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Abstract

Developing a bug-free compiler is difficult; modern optimiz-
ing compilers are among the most complex software systems
humans build. Fuzzing is one way to identify subtle compiler
bugs that are hard to find with human-constructed tests.
Grammar-based fuzzing, however, requires a grammar for
a compiler’s input language, and can miss bugs induced by
code that does not actually satisfy the grammar the compiler
should accept. Grammar-based fuzzing also seldom uses ad-
vanced modern fuzzing techniques based on coverage feed-
back. However, modern mutation-based fuzzers are often
ineffective for testing compilers because most inputs they
generate do not even come close to getting past the parsing
stage of compilation. This paper introduces a technique for
taking a modern mutation-based fuzzer (AFL in our case, but
the method is general) and augmenting it with operators
taken from mutation testing, and program splicing. We con-
duct a controlled study to show that our hybrid approaches
significantly improve fuzzing effectiveness qualitatively (con-
sistently finding unique bugs that baseline approaches do
not) and quantitatively (typically finding more unique bugs
in the same time span, despite fewer program executions).
Our easy-to-apply approach has allowed us to report more
than 100 confirmed and fixed bugs in production compil-
ers, and found a bug in the Solidity compiler that earned a
security bounty.

CCS Concepts: · Software and its engineering → Dy-

namic analysis; Software testing and debugging.
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1 Introduction

Compilers are notoriously hard to test, and modern optimiz-
ing compilers tend to contain many subtle bugs. Compiler
bugs can have serious consequences, including, potentially,
the introduction of security vulnerabilities that cannot be
detected without knowledge of a compiler flaw [2]. The lit-
erature on compiler testing is extensive [7].
As McKeeman’s [17] widely cited paper suggests, one

core approach to testing compilers is based on the genera-
tion of random programs. Csmith [23] is perhaps the most
prominent example of this method. Building a tool such
as Csmith is a heroic effort, requiring considerable exper-
tise and development time. Csmith itself is over 30KLOC,
much of it complex and with a lengthy development his-
tory. Csmith is focused on a single, albeit extremely impor-
tant, language: C. Building a tool like Csmith for a new
programming language is not within the scope of most
compiler projects, even major ones. For instance, to our
knowledge there is no useful tool for generating random
Rust programs (none seems to be prominently featured in
rustc testing). Rust is primarily (or perhaps only) fuzzed at
the whole language level (https://github.com/dwrensha/fuzz-

rustc/blob/master/fuzz_target.rs) by using a wrapper around
libFuzzer, a tool with no knowledge of Rust, to randomly
modify a set of supplied Rust programs. Similarly, the solc
compiler, used for most smart contracts on the Ethereum
blockchain, is fuzzed using methods similar to those used for
Rust1; we call these approaches, based on mutating a starting
set of programs, no-fuss fuzzing.
Most compiler projects, even large ones, do not have a

team of spare random testing and compiler/language experts
available, so the construction of Csmith-like tools is out of
the question. This means that the only way to generate valid
programs from scratch is to use a tool that takes as input
a grammar, and generates random outputs satisfying the
grammar. However, such an approach has multiple problems.
First, in many cases the programs produced by a grammar,

1Creating a grammar-based fuzzer has been an open issue for Solidity since

August of 2020 (https://github.com/ethereum/solidity/issues/9673).
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Table 1. Compiler Fuzzing Techniques

Technique Tool Requirements Weaknesses

from Developers

Custom tool (e.g. Csmith) Custom tool None Extremely labor-intensive, potentially years of work

Grammar-based Grammar-based fuzzer Usable grammar Needs tuning, many bugs not in scope

łNo-fussž mutation-based Off-the-shelf fuzzer

(e.g., AFL)

Corpus of examples Inefficient, has trouble hitting łdeepž bugs; may focus

on least interesting bugs

without extensive attention to tuning the probabilities of
productions, etc., will be mostly uninteresting. Csmith is
successful in part because of the use of numerous heuristics
to generate interesting code. Second, the grammar of a lan-
guage alone seldom provides guidance in avoiding simple
errors that cause programs to be rejected without exploring
interesting compiler behavior; e.g., forcing identifiers to be
defined before they are used. Third, many interesting bugs
can only be exposed by programs that do not satisfy a lan-
guage’s supposed grammar, due to differences between a
formal grammar and the actual parser used in a compiler, or
other subtle implementation details. Salls et al. [20] found
that many bugs could not be discovered using a grammar-
based generator. Finally, a usable grammar simply may not
be available, especially as the tools will expect a grammar
in a particular format (e.g. antlr4), and may add restrictions
on the structure of the grammar. In the early stages, many
programming language projects lack a stable, well-defined
grammar in any formal, stand-alone, notation. An ad-hoc
łgrammarž used by the compiler implementation may be the
only grammar around. Thus, while grammar-based compiler
testing has sometimes been extremely successful [13], few
compilers are actually extensively tested that way.
Unfortunately, łno-fussž fuzzing must make use of off-

the-shelf fuzzing tools, originally designed to find security
vulnerabilities in inputs treated largely as byte-streams. No-
fuss fuzzing therefore suffers from two major drawbacks:

1. The methods used by fuzzers to mutate inputs tend to
take code that exercises interesting compiler behavior,
and transform it into code that is rejected by the parser.
This is inefficient, and makes it almost impossible to
find bugs requiring a sequence of subtle modifications.

2. Bugs are often found via very un-human-like inputs.

Combined together, these problems tend to make most
compiler fuzzing performed in practice inefficient in terms
of finding bugs and prone to find less interesting bugs. Ta-
ble 1 summarizes the existing widely-used compiler fuzzing
techniques and their weaknesses.

Given that łno-fussž fuzzing is widely used in large projects
and may be the only option available in practice to small
compiler projects, improving the effectiveness of no-fuss
fuzzing is an obvious way to practically improve compiler
testing. Ideally, such improvements would not require any
additional effort on the part of developers.

This paper proposes one such improvement, based on
changing the way in which general-purpose fuzzers modify
(mutate) inputs. We augment the set of primarily byte-based
changes made by such tools with a large number of modifica-
tions drawn from the domain ofmutation testing, which only
modifies code inways likely to preserve desirable propertiesÐ
like the ability to get through a parser. Figure 1 is one such
input generated by our approach, yielding a syntactically
well-formed program that triggers deeper behavior in the
compiler’s optimization routines.

✞ ☎
contract C {

function fun_x () public {}

function fun_y () public {}

function f() public

{

int h=true?1:3;

}

function () r=true?fun_x:fun_y;

}
✝ ✆

Figure 1. An example of an early crash-inducing Solidity
program found with our approach (the bug was submitted
and fixed). The combination of expressions and function
declarations trigger complex behavior in an optimization
routine that attempts to deduplicate low level code blocks.

We evaluate our technique on four real-world compilers,
and show that it significantly improves the mean number of
distinct compiler bugs detected. We have reported more than
100 previously undiscovered bugs, subsequently fixed, and
received a bug bounty for our efforts. In the longest-running
campaign, that targeting the solc compiler for Solidity code,
we were the first to report a large number of serious bugs,
despite extensive fuzzing performed by the developers, OSS-
Fuzz, and external contributors. Our tool, based on Google’s
release of AFL, is available as open source at https://github.
com/agroce/afl-compiler-fuzzer, and to date has more than
70 stars and multiple forks.

2 Mutation-Testing-Based Fuzzing

2.1 Mutation-Based Fuzzing

One use of the term łmutationž appears in the context of
the łno-fussž mutation-based fuzzing discussed above [16].
A fuzzer such as AFL operates by executing the program
under test (here, the compiler) on inputs (initially those in
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a corpus of example programs), using instrumentation to
determine code coverage for each executed input. The fuzzer
then takes inputs that look interesting (e.g., uniquely cover
some compiler code) and adds them to a queue. The basic
loop repeatedly takes some input from the queue, mutates
it by making some essentially random change (e.g., flipping
a single bit, or removing a random chunk of bytes), then
executes the new, mutated input under instrumentation, and
adds the new input to the queue if it satisfies the fuzzer’s
coverage-based criteria for interesting inputs. The details
of selecting inputs from the queue and determining how to
mutate an input vary widely, and improving the effective-
ness of this basic approach has been a major topic of recent
software testing and security research [4, 14, 16]. However,
the inner fuzzing loop strategy is simple:

1. Select an input from the queue.
2. Mutate that input in order to obtain a new input.
3. Execute the new input, and if it is interesting, add it

to the queue. Then repeat the process from step 1.

Inputs that crash the compiler in step 3 are reported as
bugs. Using such a fuzzer is often extremely easy, requiring
only 1) building the compiler with special instrumentation2

and 2) finding a set of initial programs to use as a corpus.
Our work focuses on improving step 2 of this process, in

a way that is agnostic to how the details of the other aspects
of fuzzing are implemented. In particular, the problem with
most approaches to mutation in the literature, for compiler
fuzzing, is that changes such as byte-level-transformations
almost always take compiling programs that exercise inter-
esting compiler behavior, and transform them into programs
that don’t make it past early stages of parsing. Alternative ap-
proaches to what are called łhavocž-style mutations tend to
involve solving constraints [10] or following taint [8], which
in the case of compilers tends to be ineffective, since the
relationships are too complex to solve/follow. A second com-
mon approach, providing a dictionary of meaningful byte
sequences in a language, is both burdensome on compiler
developers and limited in effectiveness: a dictionary cannot,
for example, help the fuzzer delete sub-units of code such as
statements or blocks.
We propose a novel way to produce a much larger num-

ber of useful, interesting mutations for source code, without
paying an analytical price that makes fuzzing practically in-
feasible for compilers, and without requiring any additional
effort on the part of compiler developers.

2With AFL this is fairly trivial, by using a drop-in compiler replacement, for

C, C++, Rust; there are AFL variants for Go, Python, and other languages,

as well. AFL can also use QEMU to fuzz arbitrary binaries. However, for

compilers, it is usually best if possible to rebuild the compiler, since QEMU-

based execution is much slower, and fuzz throughput is important.

2.2 Mutation Testing

A different use of the term łmutationž appears in the field of
mutation testing. Mutation testing [6, 15, 18] is an approach
to evaluating and improving software tests that works by
introducing small syntactic changes into a program, under
the assumption that if the original program was correct, then
a program with slightly different semantics will be incorrect,
and should be flagged as such by the tests. Mutation testing
is used in software testing research, occasionally in industry
at-scale, and in some critical open-source work [1, 3, 19].
A mutation testing approach is defined by a set of muta-

tion operators. Such operators vary widely in the literature,
though a few, such as deleting a small portion of code (such
as a statement) or replacing arithmetic and relational oper-
ations (e.g., changing + to - or == to <=), are very widely
used. Most mutation testing tools parse the code to be mu-
tated do not work on code that does not parse. However,
recently there has been interest in performing mutation us-
ing purely syntactic operations, defined by a set of regular
expressions [12], implemented in a tool, the Universal Mu-
tator (https://github.com/agroce/universalmutator/), with
research and industry adoption. Rather than taking a pro-
gram, per se, this approach takes any code-like text and
produces variants of the text corresponding to mutations.
The essence of this approach to mutation testing, which can
be applied to łany language,ž is essentially a transformation
from arbitrary bytes to arbitrary bytes that, if the original
bytes are łcode-likež will tend to preserve that property. The
resemblance to the mutations performed by mutation-based
fuzzers is the core insight behind our approach.

2.3 Combining Both Forms of Mutation

The core of our approach is simply to add a new set of mu-
tations to the repertoire of a mutation-based fuzzer. These
mutations are either traditional mutation operators or in-
spired by traditional mutation operators, but with changes
made to satisfy the needs of fuzzing. Unlike most changes
made by mutation-based fuzzers, these mutations are likely
to preserve the property that an input will get through a
parser or trigger interesting optimizations. The tendency to
preserve such properties is natural, since the basis of muta-
tion testing is to take an existing program and produce a set
of new, similar programs. If most mutation operators tended
to produce uninteresting code that doesn’t even compile, mu-
tation testing would not be of much use. Moreover, because
our approach is based on the Universal Mutator tool [12], the
mutation operators used are essentially language-agnostic,
and useful for fuzzing any syntactically łconventionalž pro-
gramming language (under which we include not only C-like
languages, but even LISP-like languages). Staying within the
theme of preserving code structure, we further enable an
augmentation of our approach where we decompose existing
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test programs into constituent fragments that are then used
to synthesize and mutate new inputs at runtime.

2.4 Limitations

Themost important limitation for themutation-testing-based
approach is that if compiler crashes are mostly uninteresting,
fuzzing of this kind will probably not be very useful. This
applies, of course, to all AFL-style fuzzing, not just our ap-
proach. For example, code that crashes a C or C++ compiler,
but that includes extensive undefined behavior may well be
ignored by developers. Csmith [23] devotes a great deal of
effort to avoiding generating such code. On the other hand,
many languages more recent than C and C++ attempt to pro-
vide a more łtotalž language where, while a program may
be considered absurd by a human, fewer (or no) programs
are undefined. For example, smart contract languages such
as those studied in this paper generally aim to make all pro-
grams that compile well-defined, or at least minimize the
problem to more manageable cases such as order of evalua-
tion of sub-expressions. Similarly, Rust code without use of
unsafe should not crash the compiler, and any such crashes
indicate possible bugs in the Rust compiler or type system.

3 Implementation

The heart of the implementation is to implement a set of
mutation-testing operators so that a mutation-based fuzzer
can apply them to inputs. There is a large literature on the
selection of mutation operators for mutation testing, but
this literature focuses on identifying operators that help find
holes in a testing effort. There is no reason to believe that
this is particularly indicative of the operators that will be
most useful in fuzzing, and there is some suggestion that
such approaches do not outperform random selection in any
case [11]. We therefore used a large number of operators that
apply to a wide variety of programming languages, based on
the set of operators provided by the Universal Mutator tool.

3.1 Fast or Smart?

More important than the selection of the best mutation oper-
ators (which will likely vary considerably by target compiler)
is another fundamental decision. Namely, a mutation testing
tool can be highly intelligent, only applying operators in
ways that should produce compiling code, based on a parse
of the program to be mutated; or, like the Universal Mutator,
it can be łdumbž and apply rules without expensive analysis
of the code, trusting a compiler to prune invalid mutants.
Which approach is best for fuzzing is not obvious: on the
one hand, all fuzzing (including generative) relies on exe-
cuting very large numbers of inputs; most łrandomž inputs
will be uninteresting, neither exposing a bug nor novel be-
havior to drive further exploration. Fuzzer throughput is a
critical factor, and a łdumbž mutation strategy can produce
modified inputs much more rapidly than a łsmartž approach

that must parse the input. On the other hand, if a shallower
analysis during mutation production greatly decreases the
probability that the mutated inputs will expose bugs or new
behavior, the result is, effectively, slower fuzzing. If adding a
parsing stage makes mutation generation take twice as long,
but more than doubles the probability the input generated
will be useful, it will be a net gain for in-practice fuzzing
throughput.
Of course, at first glance, it would appear that łsmartž

strategies are not even possible for us: there will often not
be a parser that the tool could use. However, as we discuss
below, recent work on multi-language syntax transforma-
tion [22] enables an approach that can use syntax fragments
to provide a significant degree of intelligent mutation with-
out specialized parsers for a compiler’s input language, at
the cost of additional time required to synthesize inputs.

✞ ☎
case 0: /* Semantic statement deletion */

strncpy(original , "\n", MAX_MUTANT_CHANGE);

strncpy(replacement , "\nif (0==1)\n", MAX_MUTANT_CHANGE

);

break;

case 1:

strncpy(original , "(", MAX_MUTANT_CHANGE);

strncpy(replacement , "(!", MAX_MUTANT_CHANGE);

break;

...

case 53: /* Swap comma delimited things case 4 */

delim_swap(out_buf , temp_len , &original ,

&replacement , pos , ",", ",", ")");

break;

case 54: /* Just delete a line */

delim_replace(out_buf , temp_len , &original ,

&replacement , pos , "\n", "\n", "");

break;

case 55: /* Delete something like "const" case 1 */

delim_replace(out_buf , temp_len , &original ,

&replacement , pos , " ", " ", "");
✝ ✆

Figure 2. Part of the Fast String-Based Approximation

3.1.1 Fast String-Level Approximation of Mutation

Operators. The core implementation of our technique is
a text-based approximation of the regular expression based
approach taken by the Universal Mutator. Rather than call
the mutation tool, which is written in Python and relatively
slow, we hand-crafted, using low-level C string libraries, ap-
proximations of the mutation operators for all languages (the
łuniversalž rules from the universalmutator) and those for łC-
likež languages. Figure 2 shows part of the implementation.
Most operators are implemented by choosing a string to find
and a string to replace it with; the mutator finds a random
occurrence of the original string and replaces it with the
replacement string. Other operators require more involved
string manipulation, e.g., removing a semicolon-delimited
statement, or swapping function arguments. Critically, how-
ever, all operations involve only basic C string operations,
and no more than 4 linear scans of the entire text to be mu-
tated. The vast majority of operations require no more than
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one linear scan in the worst case, and most scans terminate
before scanning a large fragment of the input. When an op-
eration that is chosen cannot be applied (e.g., the string to
be replaced is not present), another operation is attempted,
up to a maximum number of tries.

This approach is, as stated, fast. While slower than many
built-in AFL mutations (obviously searching for strings is
slower than flipping a randomly chosen bit, or incrementing
a byte value), it has a fairly low upper bound on worst-case
runtime, and very good average runtime. The time required
is much closer to AFL’s built in mutations than to techniques
such as solving constraints, even a linear approximation [10],
and is successful much, much, more often than solving con-
straints over compiler inputs, which are among the hardest
conceivable for modern SMT solvers or linear approxima-
tions to handle. Figure 3b shows some sample transforma-
tions of inputs using this approach. Note that some of the
mutations tend to delete code, potentially large amounts of
code. This is critical for enabling the fuzzer engine to com-
pose interesting inputs, in that the larger two inputs are,
the more likely they will have, e.g., namespace conflicts that
prevent merging them.

✞ ☎
...

int bar(int x, int y, int z) {

if (x < y)

return foo(x, y, z);

while (x < y) {

x++;

z = z * 2;

}

}
✝ ✆

(a) Original code
✞ ☎
...

if (x == y)

return foo(x, y, z);
✝ ✆

✞ ☎
...

if (x < y)

return foo(x,z, y);
✝ ✆

✞ ☎
...

while (x < y) {

x++;

break;
✝ ✆

✞ ☎
...

while (x < y) {

x++;

}
✝ ✆

(b) Four mutations

Figure 3. Mutations of Simple Code

3.1.2 Smart Syntax-Aware Mutation. Our core ap-
proach uses fast mutation written in C that we added directly
to AFL’s fuzzing hot loop. Our early success with this method
prompted us to augment AFL further with even smarter mu-
tations to find more bugs more quickly. The intuition behind
these smarter mutations is to manipulate (typically larger)
code fragments that are likely to be syntactically valid and
yet trigger deeper buggy properties (past compiler parsing).
Unlike transformations in the core approach that approxi-
mate syntactically valid transformations on strings or lines,

syntax-aware transformations seek to accurately modify syn-
tax in well-parenthesized expressions or entire multi-line
code blocks (e.g., function or for-loop bodies). In general,
manipulating a program’s parse tree like this imposes ex-
actly the kind of burden and complexity that small compiler
projects can’t support (defining a precise grammar, keep-
ing tooling up to date as the grammar evolves). Even with
multi-year investment in tools, effort necessarily goes into
deeper focus on language-specific properties and semantics
that may not generalize to other compilers.

Our approach combats this cost by using the Comby (https:
//comby.dev) tool [22] to do syntax-aware code matching
and transformation. Comby works by coarsely parsing a pro-
gram, taking care to correctly interpret nested syntax of code
(parentheses and braces), and avoids conflating this syntax
with strings and comments, as regular expressions (and our
string approach) tends to do. Comby is not a fully-fledged
parser for any language, but it is language-aware, in that it
recognizes a small set of language-specific constructs (e.g.,
syntax to identify quoted strings or comments) to accurately
parse code blocks. Comby supports over 50 languages, and
uses a generic parser for unsupported languages like cus-
tom DSLs. Comby is likely to perform łwell-enoughž for any
language anyone is likely to want to input to a compiler.
Comby does not have C bindings, so we expose its trans-

formation abilities as a server to our AFL fuzzer. We imple-
mented a minimal HTTP client in the fuzzer’s hot loop to
request inputs. We use the Comby server in a mutation mode
where it generates inputs from a decomposition of templates
and concrete fragments obtained from the initial corpus of
programs. We first pre-process all programs in the initial
corpus to obtain this decomposition. The following figure
illustrates the decomposition of an example Zig program.

✞ ☎
function f(uint256 arg) public {

f(notfound);

}
✝ ✆

decompose

templates fragments

✞ ☎
function f(uint256 arg) public {$1}
✝ ✆

✞ ☎
f(notfound);
✝ ✆

✞ ☎
function f($1) public {

f(notfound);

}
✝ ✆

✞ ☎
uint256 arg
✝ ✆

✞ ☎
function f(uint256 arg) public {

f($1);

}
✝ ✆

✞ ☎
notfound
✝ ✆

A łdecomposež operation yields three templates in the
left column ($1 are placeholders for future substitution) and
extracts three corresponding concrete fragments, shown
in the right column. The łdecomposež operation is done
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with Comby, which extracts concrete values inside parenthe-
ses, braces, and square brackets (patterns ($expr), {$expr},
[$expr] respectively). Note that our approach can be cus-
tomized to extract any kind of syntactically significant pat-
tern and correspondingly decompose the input program; we
simply chose syntax that commonly delineates code blocks
and expressions (i.e., parentheses and braces) since these
exhibit interesting properties that preserve structure (multi-
line statements, well-formed expressions) that go beyond
what string-level mutations identify.

We perform this decomposition for all programs in the
corpus to obtain templates and concrete fragments, which
we then deduplicate. Once fuzzing, the server generates an
input program by selecting, uniformly at random, a template
and up to 10 program fragments and then substitutes all
locations in the template with program fragments. In essence,
the server splices new inputs that are likely to compose
syntactically well-formed programs.
In addition to generating inputs, the server can also ap-

ply syntax-aware Comby transformation rules, analogous to
string-level mutation operators. In practice, our server ar-
chitecture adds considerable overhead (we discuss this in
Section 4) and is thus slow in applying on-the-fly muta-
tions, and in that sense less appealing than the string-level
mutation. Our results in Section 4 do show, however, that
generative syntax-aware input manipulation demonstrates
compelling utility despite incurring significant slowdown.

3.1.3 P(havoc) + P(text) + P(splice) = 1. Our full imple-
mentation is based on Google’s released code for the AFL
fuzzer (https://github.com/google/AFL), and available as an
open source tool at https://github.com/agroce/afl-compiler-

fuzzer. The main change to AFL is the addition of code such
as that shown in Figure 2. The new version (the łAFL com-
piler fuzzerž) can also call out to comby to generate mutants.
Two new command line parameters to AFL control the use
of these features: -1 determines the probability to gener-
ate a mutant using the fast C string implementation (with
a default value of 75%), and -2 determines the probability
to call comby to generate a mutant (with a default value of
0%). If these two parameters add up to less than 100%, the
remainder of the time the usual stock AFL havoc operators
are applied; by default, this happens 25% of the time.

4 Evaluation

We ran a a controlled experiment to evaluate the effective-
ness of two new strategies based on our approaches in Sec-
tions 3.1.1 and 3.1.2 to improve łno-fussž compiler fuzzing.
Our main goal is to answer to what extent these low-effort
strategies demonstrate significant benefit in the domain of
compiler fuzzing, and how they influence fuzzer behavior
and performance.
Section 4.1 describes our experimental setup. Section 4.2

summarizes our results comparing our strategies against

stock AFL and AFL++ fuzzers on four actively-developed com-
pilers.

4.1 Experimental Setup

We evaluate our approach on four compilers, for the lan-
guages Solidity, Move, Fe and Zig3. Solidity is a high-profile
language for writing smart contracts on the Ethereum
blockchain, and very widely used. Fe is an experimental
statically-typed language for Ethereum smart contracts.
Move is Facebook’s smart contract language, developed for
the industrial blockchain solution Diem. Zig is an up-and-
coming systems language operating in the same space as C,
Rust, Nim, and other statically-typed languages with manual
memory management. Move and Fe are implemented in Rust,
Solidity is implemented in C++, and Zig is implemented in a
mix of C++ and Zig itself.
Fuzzer configurations. We perform a comparative eval-
uation of four fuzzing configurations. The first configura-
tion is stock AFL in "quick & dirty" mode, our baseline of
comparison across all projects. Because our approach is in-
tegrated directly into stock AFL, we’re comparing to the
baseline implementation (a desirable practice for sound com-
parative fuzzer evaluations [4]). Although AFL continues to
be a de facto industry standard for łno-fussž fuzzing, numer-
ous community-driven improvements have been made to
the AFL++ project, which can often outperform stock AFL.
Therefore, for extra measure, we seek to compare our re-
sults to a second fuzzing configuration using the existing
AFL++ tool. We successfully configured AFL++ for three of
our four compilers (excluding Zig), and report our results in
Section 4.2. Note, however, that since our technique is not
implemented in AFL++, the comparison is incongruent, and
potentially handicapped by orthogonal AFL++ improvements
that may stand to boost our approach.4

The third and fourth configurations we compare are both
strategies based on our new approaches in Section 3. The
third configuration applies purely string-level mutations as
described in Section 3.1.1 with 75% probability. The fourth
configuration augments the pure string-level mutation strat-
egy with syntax-aware mutation (Section 3.1.2), where our
AFL has 33% probability to request that the server generate a
new input (using template splicing), 33% probability to per-
form string-level mutation on the input, and 34% probability
to run AFL as usual.
We chose the ratios in our strategies with a best-effort

method by running just a single 24 hour trial on a single
project (Solidity) for various configurations (e.g., 90% string-
level mutation, 75% pure syntax-aware mutation, and 25%-
50% ratio). We found the 75% and 33%-33% strategies to be
the best candidates to evaluate deeply over many hours of

3See soliditylang.org, move-book.com, fe-lang.org and ziglang.org.
4Indeed, recent improvements, not available during our first implementation,

compel us to implement our approach in AFL++.
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fuzzing. We note the especially appealing avenue of future
work for devising optimal selections of these parameters
(perhaps based on language attributes, or input corpora).
Fuzzing trials and duration.We ran 14 trials per fuzzing
configuration for each compiler to control for variability
and randomness. We ran four configurations for the Solid-
ity, Move, and Fe compilers (where AFL++ is included), and
three configurations for Zig (AFL++ excluded) for a total
of 210 trials. A single trial comprises 24 hours of fuzzing
on a single core, starting from the initial input corpus. We
chose 24 hour trials because our intent is to answer whether
we can observe (relatively immediate) effects of strategies
that aim to surface deeper bugs. Our choice aligns with ex-
isting work that shows finding new vulnerabilities earlier
during a fuzzing campaign is proportionally cheaper (more
likely) than long-running campaigns [5]. If our strategies
exhibit any significant competitive advantage, we expect it
to manifest early in a controlled setting (within 24 hours).
In aggregate, our experiments represent 210 days of fuzzing
to demonstrate fuzzer performance for quickly surfacing
bugs with our łno-fussž enhancements on these compilers.
Each project was fuzzed at an early commit before we had
reported bugs to the upstream repository.
Input corpora and preprocessing All fuzzer trials ran
over inputs derived from the project’s own source tree.
A summary is shown in Table 2. For example, the So-
lidity base corpus is 2,447 Files ending in .sol in the
test/libsolidity subdirectory. For fuzzer trials using
syntax-aware input generation, we decompose the base cor-
pus into unique templates (Templ.) and concrete program
fragments (Frag.). Because this process can yield very large
(and therefore slow) inputs during generation, we remove
all templates and fragments larger than 4KB. For Solidity,
the base corpus decomposes into 9,308 templates and 7,651
concrete program fragments. The other corpora are:

Table 2. Summary of input corpora for four compilers.

Proj Source Files Templ. Frag.

Solidity .sol test files 2,447 9,308 7,651
Move all .move 1,103 9,650 10,916
Fe all .fe 127 253 153
Zig compile-error tests 586 1,762 1,562

CreatingTempl. and Frag. input components incurs some
preprocessing per project. This time ranges from less than
2 minutes (for Zig) to 2 hours (for Move). Our setup does
not attempt to adjust the 24 hour fuzzing time to compen-
sate for this preprocessing, because in a real world setting
this (relatively small) preprocessing cost is greatly amor-
tized over the time of a real fuzzing campaign that typically
lasts much longer than 24 hours. Even in our experimental
setup, this cost, which would account for for less than 5%

of the fuzzing time on average for a single trial, is amor-
tized over multiple 24 hour trials, and thus difficult to adjust
for fairly. A benefit of this up-front per-project process is
that our fuzzer trials using the 33% syntax-aware mutation
strategy start fuzzing with an empty, łzerož program and
rely entirely on the probability to potentially generate new
combinations inputs from the Templ. and Frag. at runtime.
This is architecturally distinct from our other AFL fuzzing
configurations (both the baseline and pure string-level mu-
tations) that run preprocessing bundled with AFL, filtering
initial inputs (Files) based on code coverage (which may
take seconds to minutes, or even longer, depending on cor-
pus size) before fuzzing begins. In brief, preprocessing times
in our configurations are not directly comparable, but it is
reasonable to assume that the costs for all configurations
converge to zero in realistic, long-running campaigns.
Hardware. Each trial ran on Ubuntu 18.04, on a single core
of Intel Xeon Gold 6240 2.6 GHz CPUs, with 30GB free RAM.

4.2 Results

Our main result is that our enhancements with string-level
and syntax-aware mutation consistently uncover unique
bugs missed by AFL and AFL++, often performing better and
yielding a higher overall discovery of unique bugs. Which
strategy is favorable varies per project, and in some cases,
one of our strategies underperforms due to the łfast or
smart?ž tradeoff. We first give an overview of results fol-
lowed by notable thematic observations.
Overview. Table 3 summarizes the fuzzing runs for each
project and configuration pair. A row in the table repre-
sents the average number over 14 trials for a project in
that configuration. AFL-baseline is stock AFL’s results. For
projects Solidity, Move, and Fe, we include AFL++’s results.
The AFL++ version varies based on the version compatible
with a project’s commit at which we started fuzzing. All
Unique Bugs for Solidity, Move, and Fe are determined by
classifying crashing inputs by bug-fixing commits, except
for at most 2 unique, yet unfixed Solidity bugs manually
inspected by an expert author. We assume a single commit
fixes a single bug, an assumption that is consistent with
prior work [9, 21], general software development practice,
and our manual inspection, and thus unique bugs is a pre-
cise ground truth of truly unique bugs. Unique Bugs for
Zig are largely unfixed at the time of writing, and are instead
comprehensively classified by an expert author manually
inspecting every crashing input and its error message. Not
reported in the table, a proportion of (potentially duplicative)
crashing inputs for Move were found by all configurations
that remain untriaged, because we could not find a bug-fixing
commit, or because no fix exists yet.
In general, either our text-mutation or

splice-mutation, or both, does better than existing
tools. One of our strongest results shows that the hybrid
splice-mutation strategy discovers roughly 8 more bugs
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Table 3.Main results of controlled experiment.We fuzzed each project for 14 trials (24 hours per trial) in different configurations:
baseline-AFL, AFL++, text-mutation, and splice-mutation. baseline-AFL is stock AFL; AFL++ is a community-driven
effort that enhances stock AFL. text-mutation applies fast string-based mutation operators (textual find-replace patterns) with
a probability of 75% on every fuzzed input. Stock AFL manipulates the input the remaining 25% of the time. splice-mutation is
a hybrid approach that (1) applies mutation operators as in text-mutationwith probability 33%; (2) synthesizes a syntax-aware
input with template (splice) with probability 33%; and (3) uses stock AFL the remaining 34% of the time. †The instrumentation
for a more recent version 3.15a of AFL++ differs from our baseline version.

Project Configuration Unique Bugs Avg Execs Avg Paths Avg Bitmap Compiles

Avg Min Max (Millions) (K) Cvg (%) (K) (%)

Solidity

AFL-baseline 3.79 1 6 35.6 12.1 54.32 2.94 20.2

AFL++ 3.15a 5.21 1 8 57.9 8.8 20.59† 3.76 33.4
text-mutation 7.57 7 9 30.3 14.2 55.65 5.48 32.7
splice-mutation 11.79 7 14 16.0 16.8 57.32 5.24 31.1

Move

AFL-baseline 7.14 6 8 56.3 4.9 63.21 1.77 29.5
AFL++ 2.64c 6.36 5 7 47.7 4.5 62.43 1.63 28.7
text-mutation 8.43 7 9 61.5 6.0 63.28 2.38 33.2
splice-mutation 6.00 5 8 7.2 5.0 63.16 1.21 23.8

Fe

AFL-baseline 6.57 5 7 24.3 3.5 27.93 0.55 14.8
AFL++ 2.64c 6.50 5 8 22.8 3.4 27.76 0.48 13.2
text-mutation 6.50 5 7 17.9 3.3 27.84 0.47 13.5
splice-mutation 6.93 6 9 6.0 2.6 27.84 0.42 15.1

Zig
AFL-baseline 2.57 1 5 2.2 3.4 40.99 0.12 3.2
text-mutation 2.36 0 4 2.1 3.3 40.96 0.13 3.3
splice-mutation 7.64 0 13 1.3 3.9 41.84 0.27 7.1

than AFL (approximately 3× as many) on Solidity on average.
For Solidity, the simple approach of text-mutation also
performs well, discovering roughly 4 more bugs than AFL.
Especially interesting, the predictability of AFL and AFL++

bug discovery on Solidity varies highly, sometimes just
finding a single unique bug (Min = 1) in a trial. The root
cause is that both these fuzzers get łstuckž exploring a parser
bug, (see https://github.com/ethereum/solidity/commit/

0b9c842656c644c209280e5f570f94dee77a1606) thinking
that every new crash is interesting. Our approaches didn’t
fall prey to this pathological behavior, and always found
at least 7 unique bugs, which is likely accounted for by
variability in input mutation. Another strong result is the
discovery of more than 2× as many unique bugs found via
splice-mutation in Zig compared to other approaches.
Somewhat similar to Solidity, splice-mutation on Zig
overcomes a pathological behavior where usual AFL fuzzing
finds extremely large inputs łinterestingž, but they do
not actually crash the compiler. This behavior affects all
configurations (accounting for 0 unique bugs for some
trials with text-mutation and splice-mutation) but is
effectively suppressed on average by variation created with
splice-mutation. We expand more on the qualitative
appeal of our approaches below. On the whole, our weakest
result reveals two related insights:

• One of our strategies may not perform better than
stock approaches. This is the case for Fe, where
text-mutation performs only on par with AFL. Here,
splice-mutation is the only strategy to perform
slightly better than other tools.

• One of our strategies may underperform compared to
stock approaches. This is the case for Move, where
splice-mutation performs worse than the baseline,
whereas text-mutation performs best.

These observations highlight the potential tradeoffs of
łfast or smart?ž mutation. In the former case, simple mu-
tations are not enough to enrich the search space and
discover more bugs, but the smarter hybrid variety does
perform marginally better, despite being more than 3
times slower than all other approaches by average num-
ber of executions (Avg. Execs). Conversely, the quick
text-mutation approach does best in the Move project,
where the splice-mutation hybrid variety is just too slow
(almost 8× slower) to compensate for its łsmartž benefit.

A look at quick and exclusive findings. With excep-
tion to Fe, the improvement of our best approach for each
project is statistically significant (by Wilcoxon rank-sum
test, p < 0.05). But rather than a statistical measure, which
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treats every unique bug as equal, perhaps the most com-
pelling case for choosing łfast or smartž mutation enhance-
ments lies in the qualitative properties of our approaches.
Specifically, we found that our approaches tend to discover
bugs that are exclusive to a particular strategy (requiring
a rather unique alteration of inputs to find), or to identify
unique, not-so-shallow bugs quickly. In the former case, for
instance, looking into qualitative results of Fe revealed that
the slightly better bug discovery of splice-mutation could
be attributed to a consistent discovery of a Rust borrow er-
ror (triggered in all 14 trials) that was never discovered by
any other tool (see https://github.com/ethereum/fe/commit/

3b977b3078eb163ba521f57d8509e16efdb9dbf4). In the latter
case, we see that the hybrid approach on Solidity consistently
discovers a particular contract bug that is never discovered
by the text-mutation strategy. Yet notably, during the pro-
cess of running long term campaigns (Section 5), this same
bug was eventually discovered by the pure text-mutation
approach after some period longer than 24 hours. As another
strong qualitative measure, our splice-mutation approach
exclusively found a majority of 14 unique bugs out of a to-
tal 25 unique bugs across all approaches and trials. In these
cases, evidence points to hybrid approaches leading to rapid
and exclusive discoveries of unique bugs arising from the
combination of simple and complex mutations.

Additionally, while finding only 1 additional bug or 1.5 ad-
ditional bugs in some cases may, at first, seem like a modest
gain, it is important to recall that in fuzzing, finding addi-
tional bugs is extremely hard. Böhme and Falk [5] show that
ł[W]ith twice the machines, we can find all known bugs in
half the time. Yet, finding linearlymore bugs in the same time
requires exponentially more machinesž [5]. That is, finding
even one more bug may be very costly. Moreover, as our real-
world results in Section 5 show, over time the ability to detect
additional bugs adds up to a substantial number of new bugs
detected, even for a compiler being aggressively fuzzed by
numerous other techniques, using more computing power.
Properties of mutated inputs. We also examined the

distinct number of compiling inputs in the final queue (the
set of all interesting, non-crashing, inputs AFL produced).
We investigated this because the number of paths found (cf.
Avg Paths, Table 3) is somewhat uninformative for compil-
ers, wherein general paths that expose peculiar parse errors
are less interesting for testing the compiler’s internals than
paths involving different behavior in the stages of compi-
lation after parsing. The most serious compiler bugs, with
potential to produce wrong code, break invariants in the later
stages of compilation, especially during complex optimiza-
tions. We therefore looked at the number and percentage
of interesting inputs (interesting because of new coverage
of some kind) that actually compiled (Compiles in Table 3)
as a rough approximation of how much behavior triggering
deeper stages of compilation the fuzzing strategies found.
On average, our approaches tend to do better either in the

Table 4. Fuzzing campaign results for real world bugs. ✓ is
fixed bugs. � is confirmed but unfixed bugs. ś is dupli-
cate bug reports. Total is the number of true, unique bugs
reported and acknowledged.

Project Length Total ✓ � ś

Solidity 20mo 30d 71 69 2 9
Move 20d 14 12 2 0
Fe 9mo 6d 49 43 6 6
Zig 7d 2 1 1 0

All 136 125 11 15

absolute number of compiling bugs (K) or percentage of
compiling bugs (%) when the values of other approaches are
steady. For example, our approaches find thousands more
such inputs in Solidity, while the percentage of compiling
bugs of the total set varies little compared to AFL++. On the
other hand, looking at the best-performing bug finder on
Fe, splice-mutation generates a similar number of com-
pilable programs to other tools, but with a slightly higher
ratio. It is also interesting to take this number into consid-
eration with the number of executions, particularly for the
splice-mutation strategy. The relationship suggests that
the łfast or smartž tradeoff surfaces in terms of compilable
programs during fuzzing, i.e., chosen strategies may boost
the absolute number or percentage of compiling programs
and yield more bugs or higher quality bugs.

5 Non-experimental Fuzzing Campaigns

In addition to our controlled experiments fuzzing a version
of each compiler before we reported any bugs, we ran real
fuzzing campaigns, updating the compiler versions as new
commits were made, and adjusting our corpus to include new
tests, of various durations, on each compiler. Two of these
campaigns are ongoing (for Solidity and Fe) and have been
well-supported and well-received by the compiler teams.

Perhaps the most important evidence of the real world
effectiveness is that we fuzzed the Solidity compiler for
over a year with our approach, and in that time re-
ported a large number of otherwise unreported bugs
that have been fixed; we submitted our most recent bug
(as of this writing) on 11/2/21. Prior to and during our
campaign, Solidity had been fuzzed heavily using AFL,
using a dictionary, by the developers and by external
contributors, and has been on OSS-Fuzz since the first
quarter of 2019 (https://blog.soliditylang.org/2021/02/10/
an-introduction-to-soliditys-fuzz-testing-approach/). While
no grammar-based approach has been applied to So-
lidity as a whole, the Yul IL has been fuzzed using
Google’s libprotobuf-mutator library (https://github.com/

google/libprotobuf-mutator). Despite competing with these
efforts, and never devoting more resources to the fuzzing
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than 3-4 docker container hosted instances of our fuzzing
tool, running on a high-end laptop, we believe that our cam-
paign was the largest single source of fuzzing-discovered
bugs in the compiler during our campaign. The campaign
was awarded a security bounty of $1,000 USD in Ethereum
for discovery of a bug with potential security implications
(https://github.com/ethereum/solidity/issues/8368) (and, it
was noted, for the general effectiveness of the fuzzing), and
the Solidity team encouraged and aided our efforts, once
it was clear that the approach was very useful in exposing
subtle bugs not otherwise discovered. Because Solidity bug
triage is very well supported, we can add an additional mea-
sure of the effectiveness of our approach in finding bugs that
involve łrealisticž code. After October of 2020, the Solidity
team began adding a łshould compile without errorž label
to submitted bugs that involved legal code the compiler re-
jects. Of the 38 bugs we submitted since that date, 15 (nearly
40%) have involved correct but rejected (via a crash) code.
Such bugs are inherently harder to find and usually more
interesting than those where a compiler crashes rather than
reporting an error when given invalid code.
A second long-term fuzzing effort was directed at the Fe

language, a Rust/Python-like alternative to Solidity for writ-
ing Ethereum contracts. Fe is an experimental language, and
the project has far fewer resources than Solidity to devote
to testing. Fe developers received this effort warmly, and
quickly made some changes to the Fe compiler to make AFL
fuzzing more effective (by crashing when Fe caused the Yul
backend to fail). Using our approach, we were able to pro-
vide the project with high-quality fuzzing very early in the
lifetime of an experimental compiler project. We speculate
that better łno-fussž fuzzing could expose language corner
cases early in the implementation of a compiler, avoiding
having to make costly changes later, when more code de-
pends on erroneous implementation assumptions or (even
more disastrously) poor language design choices. Some of
our bug reports triggered lengthy discussions in the issue of
a language or compiler design foundational decision. Due to
the small size of the Fe team, 8 of our reported bugs have not
been analyzed yet and confirmed as valid. The most recent
of these was submitted (as of this writing) on 9/25/21. The
Fe effort was sufficiently influential that it was invoked in
discussions of the long-term strategies for building language-
customized fuzzing for Fe (e.g., https://github.com/ethereum/

fe/pull/578#pullrequestreview-790913799).
At the time we fuzzed Facebook’s Move compiler, the

project had been fuzzing various components, but less so the
compiler itself. The majority of bugs reported were quickly
confirmed and fixed, and developers expressed interest in in-
corporating our approach into CI (https://github.com/diem/

diem/issues/7384#issuecomment-769443728).

We ran a shorter, less-intensive campaign on the Zig com-
piler. The Zig compiler continues to be under heavy develop-
ment, and a small team of maintainers are prioritizing efforts
to rewrite the components where we found bugs.
We additionally reported 5 (mostly parser crash)

bugs in the SPIN model checker, which were all
fixed (e.g., https://github.com/nimble-code/Spin/commit/

7f364a1b174f08e9ede49e342f411e209af26a84).

6 Related Work

Research on compiler testing, as noted in the introduction,
has been an important subfield overlapping compiler devel-
opment and design and software engineering and testing,
for many years. A recent survey covers this work well [7].

To our knowledge, very little work has appeared targeting
the problem this paper addresses: improving the ability of
general-purpose fuzzers to find (interesting) bugs in compil-
ers. The recent work of Salls et al. [20], however, specifically
aims to improve general-purpose fuzzer performance on
compilers and interpreters. Their approach, which they call
łtoken-level fuzzingž essentially produces a hybrid level in be-
tween grammar-based generation and łbyte-levelž mutation-
based fuzzing. The core of their idea is to replace the largely
byte-level mutations of AFL etc. with mutations at the token
level of a grammar. They summarize the idea as łvalid tokens
should be replaced with valid tokensž [20]. In a sense, this
extends the idea of using a dictionary, but with important
changes: token-level fuzzing only applies token-level, not
byte-level mutations, but also adds the composition of multi-
ple token additions and substitutions to the set of single-step
mutations. Token-level fuzzing is an attractive and useful
idea, somewhat orthogonal to our approach. However, un-
like our approach, token-level fuzzing does not apply AFL’s
havoc operations, so some bugs are simply not possible to
find using token-level fuzzing (e.g., ones involving inject-
ing unprintable characters in strings, including our Solidity
bug earning a security bounty). In this sense, token-level
fuzzing has some of the limitations of grammar-based gener-
ation. Token-level fuzzing also provides little help to a fuzzer
in deleting large chunks of code, since this often would re-
quire a very large number of token operations, though the
approach does include a way to copy statements from one
input to another. Finally, token-level fuzzing requires using
a lexer to find all tokens in input seeds, and if tokens not in
those seeds would be useful, developers must provide any
additional tokens. This requires modifying the fuzzing work-
flow to add token pre-processing, and is no longer strictly
no-fuss, though in practice the change is fairly small (also
true of our approach when comby pre-processes a corpus).

7 Conclusions

Using automated methods to find bugs is an important part
of modern compiler development. For a variety of reasons,
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the use of off-the-shelf fuzzers, especially AFL, is the most
widely used such approach. Mutation-based fuzzers, how-
ever, were originally used to test binary formats, and their
heritage limits their effectiveness for fuzzing compilers. Most
solutions to this problem either place significant burden on
compiler developers, or are ineffective, or both. We show
that using ideas from mutation testing it is possible to sig-
nificantly improve AFL-based fuzzing of compilers without
forcing developers to provide grammars or a dictionary. One
of our two configurations performed best for all compilers
we investigated, in experiments, sometimes dramatically so
(finding more than twice as many bugs on average as the
best version of un-augmented AFL). Using our approach we
reported more than 100 previously unknown bugs, that have
been fixed as a result, in important compiler projects.
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