AMC: An Adaptive Model Checker

Alex Groce!, Doron Peled?, and Mihalis Yannakakis?

! Computer Science Department, Carnegie Mellon University
2 Department of Elec. and Comp. Eng., University of Texas at Austin
3 Avaya Laboratories

Abstract. The AMC (for adaptive model checking) system allows one
to perform model checking directly on a system, even when its internal
structure is unknown or invisible. It also allows one to perform model
checking using an inaccurate model, incrementally improving the model
each time that a false negative (i.e., not an actual) counterexample is
found.

1 Introduction

Inconsistencies are often present between a system and a corresponding finite
state model that is used for the verification of the system. Such inconsistencies
can be the result of modeling (or implementation) errors or changes made to
the system after the model was finalized. Our tool, AMC, attempts to perform
automatic verification of full LTL properties despite such discrepancies. Previous
work proposed the idea of black bozx checking (BBC) [6], in which the verifica-
tion is performed directly on the system, without a model being presented in
advance. Moreover, in BBC we may not have access to the internal structure of
the system and may not be able to record the different states while performing
the verification; we are restricted to performing interactions with the system,
from a given predefined vocabulary (which must include a reliable reset action
that returns the system to its initial state from any other state). We have also ex-
tended this framework to adaptive model checking (AMC) [5], where rather than
beginning from scratch, we may use finite state learning algorithms to improve
the accuracy of a possibly faulty model.

AMC takes as input a (possibly erroneous) model of a system and an LTL
property or specification automaton. We currently handle, in addition to the
format used by AMC itself, input of models or specification automata produced
by the Concurrency Workbench [3]. AMC must also be equipped with an inter-
face to the actual system. AMC alternates between model checking runs on the
current model, and incremental learning for improving the model (see Figure 1).
The usual output of model checking is either a counterexample for the given
property or a statement that no error was found. In our system, we may also use
the model and a false negative counterexample generated during verification to
improve the model used for verification. The learning algorithm of Angluin [1]
and the conformance testing of Vasilevskii and Chow [2,7] (VC) are used in order
to compare the given model to the actual system and improve it if a discrepancy
occurs.

The AMC system fills the gap between verifying a model of the system (as
is done usually in model checking), and the direct verification of finite state



systems [4,6]. The user can either start with an empty model, in which case
the system will attempt to learn the model while performing the verification, or
enter a model that may be an approximation of the actual system.

Compare system : Compare error

_with model | trace with system
Run [out ls.e
of time ptive
Trace
Report
P conforms
Error
found

Fig. 1. The adaptive model checking strategy

2 The Principle of AMC

Angluin’s Learning Algorithm. Angluin’s learning algorithm [1] plays an
important role in our adaptive model checking approach. The learning algorithm
performs experiments on a finite state system & and produces a minimized finite
automaton representing it.

The basic data structure of Angluin’s algorithm consists of two finite sets of
finite strings V' and W over the alphabet X', and a table f. The set V is prefix
closed (and contains thus in particular the empty string £). The rows of the table
f are the strings in V U V.Y, while the columns are the strings in W. The set
W must also contain the empty string. Let f(v,w) = 1 when the sequence of
transitions vw is a successful execution of S, and 0 otherwise. The entry f(v,w)
can be computed by performing the experiment vw after a Reset.

We call the sequences in V' the access sequences, as they are used to access
the different states of the automaton we are learning from its initial state. The
sequences in W are called the separating sequences, as their goal is to separate
between different states of the constructed automaton. Namely, if v,v’ € V lead
from the initial state into different states, than we will find some w € W such
that S allows either vw or v'w as a successful experiment, but not both.



We define an equivalence relation = mod(W) over strings in X* as follows:
vy = v2 mod(W) when the two rows, of v; and v in the table f, are the same.
Denote by [v] the equivalence class that includes v. A table f is closed if for each
va € V.X such that f(v,e) # 0 there is some v’ € V such that va = v' mod(W).
A table is consistent if for each vi, v € V such that vy = vy mod(W), either
f(vi,€) = f(va,€) = 0, or for each a € ¥, we have that via = voa mod(W).
Notice that if the table is not consistent, then there are v;,v2 € V, a € X and
w € W, such that vy = ve mod(W), and exactly one of v;aw and veaw is an
execution of S. This means that f(via,w) # f(vea,w). In this case we can add
aw to W in order to separate v; from vs.

Given a closed and consistent table f over the sets V and W, we construct a
proposed automaton M = (S, s, X, d) as follows: The set of states S is {[v]|v €
V, f(v,e) # 0}. The initial state sg is [¢]. The transition relation § is defined
as follows: for v € V,a € X, the transition from [v] on input a is enabled iff
f(v,a) =1 and in this case §([v], a) = [va].

The facts that the table f is closed and consistent guarantee that the transi-
tion relation is well defined. In particular, the transition relation is independent
of which state v of the equivalence class [v] we choose; if v,v" are two equivalent
states in V, then for all a € ¥ we have that [va] coincides with [v'a] (by consis-
tency) and is equal to [u] for some u € V' (by closure). There are two basic steps
used in the learning algorithms for extending the table f:

add_rows(v) : Add v to V. Update the table by adding a row va for each a € X
(if not already present), and by setting f(va,w) for each w € W according
to the result of the experiment Reset vaw.

add_column(w) : Add w to W. Update the table f by adding the column w, i.e.,
set f(v,w) for each v € VU V.Y, according the the experiment Reset v w.

The Angluin algorithm is executed in phases. After each phase, a new pro-
posed automaton M is generated. The proposed automaton M may not agree
with the system S. We need to compare M and S (we present later a short de-
scription of the VC black box testing algorithm for performing the comparison).
If the comparison succeeds, the learning algorithm terminates. If it does not, we
obtain a run ¢ on which M and S disagree, and add all its prefixes to the set
of rows V. We then execute a new phase of the learning algorithm, where more
experiments due to the prefixes of o and the requirement to obtain a closed and
consistent table are called for.

The subroutine in the Angluin learning algorithm is an incremental step of
learning. Each call to this subroutine starts with either an empty table f, or
with a table that was prepared in the previous step, and a sequence ¢ that
distinguishes the behavior of the proposed automaton (as constructed from the
table f) and the actual system. The subroutine ends when the table f is closed
and consistent, hence a proposed automaton can be constructed from it.

Black Box Testing. Comparing a model M = (S, s, X, d) with a finite state
system S can be performed using the Vasilevskii-Chow [7,2] algorithm. As a
preparatory step, we require the following:

— A spanning tree G : S — 2% for M, and its corresponding runs 7.



— A separation function ds. That is, for every pair of distinct states s,s’ € S,
we have that ds(s) N ds(s") contains at least one sequence that is enabled
from exactly one of s or s'. Furthermore, for each s € S, |ds(s)| < n, and for
each o € ds(s), |o| < n.

Let X< be all the strings over X with length smaller or equal to k. Further, let
m be the number of states of the automaton M. We do the experiments with
respect to a conjectured maximal size n of S. That is, our comparison is correct
as long as representing S faithfully (using a finite automaton) does not need to
have more than n states. The black box testing algorithm prescribes experiments
of the form Reset o p, performed on §, as follows:

— The sequence o is taken from T.X<n—m+1,
— Run ¢ from the initial state s of M. If ¢ is enabled from sg, let s be the

state of M that is reached after running o. Then p is taken from the set
ds(s).

Adaptive Model Checking. The BBC algorithm involves applying Angluin’s
algorithm until a candidate model is found. Then this model is used for model
checking against the given LTL specification. If a counterexample is found, it is
compared against the actual system S. If this is found to be an actual execution
of S, an error is reported. Otherwise, Angluin’s algorithm is executed again,
starting with the counterexample as a first experiment (since the counterexample
separates the behavior of the candidate model and the actual system). If no
counterexample is found, we use the VC algorithm to compare the model and
the system and upon finding a discrepancy use it as a new experiment in a new
iteration of Angluin’s algorithm. This iterative process terminates when a true
counterexample is found, or when the VC algorithm finds no difference between
the model and the actual system.

Since the complexity of the VC algorithm is prohibitive when dealing with
large systems, we try to eliminate its use as much as possible. The AMC strategy
starts with an estimated model and, provided that a false negative counterex-
ample is found, attempts to refine it. The Angluin algorithm is started, but not
from scratch; we generate a separation function for the given model M and use
the union of its sequences as the initial value for the separating sequences in
W. We also generate a spanning tree for M, and use its sequences as the initial
value of the access sequences V. In this fashion, if the model is not changed (as
shown in [5], we can obtain it back without calling the VC algorithm. We have
performed experiments in which this strategy was capable of changing the model
in such a way that actual errors could be found [5].

3 The AMC System

The AMC system is written in Standard ML of New Jersey (SML). It includes
around 5000 lines of code. It allows three different modes of interfacing with the
actual system:

1. Each process of the system is an independent Unix process, written in C,
and the AMC system is another process that interacts with all the other



processes. Inspired by the Verisoft system [4], we observe the interprocess
communication operations. We replace each communication operation (and
any other operation that can affect the checked property, such as a nonde-
terministic choice or a timeout) with a macro expansion that interacts with
the AMC verifier using a shared file.

2. The direct verification of a system. The system is a single Unix process, or
an external device whose input and (binary) output can interface with our
AMC system. We interact with a system using a Unix bidirectional pipeline,
which in one direction emits the sequence of inputs (or a Reset), and in
the other direction waits for a response of 0 or 1 (for enabled, or disabled,
respectively).

3. The verified system is a single SML process, which is compiled together with
our AMC system. The SML interface to foreign code could also be used in
this case.

The above modes of operation of AMC lend themselves to different capabil-
ities and difficulties. Mode 1 allows one to check C programs directly, without
modeling them (or verifying a model while improving its accuracy against actual
C code). The speed of the execution is highly affected by the frequent interprocess
interaction. Each communication between processes is replaced with a sequence
of commands in which the communicating process notifies the AMC process
about its intention to communication, and preempts itself until the communica-
tion is scheduled.

Mode 2 allows us to interact with an external device directly and perform
the verification or the update on an actual device. The speed of the interaction
depends on the actual device involved and the speed of using (Unix) pipelines.
Since a physical device is involved, the automatic scheduling of the AMC by the
operating system is also an important factor.

Mode 3 involves only one process and hence reflects the actual speed of the
adaptive model checking algorithm. As was shown in [5], this may be, in the
worst case of verification without a model, exponential time in the (estimated
minimized) size of the system, although the average case complexity of finding
errors in a system (if they exist) is polynomial.

References

1. D. Angluin, Learning Regular Sets from Queries and Counterexamples, Informa-
tion and Computation, 75, 87-106 (1987).

2. T.S. Chow, Testing software design modeled by finite-state machines, IEEE trans-
actions on software engineering, SE-4, 3, 1978, 178-187.

3. R. Cleaveland, J. Parrow, B. Steffen, The Concurrency Workbench: a semantic-
based tool for the verification of concurrent systems, TOPLAS 15(1993), 36-72.

4. P. Godefroid, Model checking for programming languages using VeriSoft, Proc.
24th ACM Symp. on Progr. Lang. and Sys., 174-186, 1996.

5. A. Groce, D. Peled, M. Yannakakis, Adaptive Model Checking, TACAS 2002,
LNCS 2280, Springer, 357-370.

6. D. Peled, M. Y. Vardi, M. Yannakakis, Black Box Checking, FORTE/PSTV 1999,
Beijing, China, 225-240.

7. M. P. Vasilevskii, Failure diagnosis of automata, Kibertetika, no 4, 1973, 98-108.



