determination
of commits as bug-fixes or not and of commits that “end the
history” of a program element both depend on a learned
classifier. While our results do not require those results to
be anywhere near perfect, it may be that some unknown bias
in the failures unduly influences our results, or gives rise to
the weakness of observed correlations.
Bias Due to Lack of High Coverage: Some researchers
have found that a strong relationship between coverage and
effectiveness does not show up until very high coverage levels
are achieved [15,17,24]. Since the coverage for most projects
rarely reached very high values, it is possible that we missed
the existence of such a dependent strong relationship.
Bias Due to Confounding Factors: Numerous confound-
ing factors exist. For example, we assume that there is no
specific skew in the individuals responsible for the bug fixes,
and other personality factors in projects does not come into
play. However, this cannot be guaranteed. Next, bug fixes
may be done under various circumstances. For example the
quality of a bug fix under time pressure may be very differ-
ent from the quality of a bug fix under more leisure. Finally,
we do not consider the changes to the test cases themselves.
However, we believe that the impact of these factors are
limited due to the large number of subjects considered.

7. CONCLUSION
This paper uses a novel method to evaluate the effective-

ness of test suite quality measurements, which, we suggest
essentially aim to capture the “testedness” of a program or
program elements. Much of previous research attempting to
evaluate such measures operates by a procedure that, at a
suitably high level of abstraction, can be described as first
collecting a large set of tuples of the form (testedness mea-

sure for suite, # faults found by suite), then apply-
ing some kind of statistical analysis. Details vary, in that
suites may all be for one SUT, or for multiple SUTs (though
seldom for more than 5-10 SUTs), and in most cases “ac-
tual faults” are either hand-seeded or “faults” produced by
mutation testing (which is assumed to measure real fault
detection on a largely recently established and still limited
empirical basis [27]). These studies have produced a variety
of results, sometimes almost contradictory [22]. Is coverage
useful? Is mutation score (more) useful?

We propose a different approach. Measuring fault detec-
tion for a suite can be extremely labor-intensive; worse, de-

pending on the definition of faults, we may give too much
credit for detecting faults that are of little interest to most
developers. Instead, our evaluation chooses a point in time,
collects testedness measures for a passing test suite from
that date, and then examines whether these measures pre-
dict actual future bug-fixes for program elements. If “well
tested” elements of a program require no less effort to cor-
rect, then either we are not measuring testedness effectively,
or testing itself is ineffective.

We assume that testing is effective. Under this assump-
tion, we show that there is the expected negative correlation
between testedness and number of future bug-fixes. How-
ever, this correlation is so weak that it makes using it to
compare testedness values in the continuous fashion, where
slightly more tested code is assumed to be slightly better, or
slightly higher scoring test suites are assumed to be better
than slightly lower scoring test suite, a dubious enterprise.
This suggests that the evaluation method in many software
testing publications may be of questionable value. On the
other hand, when we use testedness measures to split pro-
gram elements into simple “more tested” and “less tested”
groups, the population differences are typically significant
and the mean bug-fixes are sufficiently different (usually
about a factor of 2x) to provide practical guidance in testing.

So, is (statement) coverage useful? Is mutation score
(more) useful? The answers, we believe, may be that it
depends on what you expect to achieve using these methods.
Testing is an inherently noisy and idiosyncratic process, and
whether a suite detects a fault depends on a large number
of complex variables. It would, given this complexity of
process, be very surprising if any simple dynamic measure
computable without human effort for any test suite pro-
duced strong correlations like those often shown between
code coverage and mutation score (0.6-0.9). The correla-
tions between these measures are often high because both
result from regular, even-handed, automated analysis of the
dynamics of a test suite. Actual faults are apparently (un-
surprisingly) produced and detected by a much more com-
plex and irregular process. However, when used to draw the
line between less tested and more tested program elements,
testedness measures can provide a simple automated way
to prioritize testing effort, and recognize when all the ele-
ments of an SUT have passed beyond a high threshold of
testedness, and are thus likely to have fewer future faults.
In short, while we cannot (at present) measure testedness
as precisely as we (software engineering researchers) would
like, we can measure testedness in such a way as to provide
some practical assistance to the humble working tester.
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