
Full Report to Chaincode Labs/Bitcoin Core:
Looking for Lacunae in Bitcoin Core’s Fuzzing Efforts

Alex Groce
Northern Arizona University

United States

Kush Jain
Carnegie Mellon University

United States

Rijnard van Tonder
Sourcegraph, Inc.
United States

Goutamkumar Tulajappa
Kalburgi

Northern Arizona University
United States

Claire Le Goues
Carnegie Mellon University

United States

ABSTRACT
Bitcoin is one of the most prominent distributed software systems
in the world, and a key part of a potentially revolutionary new form
of financial tool, cryptocurrency. At heart, Bitcoin exists as a set
of nodes running an implementation of the Bitcoin protocol. This
paper describes an effort to investigate and enhance the effective-
ness of the Bitcoin Core implementation fuzzing effort. The effort
initially began as a query about how to escape saturation in the
fuzzing effort, but developed into a more general exploration once
it was determined that saturation was largely illusory, a byproduct
of the (then) fuzzing configuration. This paper reports the pro-
cess and outcomes of the two-week focused effort that emerged
from that initial contact between Chaincode Labs and academic
researchers. That effort found no smoking guns indicating major
test/fuzz weaknesses. However, it produced a large number of addi-
tional fuzz corpus entries to add to the Bitcoin QA assets, clarified
some long-standing problems in OSS-Fuzz triage, increased the set
of documented fuzzers used in Bitcoin Core testing, and ran the
first (to our knowledge) mutation analysis of Bitcoin Core’s fuzz
targets, revealing opportunities for further improvement. We con-
trast the Bitcoin Core transaction verification testing with that for
other popular cryptocurrencies. This paper provides an overview
of the challenges involved in improving testing infrastructure, pro-
cesses, and documentation for a highly visible open source target
system, from both the state-of-the-art research perspective and the
practical engineering perspective. One major conclusion is that for
well-designed fuzzing efforts, improvements to the oracle side of
testing, increasing invariant checks and assertions, may be the best
route to getting more out of fuzzing.

CCS CONCEPTS
• Software and its engineering → Dynamic analysis; Soft-
ware testing and debugging.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513072

KEYWORDS
fuzzing, saturation, test diversity, mutation analysis, oracle strength
ACM Reference Format:
AlexGroce, Kush Jain, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi,
and Claire Le Goues. 2022. Full Report to Chaincode Labs/Bitcoin Core:
Looking for Lacunae in Bitcoin Core’s Fuzzing Efforts. In 44nd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3510457.3513072

1 INTRODUCTION
Note: this paper is an extended version of the two page ver-
sion presented at Software Engineering in Practice, ICSE 2022
(https:// conf.researchr.org/ track/ icse-2022/ icse-2022-seip---
software-engineering-in-practice).

Bitcoin [30] is the most popular cryptocurrency, and one of the
most visible (if controversial) “new” systems based on software to
rise to prominence in the last decade. As we write, while volatile,
Bitcoin consistently has a market cap of over half a trillion dollars
since January of 2021. Due to its distributed, decentralized nature,
Bitcoin in some sense is the sum of the operations of the code
executed by many independent Bitcoin nodes, especially nodes
that mine cryptocurrency. Bitcoin Core (https://github.com/Bitcoin/
Bitcoin) is by far the most popular implementation, and serves as
a reference for all other implementations. To a significant degree,
the code of Bitcoin Core is Bitcoin. The main Bitcoin Core repo on
GitHub has over 57,000 stars, and has been forked more than 30,000
times.

Because of its fame and the high monetary value of Bitcoins,
the Bitcoin protocol and its implementations are a high-value tar-
get for hackers (or even nation states interested in controlling
cryptocurrency developments). Therefore, testing the code is of
paramount importance, including extensive functional tests and
aggressive fuzzing. This paper describes a focused effort to identify
weaknesses in, and improve, the fuzzing of Bitcoin Core.

2 INITIAL CONTACT AND THE PROBLEM OF
SATURATION

Chaincode Labs (https://chaincode.com/) is a private R&D center
based in Manhattan that exists solely to support and develop Bit-
coin. In March of 2021, Adam Jonas, the head of special projects
at Chaincode, contacted the first author to discuss determining a
strategy to improve the fuzzing of Bitcoin Core. In particular, at the

https://doi.org/10.1145/3510457.3513072
https://doi.org/10.1145/3510457.3513072
https://conf.researchr.org/track/icse-2022/icse-2022-seip---software-engineering-in-practice
https://conf.researchr.org/track/icse-2022/icse-2022-seip---software-engineering-in-practice
https://github.com/Bitcoin/Bitcoin
https://github.com/Bitcoin/Bitcoin
https://chaincode.com/

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Alex Groce, Kush Jain, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi, Claire Le Goues

time, it seemed that the fuzzing was “stuck”: neither code coverage
nor found bugs were increasing with additional fuzzing time. After
some discussion, an 80 hour effort was determined as a reasonable
scope for an external, research-oriented, look at the fuzzing effort.
Before that effort, conducted over the summer of 2021, began, the
problem of saturation resolved itself. Nonetheless, the issue that
drove the initial desire for a researcher investigation is well worth
examining. Moreover, understanding why Bitcoin Core fuzzing was,
temporarily but not fundamentally, saturated, may be useful to help
other fuzzing campaigns avoid the same false saturation problem.

Saturation, as defined in the blog post (https://blog.regehr.org/
archives/1796) that brought Chaincode Labs to the first author, is
when “We apply a fuzzer to some non-trivial system... initially it
finds a lot of bugs... [but] the number of new bugs found by the
fuzzer drops off, eventually approaching zero.” That is, at first a
particular fuzzer1 applied to a system will tend to continuously,
sometimes impressively, increase both coverage and discovery of
previously-unknown bugs. But, at some point, these bugs are known
(and often fixed) and the fuzzer stops producing new bugs. Code
and behavioral coverage seems to be saturated.

The underlying reason for saturation is that any fuzzer (or other
test generator) explores a space of generated tests according to
some, perhaps very complex, probability distribution. Some bugs
lie in the high-probability portion of this space, and other bugs
lie in very low probability or even zero probability parts of the
space. Unsurprisingly, eventually the high probability space is well-
explored, and the remaining bugs are found only very infrequently,
if ever. The underlying empirical facts are cruel, as noted by Böhme
and Falk: “[W]ith twice the machines, we can find all known bugs
in half the time. Yet, finding linearly more bugs in the same time
requires exponentially more machines” [4].

Chaincode Labs saw that code coverage and bugs were not in-
creasing in their fuzzer runs, and wanted to break out of the satu-
ration trap. The blog post suggested several methods for doing just
that, and this paper explores some of them. Note that even though
the fuzzing was not saturated, the methods for escaping saturation
are also useful things to try in any fuzzing effort where finding as
many bugs as possible is actually important.

2.1 How Long Should You Run a Fuzzer?
One problem for inexperienced fuzzer users is that it is not al-
ways clear just how long a fuzzer needs to run. Anyone used
to popular random testing tools, such as QuickCheck [9], may
expect a “reasonable” budget to be on the order of hundreds
of tests or at most a few minutes [24]. The fuzz testing re-
search community has settled, to some extent, on 24 hours as
a basis for evaluation of fuzzers [26], but even this may be
considered a low-budget run in a serious campaign! The So-
lidity compiler fuzzing effort discussed in the saturation blog
post (https://blog.trailofbits.com/2020/06/05/breaking-the-solidity-
compiler-with-a-fuzzer/, https://blog.trailofbits.com/2021/03/23/a-
year-in-the-life-of-a-compiler-fuzzing-campaign/) found many

1The term “fuzzer” can apply to either a fuzz engine such as libFuzzer or to a “fuzz
harness/target” for the fuzzed program [18]. By “fuzzer” we mean a particular fuzz
engine, though the definition of saturation works in either case.

bugs only after running a specialized version of AFL for over a
month. Good fuzzing takes a lot of time.

One thing that quickly emerged from discussionswith Chaincode
before the primary 80 hour effort was the limited extent of the fuzzer
runs performed in early April. The fuzzing includes a large number
of targets, each with its own fuzz harness and executable. At the
time, the basic strategy was to run libFuzzer on each of these for
100,000 iterations. Because some targets are very fast and a few, such
as full message processing, are slow, this meant in practice fuzzing
most targets for only 30-90 seconds, and even the slowest targets for
only a little over an hour. The total time for over 100 targets was not
negligible, but expecting such short runs for each target, after an
initial exploration of the easy part of the probability space, to gain
coverage or bugs very often, was simply unrealistic. In particular,
for complex, critical targets such as transaction verification and
end-to-end message processing, 100,000 iterations was completely
insufficient. When measuring tests created by humans, or even
stored by a fuzzer or search-based test generation tool as interesting,
100,000 is a very large number of tests. When measuring inputs
(technically individual tests of a kind) generated during fuzzing or
random testing, 100,000 may be a very small number of tests.

The first suggestion for escaping coverage, therefore was very
simple: run the fuzzer longer! The Chaincode team immediately
tried increasing their configuration to 5 million iterations, multi-
plying the number of executions, and runtime, by a factor of 50.
Based on initial success with a few targets, this was done for all
targets, and eventually became the new default. To a large extent,
saturation was no longer a problem. This exploration of simply
increasing the fuzzing budget came early, about 15 days after the
initial contact. The Chaincode team also added new seeds by, as
advised, running more fuzzers, including AFL and Honggfuzz, in
the same time frame.

By May 20th, Bitcoin Core was also in OSS-Fuzz (it was not at
the time of the first discussions, due to reporting requirements, but
negotiations settled this problem): https://github.com/google/oss-
fuzz/tree/master/projects/bitcoin-core. From then on, Bitcoin Core
has essentially been continuously fuzzed, and OSS-Fuzz quickly
produced new crashes to investigate, and continues to do so: https:
//bugs.chromium.org/p/oss-fuzz/issues/list?q=bitcoin.

3 ADDING FUZZER DIVERSITY: USING
ECLIPSER AND TRYING ENSEMBLE
FUZZING

The most obvious solution when fuzzer A (e.g., libFuzzer) faces satu-
ration on a target code-base is to bring in fuzzer B (e.g., Honggfuzz).
In fact, the original blog post that attracted Chaincode’s attention
mentions this in the very definition of saturation: “Subsequently,
a different fuzzer, applied to the same system, finds a lot of bugs.”
Of course, this is the easy case, and there can also be saturation
across the meta-fuzzer defined as a composition of all fuzzers ap-
plied! Still, “throw in another fuzzer” is almost always a good idea
when performing serious fuzzing campaigns. If that fuzzer adds
some elements that are not present in any of the previously applied
fuzzers, so much the better.

https://blog.regehr.org/archives/1796
https://blog.regehr.org/archives/1796
https://blog.trailofbits.com/2020/06/05/breaking-the-solidity-compiler-with-a-fuzzer/
https://blog.trailofbits.com/2020/06/05/breaking-the-solidity-compiler-with-a-fuzzer/
https://blog.trailofbits.com/2021/03/23/a-year-in-the-life-of-a-compiler-fuzzing-campaign/
https://blog.trailofbits.com/2021/03/23/a-year-in-the-life-of-a-compiler-fuzzing-campaign/
https://github.com/google/oss-fuzz/tree/master/projects/bitcoin-core
https://github.com/google/oss-fuzz/tree/master/projects/bitcoin-core
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=bitcoin
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=bitcoin

Full Report to Chaincode Labs/Bitcoin Core:
Looking for Lacunae in Bitcoin Core’s Fuzzing Efforts ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

3.1 Fuzzing with Eclipser
Eclipser [8] is a fuzzer that combines AFL-like2 coverage-driven
mutation-based fuzzing with a scalable form of grey-box concolic
testing. AFL++ [12] and libFuzzer https://llvm.org/docs/LibFuzzer.
html, the two fuzzers most aggressively applied to the Bitcoin Core
code, do not perform any kind of symbolic or concolic testing.
Eclipser is fairly easy to apply to new systems, since it uses QEMU
to run on an ordinary binary, so the first order of business was
to see if it could find new bugs or at least cover code AFL++ and
libFuzzer were not able to reach.

Either directly (from runs using Eclipser itself) or indirectly (per-
forming long AFL or libFuzzer runs seeded with Eclipser-generated
tests), Eclipser produced thousands of new corpus seed files that
were accepted as PRs to merge into the Bitcoin Core QA assets
repo https://github.com/bitcoin-core/qa-assets. The first author is
now the third-largest contributor to the QA assets repo, in fact.
These files added hundreds of new coverage edges to the basis for
OSS-Fuzz and other testing of Bitcoin Core.

On the other hand, these files added no new covered statements;
the additions were all edges, not exploration of completely un-
covered code, the most promising form of new coverage [1, 15].
Nor did these tests expose any new bugs. Of course, in the long
run testing in OSS-Fuzz or on the QA team’s servers may use these
tests to help cover new code or find new bugs, but the immediate
impact is more modest.

One of the outcomes of the 80 hour effort was full docu-
mentation of how to run Eclipser v1.x on the Bitcoin Core
code: https://github.com/bitcoin/bitcoin/blob/master/doc/fuzzing.
md#fuzzing-bitcoin-core-using-eclipser-v1x.

3.2 Ensemble Fuzzing
Given that Eclipser, while useful, did not produce dramatic results,
simply running and adding instructions for more fuzzers did not
seem like a particularly productive use of much more of the two-
week effort. However, because Eclipser was somewhat useful, one
obvious way to exploit multiple fuzzers was to try ensemble fuzzing.

Ensemble fuzzing [7] is an approach that recognizes the need
for diverse methods for test generation, at least in the context of
fuzzing; using multiple fuzzers to seed each other and avoid satura-
tion is a core motivation for ensemble fuzzing. Inspired by ensemble
methods in machine learning [10], ensemble fuzzing runs multi-
ple fuzzers, and uses inputs generated by each fuzzer to seed the
other fuzzers. Ensemble fuzzing is currently (in principle) supported
by the Enfuzz website (http://wingtecher.com/Enfuzz) and by the
DeepState [14] front-end.3

However, the Enfuzz website has never, since the Bitcoin Core
effort began, actually been up and working, and various build and
library version errors made it impossible to get the GitHub ver-
sion (https://github.com/enfuzz/enfuzz) to work, either. DeepState’s
ensemble code is more limited, but works. However, it would re-
quire re-writing Bitcoin Core test harnesses to use DeepState’s
GoogleTest-like API. In theory, this is not a huge burden: the cus-
tom fuzzing core API built by the Bitcoin Core team is fairly similar,

2In fact, the latest version of Eclipser simply uses AFL for non concolic fuzzing.
3See https://blog.trailofbits.com/2019/09/03/deepstate-now-supports-ensemble-
fuzzing/.

in concept, to DeepState, providing ways to obtain values of various
types using different fuzzer back-ends. However, there are numer-
ous small differences and specialized behaviors in the Bitcoin code
that would require substantial work to re-engineer, and DeepState
would add a significant build dependency to the Bitcoin testing
infrastructure; such a change might well not make it through the
Bitcoin Core approval process, once done. Further, the effort to
re-write more than 100 targets would be substantial, even if most
targets were fairly trivial to translate. Building a one-off version
not intended to be rolled into the main code-base might be worth-
while, but would clearly take more than the 80 hours available,
for unknown payoff. Therefore performing ensemble fuzzing of
Bitcoin Core remains future work for the QA team, or awaits the
arrival of more reliable ensemble fuzzers that operate through a
libFuzzer, AFL, or Honggfuzz interface that requires no changes on
the Bitcoin Core side.

Note that in one important sense Bitcoin Core is using ensemble
fuzzing, in that OSS-Fuzz runs multiple fuzzers, including libFuzzer,
AFL, and Honggfuzz) with different compilation flags and sani-
tizers. Additionally, the Bitcoin Core team has servers running
different fuzzers. All of these are coordinated via the qa-assets
repository to which our Eclipser-based tests were added. This is,
however, a more manual and less controlled process than true en-
semble cross-seeding on-the-fly during a fuzzing campaign, and
there are suggestions that a well-chosen coordination strategy can
significantly improve ensemble effectiveness.

4 TRYING SWARM FUZZING
Swarm testing [23] is a method for improving test generation that
relies on identifying features [22] of tests, and disabling some of
the features in each test. For instance, if features are API calls, and
we are testing a stack with push, pop, top, and clear calls, a non-
swarm random test of any significant length will contain multiple
calls to all of the functions. In swarm testing, however, for each
test some of the calls (with probability usually equal to 0.5 for each
call) will be disabled, but different calls will be disabled for each
generated test. This produces less variance between calls within
tests, but much more variance between tests. Practically, in the stack
example, it will enable the size of the stack to grow much larger
than it ever would have any chance of doing in non-swarm testing,
due to some tests omitting pop and/or clear calls. Swarm testing
is widely used in compiler testing [27] and is a core element of the
testing for FoundationDB [32].

Some Bitcoin Core fuzz harnesses resemble API-sequence gen-
eration. In particular, the process_messages harness produces
method sequences of a fixed length, where each message is of a
particular type (there are 34 distinct message types, again similar to
an API-call “fuzz surface”; see Figure 1). Swarm testing is an obvi-
ous candidate approach for enhancing this important fuzz harness.
Inspection of the process_messages code reveals that not only
does the harness (https://github.com/bitcoin/bitcoin/blob/master/
src/test/fuzz/process_messages.cpp) not perform swarm testing, it
doesn’t even pick from the message types; it simply generates an
arbitrary string that will be parsed as a message type, a fuzzer-
controlled arbitrary number of times:

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/bitcoin-core/qa-assets
https://github.com/bitcoin/bitcoin/blob/master/doc/fuzzing.md#fuzzing-bitcoin-core-using-eclipser-v1x
https://github.com/bitcoin/bitcoin/blob/master/doc/fuzzing.md#fuzzing-bitcoin-core-using-eclipser-v1x
http://wingtecher.com/Enfuzz
https://github.com/enfuzz/enfuzz
https://blog.trailofbits.com/2019/09/03/deepstate-now-supports-ensemble-fuzzing/
https://blog.trailofbits.com/2019/09/03/deepstate-now-supports-ensemble-fuzzing/
https://github.com/bitcoin/bitcoin/blob/master/src/test/fuzz/process_messages.cpp
https://github.com/bitcoin/bitcoin/blob/master/src/test/fuzz/process_messages.cpp

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Alex Groce, Kush Jain, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi, Claire Le Goues

namespace NetMsgType {
extern const char* VERSION;
extern const char* VERACK;
extern const char* ADDR;
extern const char *ADDRV2;
extern const char *SENDADDRV2;
extern const char* INV;
extern const char* GETDATA;
extern const char* MERKLEBLOCK;
extern const char* GETBLOCKS;
extern const char* GETHEADERS;
extern const char* TX;
extern const char* HEADERS;
extern const char* BLOCK;
extern const char* GETADDR;
extern const char* MEMPOOL;
extern const char* PING;
extern const char* PONG;
extern const char* NOTFOUND;
extern const char* FILTERLOAD;
extern const char* FILTERADD;
extern const char* FILTERCLEAR;
extern const char* SENDHEADERS;
extern const char* FEEFILTER;
extern const char* SENDCMPCT;
extern const char* CMPCTBLOCK;
extern const char* GETBLOCKTXN;
extern const char* BLOCKTXN;
extern const char* GETCFILTERS;
extern const char* CFILTER;
extern const char* GETCFHEADERS;
extern const char* CFHEADERS;
extern const char* GETCFCHECKPT;
extern const char* CFCHECKPT;
extern const char* WTXIDRELAY;
}

Figure 1: The message types declaration in src/protocol.h.

while (fuzzed_data_provider.ConsumeBool()) {
const std::string random_message_type{

fuzzed_data_provider.ConsumeBytesAsString(
CMessageHeader::COMMAND_SIZE).c_str()};

DeepState [14] (https://github.com/trailofbits/deepstate) pro-
vides strong support for swarm fuzzing. In DeepState, transforming
the call to ConsumeBytesAsString to a OneOf nondeterministic
choice operator over the strings defined in Figure 1, and compiling
the harness with -DDEEPSTATE_PURE_SWARM would enable auto-
matic fuzzer controlled swarm testing. However, as with ensemble
fuzzing, while there are similarities to the Bitcoin Core infrastruc-
ture for fuzz targets and the DeepState API, re-writing the fuzz
targets to use DeepState seemed, and change many string genera-
tion calls to OneOf selections was too large a time investment for
the likely payoff without first trying a less ambitious approach.

The solution was to focus on developing a swarm harness
for the most promising target, process_messages, alone, and

determine if an aggressive campaign on that target would pro-
duce substantial new coverage, or even unknown bugs. This
process_messages_swarm harness required modest effort, and
could show if the strategy was worth devoting more resources
to applying more broadly. After four weeks of fuzzing, however,
the new coverage generated was minimal; less than would be ex-
pected from simply devoting that level of effort to the original
process_messages target. Why?

First, it is likely that the automatic translation of more than
10,000 corpus files for process_messages was imperfect. Parsing
raw bit-streams to find commands is hard, and writing a dynamic
parser to use in-flight data to extract the meaning of each test was
not feasible in the 80 hour effort. This probably meant some corpus
files lost some or all of their value, leaving the new fuzz effort
behind the equivalent process_messages fuzz.

Most importantly, however, the process_messages corpus is
regularly cross-seeded with data from specialized fuzz targets
that generate only one type of message, e.g., such as the tests
in https://github.com/bitcoin-core/qa-assets/tree/main/fuzz_seed_
corpus/process_message_mempool, which correspond to extern
const char* MEMPOOL in Figure 1 . This not only provides some of
the power of swarm testing, it achieves a second goal of the swarm
harness. Namely, one concern was that since process_message
and process_messages generate raw strings that may not even
have a valid message type, the fuzzers spend toomuch effort fuzzing
the type to little benefit. The specialized targets avoid this prob-
lem by constraining the fuzzing to only generate one type of mes-
sage when running in the specialized mode. The ability to run
process_message with a single message type and the frequent
introduction of the resulting inputs into process_messages (and
the generic, unconstrained process_message fuzzing) probably, in
a less automated way, also achieves many of the benefits of swarm
testing itself: mixing complex lengthy runs of a single type or mix
of types. Where introducing “real” swarm testing is difficult, but
fuzzing infrastructure supports this mode of operation, it may be a
useful alternative. It is on the other hand unclear how many fuzz
frameworks are as sophisticated as Bitcoin Core’s, making this
possible; in many cases simply implementing swarm directly (or
writing the harnesses using DeepState) would likely be easier. It
does show that some advanced fuzzing strategies can be antici-
pated by particularly savvy and capable fuzz engineers, willing to
directly use raw fuzzing data, and write tools to support that kind
of low-level hand-tuning of fuzz corpuses.

5 SIDE ISSUES: SPURIOUS BUGS, FUZZER
MYSTERIES, AND AFL STABILITY

A critical point about testing is that it is like other kinds of soft-
ware development. In practice, while adding “features” or at least
optimizations of existing features — in our context, adding new
fuzzers or cutting-edge methods such as swarm testing — is usually
seen as the most interesting aspect of the work, the reality is that
developer/tester time is often spent on more mundane, frustrating
problems — e.g., working around bugs in test infrastructure itself.

For example, in the Bitcoin Core effort, early attempts to apply
Eclipser and AFL ran into a problem: at some point both fuzzers
would essentially stop working and begin producing a vast number

https://github.com/trailofbits/deepstate
https://github.com/bitcoin-core/qa-assets/tree/main/fuzz_seed_corpus/process_message_mempool
https://github.com/bitcoin-core/qa-assets/tree/main/fuzz_seed_corpus/process_message_mempool

Full Report to Chaincode Labs/Bitcoin Core:
Looking for Lacunae in Bitcoin Core’s Fuzzing Efforts ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

of spurious crashes. By spurious crashes, we mean un-reproducible
crashes: inputs that the fuzzer marks as causing a crash, but which,
when executed in a non-fuzzing context using the fuzz harness,
do not crash. Spurious crashes are not unlike the phenomenon of
flaky tests [11], one of the banes of automated software testing. A
flaky test is a test that, for the same snapshot of test code and code
under test, sometimes fails and sometimes passes. In fact, arguably,
spurious crashes in fuzzing are flaky tests where the flakiness is
due to an environmental dependence: the test fails when run under
the fuzzer. Flaky tests and spurious crashes consume significant
testing and developer/test engineer resources. During the very first
discussions with the Chaincode team, when Chaincode first ran
AFL, some spurious crashes were produced; these were eventually
just discarded without understanding the root cause. This happens
to many spurious crashes, unlike flaky tests which manifest in
standing regression tests that often have to be either removed or
otherwise mitigated. In fuzzing, simply throwing away spurious
crashes without understanding them is a more feasible option,
though one that may hide some detected vulnerabilities. OSS-Fuzz
runs using AFL, also produced some spurious crashes.

Unlike most spurious crashes, these were eventually (partly) un-
derstood. Because AFL and Eclipser, run more than a few hours,
inevitably reached as stage where they only produced spurious
crashes (instead of doing any useful fuzzing), the problem had to
be understood, if these fuzzers were to be useful. The first author
discovered that the AFL and Eclipser problems were, strictly speak-
ing, not flaky or spurious at all. The fuzz harnesses all fail if there
is insufficient storage space on tmp to execute the Bitcoin software.
At some point, this happens, even if fuzzing begins with a large
amount of free storage. The problem is that some (but not all) fuzz
executions under AFL and Eclipser (but not under libFuzzer) fail
to clean up /tmp/test_common_Bitcoin Core; each run that fails to
clean up leaves an 18-19 megabyte footprint. Over the millions of
executions involved in fuzzing, this inevitably fills available space.

This problem was also (probably) causing the original AFL is-
sues seen by Chaincode, and (almost certainly, on examination of
the OSS-Fuzz logs) the OSS-Fuzz failures that did not reproduce.
Multiple possible solutions were discussed (at length) and proposed
in a PR (https://github.com/bitcoin/bitcoin/pull/22472), but as we
write none of these have been deemed successful. Also, the un-
derlying reason why AFL and Eclipser sometimes fail to clean up
/tmp is not understood; removing all threads did not fix the is-
sue, though it might be useful for other reasons. The presence of
threads may explain the relatively low stability of AFL fuzzing
on Bitcoin Core, another issue raised during the 80 hour effort:
https://github.com/bitcoin/bitcoin/issues/22551. Low stability in-
dicates that when an input is executed multiple times, it does not
always take the same path. The worse the stability, the less useful
signal AFL is receiving from path coverage during fuzzing. Bit-
coin Core’s stability hovers around 80%, possibly as a result of the
presence of threads in the code. Even if the threads do not cause
nondeterministic behavior of the Bitcoin Core system, from a func-
tional point of view, they may cause path coverage to vary more
than AFL “likes.” It is hard to guess if this has a serious adverse
effect on fuzzing performance.

One reason these issues have not been resolved is that they do
not affect the most effective (thus far) fuzzing approach. Most new

coverage obtained on Bitcoin Core, and most bugs found, can be
credited to libFuzzer, which is not affected by the tmp problem, and
at least fails to complain about stability, even if it is affected. At
present, users of Eclipser on Bitcoin Core are advised to perhaps
apply one of the patches proposed in the open PR on the problem,
or to manually clean /tmp in some other way.

6 MUTATION ANALYSIS
Attempting to improve a fuzzing effort is one way to find problems
with the effort; if you succeed, you found a weakness. However,
none of the attempts described above exposed a serious problem.
Adding more fuzzers would be good, but was not obviously essential.
True ensemble fuzzing was not feasible, and swarm testing was,
for practical purposes, already performed by alternative means. An
alternative is to directly look for holes in testing. The Bitcoin Core
fuzzing team clearly was measuring and inspecting code coverage
(see https://marcofalke.github.io/btc_cov/), so little value would be
added by inspecting traditional coverage alone. Mutation testing/-
analysis [5, 28, 31], however, subsumes code coverage and adds
extremely valuable information on oracle power in addition to mere
coverage [17]. This is perhaps especially valuable in fuzzing, where
“you only see crashes” is a persistent concern. In previous work,
we had used mutation testing to improve the random testing of the
Linux kernel’s RCU module, and in the process discovered some
subtle kernel bugs [2, 16].

We used the universal mutator (https://github.com/agroce/
universalmutator) [20], a mutation tool already used widely in the
blockchain and smart contract world, to mutate the Bitcoin Core
transaction verification code, and, subsequently, that of other pop-
ular cryptocurrencies. We focused on transaction verification/vali-
dation code, as it is generally well-covered by tests, and obviously
an extremely critical functionality for any blockchain.

6.1 Mutation Testing Bitcoin
To perform mutation analysis on Bitcoin, we generated mutations
for code in the tx_verify.cpp file. Fuzzing covers 96 of 98 lines
of code, 8 of 8 functions, and 74 of 102 branches for this file, guar-
anteeing that mutation testing will not primarily reflect missing
coverage. Comparing coverage to that for functional testing, the
fuzz testing has very slightly lower branch coverage, but the num-
bers are almost identical (72.5% vs. 73%), and the fuzz testing covers
different branches than the functional testing. The missing lines
are different for functional and fuzz testing, as well, in fact. And,
as noted above, there can be no doubt that transaction verification
is a critical Bitcoin function: in fact, arguably, checking transac-
tions for correctness is the raison d’être of any blockchain, and
getting transactions that should be invalid past such checks would
be an obvious potential attacker goal. We evaluated the ability of
fuzzing and functional testing to detect mutants of tx_verify.cpp.
Figure 2 summarizes our mutation analysis of the file.

The universal mutator generated 430 compiling mutants of the
file in less than three hours.4. Two fuzz targets seemed to be rel-
evant to fuzzing tx_verify.cpp code: process_message_tx and

4Building all test and fuzz targets for each candidate mutant takes some time, and par-
allelizing the task would require multiple sandboxed copies of the code. Constructing
a more focused build command might speed this up substantially.

https://github.com/bitcoin/bitcoin/pull/22472
https://github.com/bitcoin/bitcoin/issues/22551
https://marcofalke.github.io/btc_cov/
https://github.com/agroce/universalmutator
https://github.com/agroce/universalmutator

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Alex Groce, Kush Jain, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi, Claire Le Goues

Figure 2: A comparison of mutation kills for tx_verify.cpp
when subjected to different testing and fuzzing parameters.
At least 29 of the 90 surviving mutants are equivalent, and
thus not indicative of testing weaknesses. * indicates only
mutants not killed by other methods were analyzed;

coins_view. In theory process_message and process_messages
were also potential interest, but the relevant corpus entries were
duplicated in process_message_tx (we verified the two more gen-
eral targets provided no additional mutant kills). We ran fuzzing for
five minutes using libFuzzer exploration based on the full (and
quite large: 4,517 tests for process_message_tx, and 6,889 for
coins_view) QA asset corpus for each harness, with all sanitiz-
ers enabled. The process_message_tx target was able to detect
24 mutants, and the coins_view harness was able to detect 32 mu-
tants, for a total of 50 mutants (since some mutants were detected
by both). In other words, fuzzing could detect just under 12% of all
the generated mutants. This is not necessarily a bad result: fuzzing
inherently has trouble detecting subtle, non-crash-inducing, bugs in
code, because writing a strong specification of correct behavior that
covers all the bizarre and pointless inputs produced in fuzzing is of-
ten impractical, or would require a specification nearly as complex
as the code itself. This is one reason differential fuzzing is promising:
a reference implementation is such a specification. Bitcoin Core’s
cryptographic elements are, in fact, differentially fuzzed https://
github.com/bitcoin/bitcoin/pull/22704#issuecomment-898989809.

A major purpose of fuzzing is, then, to address limits in more
traditional functional testing, where known inputs are paired with
expected behavior. While functional or unit testing is very powerful,
the kinds of bugs found in vulnerabilities often involve the kind
of inputs that don’t appear in “normal” unit/functional tests, as
shown by the success of fuzzing and security audits [19]. The real
question, then, is how many mutants that survive Bitcoin Core’s
extensive functional tests survive fuzzing.

The answer is: not too many. The functional tests without sanitiz-
ers enabled catch an additional 278 mutants. Turning on sanitizers
catches an additional 12 mutants. Only 90 of the 430 compiling
mutants survive all tests, for an overall mutation score of 79.07%.

Fuzzing adds two unique mutant kills beyond those produced
by the functional testing. Figure 3 shows the (very similar code)
for these two mutants. Only fuzzing generates inputs that cause
coin.nHeight to be zero. Fuzzing doesn’t increase code coverage
here, but does increase interesting data value coverage. Use of
the libFuzzer -use_value_profile=1 flag is likely instrumental in
achieving such good value coverage. Adding that flag was one of
the first suggestions in the 80 hour effort, but it turned out this was
already standard practice in the Bitcoin Core fuzz configuration.
Note that the opportunity for either approach to generate a zero
value here is limited: functional tests only cover the mutated line
14 times, and fuzzing 556 times. In contrast, both cover numerous
other lines of code more than a million times. For functional tests,
the line is the 2nd least-covered line executed in tx_verify.cpp,
and it is the 4th least-covered line executed for fuzzing.

Manual inspection of the 90 surviving mutants showed that
at least 29 of these were clearly semantically equivalent to the
un-mutated code. For instance, many mutants removed or weak-
ened an assertion; clearly this cannot ever be detected, since it can
only transform failing tests into passing tests. The full, detailed list
of surviving, not-obviously-equivalent mutants, prioritized by an
FPF ranking [6, 13], is available here: https://github.com/agroce/
bitcorpus/blob/master/mutation/prioritized_full_inspect.txt. Dis-
cussion with the Bitcoin Core team is ongoing as we write (https:
//github.com/bitcoin/bitcoin/issues/22690), but thus far none of
these mutants seem to expose serious testing problems. After man-
ual pruning, the mutation score is 85.8%, and some of the remaining
61 mutants are likely also equivalent. The limitations of the fuzzing
oracle are clear: fuzzing covers 98% of statements and 72.5% of
branches as we write, but can kill fewer than 12% of mutants. The
much greater killing power of the functional tests obviously does
not lie in the marginal 0.5 percentage points of branch coverage it
obtains; it lies in the ability to reject incorrect executions that do
not crash or set off a sanitizer alarm.

This raises the question: why fuzz? The coverage for high quality
(if imperfect) functional tests such as those for Bitcoin Core will
often be considerably higher, and the oracle will almost always be
much more powerful. The answer lies in the fact that, even in the
presence of such high quality tests, fuzzing uncovers subtle bugs
that functional tests designed by humans will almost never detect,
e.g. https://github.com/bitcoin/bitcoin/issues/22450.5 In part this is
due to the fact that when functional tests and fuzzing have similar
coverage, they often cover different hard-to-reach code, as in the
case of tx_verify.cpp. Fuzzing is not a replacement for function-
al/unit tests; and functional/unit tests are not a replacement for
fuzzing. In our mutation analysis, consider the two mutants de-
tected by coins_view fuzzing alone. In the traditional, score-based,
view of mutation analysis, the coins_view fuzz harness would be
seen as performing badly. But it detects two (hypothetical) bugs not

5Comments on this bug, such as “Another win for fuzzing, oh wow.” and “Fuzzer rulez!”
show that the Bitcoin Core team has little doubt about the power of fuzzing.

https://github.com/bitcoin/bitcoin/pull/22704#issuecomment-898989809
https://github.com/bitcoin/bitcoin/pull/22704#issuecomment-898989809
https://github.com/agroce/bitcorpus/blob/master/mutation/prioritized_full_inspect.txt
https://github.com/agroce/bitcorpus/blob/master/mutation/prioritized_full_inspect.txt
https://github.com/bitcoin/bitcoin/issues/22690
https://github.com/bitcoin/bitcoin/issues/22690
https://github.com/bitcoin/bitcoin/issues/22450

Full Report to Chaincode Labs/Bitcoin Core:
Looking for Lacunae in Bitcoin Core’s Fuzzing Efforts ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Original mutated code (and immediate context):
if (coin.IsCoinBase() && nSpendHeight - coin.nHeight < COINBASE_MATURITY) {

return state.Invalid(TxValidationResult::TX_PREMATURE_SPEND, "bad-txns-premature-spend-of-coinbase",
strprintf("tried to spend coinbase at depth %d", nSpendHeight - coin.nHeight));

Mutant #379 changes the strprintf to:
strprintf("tried to spend coinbase at depth %d", nSpendHeight / coin.nHeight));

Mutant #380 changes the strprintf to:
strprintf("tried to spend coinbase at depth %d", nSpendHeight % coin.nHeight));

Figure 3: Mutants detected only by fuzzing.

Figure 4: A mutation for Ethereum transaction validation.

Figure 5: Missed coverage for mutations in Figure 4.

detectable by other means; in the real world, if one such bug is ex-
ploitable, detecting it may “pay for” all the fuzzing effort, and there
will seldom be just one such bug (see https://github.com/bitcoin/
bitcoin/issues?q=is%3Aissue+fuzz+is%3Aclosed+label%3ABug for
an approximate list of fuzzer-detected, fixed bugs in Bitcoin Core).
If the “good guys” don’t fuzz well, you can be sure the bad guys
will, for software protecting billions of dollars of assets.

6.2 Other Cryptocurrency Projects
To put our work on Bitcoin in context, we performed mutation
analysis of transaction-verification-related code for other popular
cryptocurrencies. We generated mutants using the universal muta-
tor for code in Ethereum, Dogecoin, Avalanche, Stellar, and Cosmos
implementations, a selection from the top 30 cryptocurrencies6 Our
selection was also influenced by the availability of code coverage,
and indicative of the opportunities for mutation testing of Bitcoin
and popular altcoins, rather than a comprehensive survey. Because
it requires significant effort to set up or otherwise understand the
6We chose these by market capitalization according to https://coinmarketcap.com.

extent of fuzz testing in this heterogeneous selection of projects, our
mutation analysis here only considers mutation testing against the
project test suite, not fuzzing. As discussed above, without heroic
effort, fuzzing is likely to add only modest additional mutant kills.

We identified candidate files that might be roughly compara-
ble to Bitcoin’s tx_verify.cpp by searching for keywords like
transaction, verify, sign, and validate.Wemanually inspected
functions and test coverage for these functions (where applicable)
to identify which files would be interesting targets for mutation.
Ultimately we settled on one to three files per project that are rep-
resentative of some interesting and tested functionality (a choice
that we readily acknowledge is by no means comprehensive or
suggestive of a project’s quality and testing as a whole).

Setup. We ran the universal mutator on the candidate files above,
using both universal and language specific rules. There were 92
universal rules (transformations that can apply to any language)
and between 0 and 20 language specific rules, depending on the
project source language.7 Across all projects, our rules generated
between 492 and 8,567mutants per file.We ranmutants against each
project’s default test suite (determined by consulting READMEs
and build/CI documentation) using universal mutator to obtain
a final mutation score. The runtime of this step naturally varies
depending on test suite execution speed and candidates per file,
ranging from 42 minutes (go-ethereum’s validation.go) to 32
hours (dogecoin’s bitcoin-tx.cpp).

Results. Table 1 summarizes our results, and lists the Mutation
score, File coverage, and Project coverage.Mutation score rep-
resents the proportion of generated mutants that were killed by the
project’s test suite divided by the total number of mutants (higher
is better). File and project metrics report statement level coverage
for each chosen file and the entire project. In principle, we expect
that higher file coverage (i.e., more tested code) should correlate
with a higher mutation score. Our investigation reveals interest-
ing challenges in the interplay of test code, code-under-test, and
reported coverage. One illustrative project (not included in our
table) is Solana,8 a codebase predominantly written in Rust. The
project reports high test coverage overall (82%) and in specific files
(sigverify.rs) with seemingly important signature verification
code (74%).9 When we applied mutation testing ti this file, we real-
ized that both test code and code-under-test live in the same file,

7See https://github.com/agroce/universalmutator/tree/master/universalmutator/static
8https://github.com/solana-labs/solana, a top 10 cryptocurrency at the time of writing.
9https://app.codecov.io/gh/solana-labs/solana

https://github.com/bitcoin/bitcoin/issues?q=is%3Aissue+fuzz+is%3Aclosed+label%3ABug
https://github.com/bitcoin/bitcoin/issues?q=is%3Aissue+fuzz+is%3Aclosed+label%3ABug
https://coinmarketcap.com
https://github.com/agroce/universalmutator/tree/master/universalmutator/static
https://github.com/solana-labs/solana
https://app.codecov.io/gh/solana-labs/solana/commit/f28f6365a14b8cf3e0599c3164dd7988777e96b4/perf/src/sigverify.rs

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Alex Groce, Kush Jain, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi, Claire Le Goues

Project File path LOC Mutation File Project
score coverage coverage

bitcoin src/consensus/tx_verify.cpp 210 78.6% 98.7% 84.2%

go-ethereum
core/block_validator.go 129 70.1% 81.0%

58.8%signer/fourbyte/validation.go 127 49.5% 60.0%
signer/core/signed_data.go 1,044 25.3% 69.3%

dogecoin src/bitcoin-tx.cpp 847 58.7% -† 70.1%
avalanchego vms/platformvm/add_subnet_validator_tx.go 308 57.3% 81.0% 63.6%
stellar src/historywork/VerifyTxResultsWork.cpp 192 85.1% 85.3% 74.9%
cosmos-sdk x/auth/ante/sigverify.go 510 67.3% 67.0% 60.9%

Table 1: Code Coverage and Mutation Scores Across Popular Cryptocurrencies. Mutation score represents the proportion of
mutants that were killed divided by the total number of mutants (higher is better). File coverage and Project coverage report
statement level coverage for the file and entire project, respectively. LOC represents the lines of code of the chosen file. †We
were unable to obtain individual coverage for one file.

Mutation Operator Project and File Mutation Example

Comment out source code line bitcoin - tx_verify.cpp

if (! MoneyRange(coin.out.nValue) || !MoneyRange(nValueIn)) {

- return state.Invalid(TxValidationResult :: TX_CONSENSUS ,

- "bad -txns -inputvalues -outofrange ");

+ /* return state.Invalid(TxValidationResult :: TX_CONSENSUS ,

+ "bad -txns -inputvalues -outofrange "); */

}

Replace < with == go-ethereum - block_validator.go
- if desiredLimit < params.MinGasLimit {

+ if desiredLimit == params.MinGasLimit {

desiredLimit = params.MinGasLimit

}

Add continue to statement dogecoin - bitcoin-tx.cpp

while ((! feof(f)) && (! ferror(f))) {

char buf [4096];

+ continue;

...

}

Add break to statement bitcoin - tx_verify.cpp
for (const auto& txin : tx.vin) {

+ break;

nSigOps += txin.scriptSig.GetSigOpCount(false);

}

Flip arguments of function go-ethereum - validation.go

if tx.Data != nil && tx.Input != nil

- && !bytes.Equal (*tx.Data , *tx.Input) {

+ && !bytes.Equal (*tx.Input , *tx.Data) {

return nil , errors.New(`...`)

}

Table 2: Sample of Mutation Rules and Examples for Various Cryptocurrencies that were not killed.

and further, that reported code coverage includes test code. With
inline tests, we face a dual challenge of restricting mutations to only
tested code (a problem best addressed by the mutation tool) and
obtaining coverage restricted only to tested code (best solved by
the coverage tool). These concerns naturally bear on both mutation
score and code coverage, and our experience reveals the need to
tease such concerns apart to accurately assess true test quality.

For illustration, Table 2 shows some of the mutation rules with
examples of surviving mutants. One commonly used operator, state-
ment deletion, comments out a line of source code. Other operators
included adding break and continue to statements, along with
changing binary operators such as < to ==. Investigating files with
lower coverage (e.g., those in Ethereum), we noticed that many of

the generated mutants removed lines related to error checking (e.g.,
in switch statements) that were apparently not covered by tests (cf.
Figures 4 and 5).

The Bitcoin Core mutation score (without pruning or fuzzer-
killed mutants) ranks high: 2nd out of 6 projects. Bitcoin Core
also has the highest File and Project coverage of any project. Our
experience working with Bitcoin Core developers suggests that
they are pro-active about code quality and testing, which is likely
to lead (directly or indirectly) to test suite quality. At the same
time, code for transaction verification and validation may naturally
vary depending on context, code organization, and language, as
reflected by the differences in lines of code in our selection. Our
mutation testing ultimately is best understood as a set of individual

Full Report to Chaincode Labs/Bitcoin Core:
Looking for Lacunae in Bitcoin Core’s Fuzzing Efforts ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

data points that are difficult to compare fully quantitatively across
projects. We discuss these considerations in more detail next.

Discussion. For the alternative cryptocurrencies, we limited our
attention to the default (typically functional) tests provided in the
build chain, according to READMEs and other documentation. We
know that at least some of the considered alternative cryptocurren-
cies (e.g., Ethereum) make use of fuzz testing (i.e., are enrolled in
OSS-Fuzz). However, if the marginal contribution of fuzzing is sim-
ilar to Bitcoin, it may be indicative of approximate mutation scores
over the kinds of tests considered. At minimum, we observe that
Bitcoin is likely in the upper quartile of cryptocurrencies in terms
of test quality as measured by coverage and mutation score. In any
event, our investigation suggests there is clearly room to improve
test coverage (and mutation score) across popular cryptocurrencies.

Perhaps a more important lesson from this qualitative compari-
son is that mutation testing is an important way to evaluate test
suite quality, especially given the complementary role of fuzz and
functional testing on Bitcoin. We argue that this sort of evaluation
should be a first class concern for projects like cryptocurrencies,
targeted at least at central logic (like transaction validation). It also
should be reasonably feasible, in principle; we found the problem
tractable, once we isolated key functionality and a test suite. How-
ever, our experience suggests key areas that make it difficult to
conduct such evaluations comprehensively: (1) identifying critical
blockchain functionality and evaluating associated test coverage
(2) understanding why gaps in coverage exist (is it a lack of tests, or
does some other kind of testing take place (e.g., integration testing)
where coverage is not recorded? Even for Bitcoin Core’s relatively
well-documented tests, the first author initially thought the weak
unit tests. not the extensive functional tests, were the primary tests
for the code. In brief: with cryptocurrency projects seeking to un-
abashedly upend the status quo of financial systems, it seems only
reasonable that they embrace very high standards of testing; in this
context, our view is that mutation testing is an effective, but easily
(and evidently) overlooked vector for improving test suites.

In a similar vein, we limited our mutation testing to a handful of
files based on a convenience sample. A deeper mutation analysis
with a higher allocation of resources (perhaps justifying resources
comparable to fuzz testing) poses interesting possibilities that might
allow for more direct comparison and contrast among projects.
Given different architectures for these systems, only full project
coverage andmutation scores might be truly comparable, but expert
involvement could carve out related functionalities, even if this
required only mutating parts of files, or other complex approaches.

7 CONCLUSION: HOW GOOD IS THE
BITCOIN CORE TESTING AND FUZZING?

In a sense this is a fundamentally hard question to answer (software
engineering research has been trying to understand how to answer
this question for decades, after all): certainly, an 80 hour effort by
one fuzzing researcher, who was generally familiar with blockchain
and Bitcoin technology, but not at all familiar with the Bitcoin Core
implementation, in terms of high level approach, testing infrastruc-
ture, or (of course) implementation details, cannot provide anything
like a definitive answer to that question.

FUZZ_TARGET(parse_script)
{

const std::string script_string(buffer.begin(),
buffer.end());

try
(void)ParseScript(script_string);

catch (const std::runtime_error&)

}

Figure 6: Fuzz target for script parsing.

The previous section discusses our limited effort to place the
Bitcoin Core test effort in the context of other cryptocurrencies, but
the limits of that evaluationmake it hard to draw strong conclusions.
The complexities of the test efforts and the various ways the systems
could be compared make this a weak basis for evaluating Bitcoin
Core itself. Bitcoin Core has about 10,000 lines of fuzz harness
code; Go-Ethereum has about 74KLOC of fuzz harness code; is the
fuzzing thus likely to be 7 times better? We don’t claim to know.
Instead, we base our evaluation on the effort to improve Bitcoin
Core fuzzing, itself, plus the fact that Bitcoin Core’s coverage and
mutation results seem very likely to be at minimum competitive
with those of other high-profile cryptocurrencies.

The initial fuzzing effort, at the time of contact, was certainly
operating in a suboptimal way, and hence seemed to be facing a
difficult saturation problem. However, the simplest of industrial-
fuzzing-savvy advice (run the fuzzers longer, add the system to OSS-
Fuzz, try more fuzzers) was sufficient to make the fundamentally
sound fuzzing basis more useful, and the advice was solicited and
taken, very quickly.

Additional efforts to improve the fuzzing added some value in
terms of new corpus entries, and paved the way for better docu-
mented, and more systematic, application of a variety of fuzzers.
Fundamentally, however, these improvements were relatively small
compared to the overall scope of Bitcoin Core testing. This was
substantially due to the limited time-frame, but not due to either a
lack of expertise or serious attempts to improve fuzzing, given that
time-frame, we believe.

The basic cause of the limited improvement was that, at present,
Bitcoin Core has a well-designed and effective fuzzing infrastruc-
ture, supported by intelligent manual augmentation of the more
automated aspects of the fuzzing, and in the context of an aggressive
set of functional tests with generally good code coverage.

7.1 The Bitcoin Core Fuzzing Infrastructure
The basic fuzzing infrastructure for Bitcoin resides in
src/tests/fuzz, which consists of about 200 fuzz target
implementations, ranging in size from a few lines to about
500 lines, plus common infrastructure, primarily found in
FuzzedDataProvider.h. The fuzzing implementation is compact,
but supports a common way to write fuzz targets that perform fuzz
generation of C++ generic and Bitcoin-specific data structures. The
generators are designed to allow different fuzzers to serve as the
“back end” of the system, as in DeepState. This approach allows
some targets to be very compact, e.g., see Figure 6.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Alex Groce, Kush Jain, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi, Claire Le Goues

In two weeks, it is impossible to examine every fuzz target
in detail, much less understand how they interact with the tar-
geted code, but most inspected targets are well-designed, and in
cases where targets appear to be too generic, wasting time, as with
process_message, there seems to be manual seeding that avoids
the problem of forcing fuzzers to generate too many magic strings.

One sign that the fuzzing is of reasonable quality is that the gap
in code coverage between fuzzing and high-quality functional tests
is not very large. For both fuzzing and functional tests, some miss-
ing coverage and some unkilled mutants are almost certainly (and
stated to be such by Bitcoin Core team members to us) redundant
or defensive code to protect against “impossible” problems. This
is unsurprising in code intended to be highly reliable; coverage of
core file system functionality was only 89% during a year of exten-
sive random testing of a file system developed for the Curiosity
Mars Rover performed by NASA/JPL’s Laboratory for Reliable Soft-
ware [21]. The missing coverage was mostly defensive, redundant
code, including fail-safe termination after (presumably impossible
without hardware failure) assertion failures.

7.2 Improving Bitcoin Core Fuzzing
The lack of a significant coverage gap, and the existence of a
huge mutant-detection gap, for transaction verification, between
the fuzzing and the functional tests suggests the most promising
method for improving the Bitcoin Core fuzzing: manual, expert
developer effort to improve the oracles used by existing fuzz targets,
or efforts to craft custom, more restricted, fuzz targets with stronger
oracles when this is not feasible.

Essentially, the lack of a huge coverage gap suggests that failure
to explore the input space is not the biggest problem for the Bitcoin
Core fuzzing; there’s significant room for improvement, especially
with some targets, but overall the coverage, especially for critical
code, is good. What the mutation testing reveals is that many fuzz
executions that would be rejected by the standards of the functional
tests do not induce a crash.

Building fuzz harnesses with complex correctness checks is hard,
of course; the functional tests know exactly what inputs are being
provided to APIs, and can check for expected behavior. Trying to in-
ject this kind of check into fuzz harnesses ranges from non-trivial to
effectively impossible (for some properties). When applicable, more
generic, “mathematical” constraints such as are used in property-
based testing [9] can help, but these are often hard to apply at the
end-to-end level of a fuzz harness, without turning the fuzz harness
into a spaghetti code mess of checks for various qualities of the
inputs. In the worst case, these end up simply reflecting develop-
er/tester notions that already found their way into the code itself.
Differential testing [29] against other implementations might also
help here, but is probably best done at a higher end-to-end level
than inside these specific fuzz targets (this is already done on some
cryptographic elements of the code).

There is no easy solution to this problem, but the most promis-
ing route is probably to focus on adding invariants and assertions
to the non-test code itself; these checks can be executed by both
functional and fuzz tests, and avoid the problem of duplicating
analysis of inputs. At present, the Bitcoin Core code has about
1,800 assert statements, scattered among 180KLOC of C and C++.

The resulting ratio of about one assertion per 100 lines of code is
not terrible, but is at the lower limit of what many consider to be
an acceptable assertion ratio for critical code. Given that Bitcoin
Core defines at least 4,000 functions, the code obviously doesn’t
meet the NASA/JPL proposal of having an average of two asser-
tions per function [25]. There are only five assert statements in the
src/consensus directory, which has about 500 lines of code and
defines more than 10 functions, suggesting that the assertion ratio
is low even for critical code.

One conclusion of the 80 hour effort therefore, is that the most
effective way to improve fuzzing at present might be not to focus
on covering the code and state space, but to focus on increasing
the oracle power of all Bitcoin Core testing. Arguably, the greatest
weakness of traditional code coverage is that it focuses too much
attention on the “input side” of testing and too little on the oracle
side [3], which is easier for even dedicated testing efforts to neglect
in the pursuit of covering every branch and path.

Acknowledgements: The authors would like to thank the
Chaincode team, particularly Adam Jonas and Evan Baer, and es-
pecially the “fuzzing gurus” for Bitcoin Core, MarcoFalke and
practicalswift on GitHub.

REFERENCES
[1] Iftekhar Ahmed, Rahul Gopinath, Caius Brindescu, Alex Groce, and Carlos Jensen.

2016. Can Testedness Be Effectively Measured?. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Seattle, WA, USA) (FSE 2016). Association for Computing Machinery, New York,
NY, USA, 547–558. https://doi.org/10.1145/2950290.2950324

[2] Iftekhar Ahmed, Carlos Jensen, Alex Groce, and Paul E. McKenney. 2017. Apply-
ing Mutation Analysis on Kernel Test Suites: an Experience Report. In Interna-
tional Workshop on Mutation Analysis. 110–115.

[3] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014.
The oracle problem in software testing: A survey. IEEE transactions on software
engineering 41, 5 (2014), 507–525.

[4] Marcel Böhme and Brandon Falk. 2020. Fuzzing: On the Exponential Cost of
Vulnerability Discovery. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for ComputingMa-
chinery, New York, NY, USA, 713–724. https://doi.org/10.1145/3368089.3409729

[5] Timothy Budd, Richard J. Lipton, Richard A DeMillo, and Frederick G Sayward.
1979. Mutation analysis. Yale University, Department of Computer Science.

[6] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric
Eide, and John Regehr. 2013. Taming Compiler Fuzzers. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery,
New York, NY, USA, 197–208. https://doi.org/10.1145/2491956.2462173

[7] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou,
Xun Jiao, and Zhuo Su. 2019. Enfuzz: Ensemble fuzzing with seed synchronization
among diverse fuzzers. In USENIX Security Symposium. 1967–1983.

[8] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. 2019. Grey-box
Concolic Testing on Binary Code. In Proceedings of the International Conference
on Software Engineering. 736–747.

[9] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. In International Conference on Functional
Programming (ICFP). 268–279.

[10] Thomas G Dietterich et al. 2002. Ensemble learning. The handbook of brain theory
and neural networks 2 (2002), 110–125.

[11] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019. Un-
derstanding Flaky Tests: The Developer’s Perspective. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE
2019). Association for Computing Machinery, New York, NY, USA, 830–840.
https://doi.org/10.1145/3338906.3338945

[12] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++ :
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association. https://www.usenix.
org/conference/woot20/presentation/fioraldi

[13] Teofilo F. Gonzalez. 1985. Clustering to Minimize the Maximum Intercluster
Distance. Theoretical Computer Science 38 (1985), 293–306.

https://doi.org/10.1145/2950290.2950324
https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/3338906.3338945
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi

Full Report to Chaincode Labs/Bitcoin Core:
Looking for Lacunae in Bitcoin Core’s Fuzzing Efforts ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

[14] Peter Goodman and Alex Groce. 2018. DeepState: Symbolic unit testing for C
and C++. In NDSS Workshop on Binary Analysis Research.

[15] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code Coverage for Suite
Evaluation by Developers. In Proceedings of the 36th International Conference on
Software Engineering (Hyderabad, India) (ICSE 2014). Association for Computing
Machinery, New York, NY, USA, 72–82. https://doi.org/10.1145/2568225.2568278

[16] Alex Groce, Iftekhar Ahmed, Carlos Jensen, Paul E McKenney, and Josie Holmes.
2018. How verified (or tested) is my code? falsification-driven verification and
testing. Automated Software Engineering Journal 25, 4 (2018), 917–960.

[17] Alex Groce, Mohammad Amin Alipour, and Rahul Gopinath. 2014. Coverage and
Its Discontents. In Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software (Onward!). 255–268.

[18] Alex Groce and Martin Erwig. 2012. Finding Common Ground: Choose, Assert,
and Assume. In International Workshop on Dynamic Analysis. 12–17.

[19] Alex Groce, Josselin Feist, Gustavo Grieco, and Michael Colburn. 2020. What are
the Actual Flaws in Important Smart Contracts (and How CanWe Find Them)?. In
International Conference on Financial Cryptography and Data Security. 634–653.

[20] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang.
2018. An Extensible, Regular-expression-based Tool for Multi-language Mutant
Generation. In Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings (Gothenburg, Sweden) (ICSE ’18). ACM, New
York, NY, USA, 25–28. https://doi.org/10.1145/3183440.3183485

[21] Alex Groce, Gerard Holzmann, and Rajeev Joshi. 2007. Randomized Differential
Testing as a Prelude to Formal Verification. In 29th International Conference on
Software Engineering (ICSE’07). 621–631. https://doi.org/10.1109/ICSE.2007.68

[22] Alex Groce, Chaoqiang Zhang, Mohammad Amin Alipour, Eric Eide, Yang Chen,
and John Regehr. 2013. Help, help, I’m being suppressed! The significance of
suppressors in software testing. In 2013 IEEE 24th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 390–399.

[23] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. 2012.
Swarm Testing. In International Symposium on Software Testing and Analysis.
78–88.

[24] Josie Holmes, Iftekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang,
and Alex Groce. 2020. Using Relative Lines of Code to Guide Automated Test
Generation for Python. ACM Trans. Softw. Eng. Methodol. 29, 4, Article 28 (Sept.
2020), 38 pages. https://doi.org/10.1145/3408896

[25] Gerard J Holzmann. 2006. The power of 10: Rules for developing safety-critical
code. Computer 39, 6 (2006), 95–99.

[26] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123–2138. https://doi.org/10.
1145/3243734.3243804

[27] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. ACM SIGPLAN Notices 49, 6 (2014), 216–226.

[28] Richard J. Lipton, Richard A DeMillo, and Frederick G Sayward. 1978. Hints on
test data selection: Help for the practicing programmer. Computer 11, 4 (1978),
34–41.

[29] William McKeeman. 1998. Differential testing for software. Digital Technical
Journal of Digital Equipment Corporation 10(1) (1998), 100–107.

[30] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf.

[31] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in Computers. Vol. 112. Elsevier, 275–378.

[32] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J Beamon, Rusty Sears, John Leach, et al.
2021. FoundationDB: A Distributed Unbundled Transactional Key Value Store.
In ACM SIGMOD.

https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1145/3183440.3183485
https://doi.org/10.1109/ICSE.2007.68
https://doi.org/10.1145/3408896
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

	Abstract
	1 Introduction
	2 Initial Contact and the Problem of Saturation
	2.1 How Long Should You Run a Fuzzer?

	3 Adding Fuzzer Diversity: Using Eclipser and Trying Ensemble Fuzzing
	3.1 Fuzzing with Eclipser
	3.2 Ensemble Fuzzing

	4 Trying Swarm Fuzzing
	5 Side Issues: Spurious Bugs, Fuzzer Mysteries, and AFL Stability
	6 Mutation Analysis
	6.1 Mutation Testing Bitcoin
	6.2 Other Cryptocurrency Projects

	7 Conclusion: How Good is the Bitcoin Core Testing and Fuzzing?
	7.1 The Bitcoin Core Fuzzing Infrastructure
	7.2 Improving Bitcoin Core Fuzzing

	References

