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Abstract 
 

Reportedly, supercomputer designer Seymour Cray 
once said that he would sooner use two strong oxen to 
plow a field than a thousand chickens. Although this is 
undoubtedly wise when it comes to plowing a field, it is 
not so clear for other types of tasks. Model checking 
problems are of the proverbial “search the needle in a 
haystack” type. Such problems can often be 
parallelized easily. Alas, none of the usual divide and 
conquer methods can be used to parallelize the 
working of a model checker. Given that it has become 
easier than ever to gain access to large numbers of 
computers to perform even routine tasks it is becoming 
more and more attractive to find alternate ways to use 
these resources to speed up model checking tasks. This 
paper describes one such method, called swarm 
verification. 
 
1. Introduction 
 

The search for efficient ways to implement logic 
model checking algorithms already started around the 
time that the PC was first introduced, in the late 
seventies and early eighties. Since then, we have seen 
a truly impressive rise in the computational power of 
desktop machines. Every doubling of speed and every 
doubling of the memory available on those machines 
translated directly into comparable increases in the 
reach and power of the available logic model checking 
tools. These increases, paired with the algorithmic 
improvements that could be made to improve search 
efficiency (e.g., the use of partial order reduction and 
bitstate hashing techniques in software model checkers 
such as SPIN [7], or symbolic model checking 
techniques in hardware model checkers like SMV 
[12]) have helped us to produce tools that can tackle 
problems of a size that were unimaginable before. It 

has made it possible for us to continue to reach further 
and further. For approximately the last decade, our 
goal has been to apply logic model checkers directly to 
implementation level problems, using on-the-fly 
abstraction techniques [8]. The hope was that our 
algorithms and machines would be able to catch up 
with the potentially very large computational 
complexity of these problems. 

Approximately five years ago, though, chip 
manufacturers decided to adopt a new strategy for the 
fabrication of CPUs. Instead of focusing on the 
continued trend to shrink the size of chips, increasing 
clockspeed and raw performance, they switched to 
placing larger numbers of CPU cores onto a single 
chip. In principle, this strategy can bring equivalent 
performance increases to desktop systems. Large 
numbers of independent threads of execution can now 
all be executed in parallel, with mostly limited 
competition for shared resources. Instead of continuing 
to double the raw speed of CPUs, the chip makers now 
plan to double the number of cores on a chip with each 
new generation. 

Curiously, although the raw speed of CPUs has 
stalled at roughly 2002 levels, the size of RAM 
memory that is available on standard desktop systems 
continues to follow Moore’s curve [13]. Clearly, in 
multi-core systems the need for memory increases at 
least linearly with the number of CPU cores used, so 
the trend is understandable. But the growing 
divergence between memory size and the basic speed 
of a single CPU has important consequences for our 
work. 

At a fixed speed, it takes a fixed amount of time to 
fill one GByte of RAM memory. If we do not change 
the speed, but we do change the amount of available 
memory, the time needed to fill that memory will also 
change. A fast implementation of the SPIN bitstate 
hashing algorithm, for instance, typically takes three 



hours to “fill” a bitstate hash-array of 1 GByte. The 
runtime will trivially increase by roughly two orders of 
magnitude if we upgrade our memory from 1 to128 
GByte, and try to fill that. Three hours now becomes 
12.5 days, which is a little more noticeable. 

 
We “fill” the bitstate hash-array when we try to 

perform model-checking on an application that has 
significantly more reachable states than can fit in 
memory. At some point during this search, all bits 
in the hash-array have been set, and the search will 
complete without having visited all states. Bitstate 
hashing is the fastest way we know of to search a 
very large statespace – other techniques can 
sometimes cover more reachable states but they are 
invariably very much slower. If therefore we can 
show that even the bitstate hashing algorithm will 
become to slow on future machines, a switch to 
even slower algorithms will not be an option. 

 
If we continue our thought experiment and switch 

to a machine with 1 TByte of main memory, at the 
same speed the bitstate hashing algorithm would now 
take 1,024 times 3 hours to fill the memory. Twelve 
days now turns into roughly three months which makes 
the approach quite impractical. 

 There is one bright point in this outlook. When the 
one TByte desktop arrives on our desktops, it will 
likely come equipped with hundreds of compute cores 
as well. 

Our back-of-the-envelope calculation shows that it 
will be quite unattractive, one could even say 
infeasible, to run the old trusted sequential model 
checking algorithms on the new systems. 

Multi-core model checking techniques have been an 
active area of research for at least a decade (e.g., [14], 
[9], [2]). The early indications are, though, that these 
algorithms do not always give predictable 
performance, and they do not necessarily scale well to 
the use of very large numbers of CPUs (e.g., hundreds 
or thousands). There are several reasons for the 
difficulty in scaling. A first factor is the 
communication overhead that is incurred in 
coordinating a search across multiple machines. 
Sometimes significant amounts of data must be 
exchanged between machines to avoid overlapping 
work. This data exchange can be expensive. In shared 
memory machines, the very access to shared memory 
can become costly once the machine reaches a certain 
size. The root cause of this lies in the use of NUMA 
(non-uniform memory access) machine architectures, 
that make the internals of a large distributed machine 
with thousands of processing nodes look like a mini 
computer network with substantial overhead required 

for cache synchronization and relatively slow data 
transfer times between compute nodes [1], [3]. 
 
2. Swarm Verification 
 

Our work on swarm verification has grown out of 
attempts to use aggressive test randomization 
techniques to verify the correctness of mission critical 
software modules we developed for use in a spacecraft. 
Initially, a direct application of logic model checking 
techniques to this problem seemed infeasible, due to 
the impressive size of the search space for even 
abstract versions of these modules. One of these 
modules, for instance, implements a robust POSIX-
compatible file-system on flash hardware, with 
guarantees for file-system integrity across sudden 
reboots, loss of power, and arbitrary bit-flips caused by 
cosmic radiation. The problem itself is sufficiently 
challenging that we have also proposed it as an 
element of the ‘Grand Challenge in Verification’ 
project [11]. 

The state of a flash disk can be abstracted as the 
number of current, obsolete, and free pages, and the 
number of free, used, and bad blocks. Both current and 
obsolete pages carry version numbers and information 
that ties them to specific files or directories in the file 
system hierarchy. Even if we abstract from all data 
contents, and restrict to small numbers of blocks and 
pages, the number of abstract disk states can be 
overwhelming. Our first verification attempts were 
based on the use of a regimen of randomized and 
differential testing [5]. In differential testing one uses a 
reference system to check the behavior of the system 
under test. For the implementation of a file system, 
reference systems were of course not hard to find. 
Differences in behavior between the new module and 
the reference system that are revealed by randomized 
testing can quickly be diagnosed and remedied. 

The differential testing approach also allowed us to 
test the robustness requirements of our new system, 
without requiring that the reference system (e.g., a 
standard Linux file system) satisfied the same 
requirements. In the event of power loss or sudden 
reboot, the behavior of our flash file system has to 
preserve the state of the system as it existed before the 
interrupted operation is initiated, even for complex 
multi-step operations, such as moving an entire sub-
tree in the file system to a new place in the directory 
hierarchy. We can perform these checks by verifying 
that the file system under test restores its disk after the 
reboot in a way that matches the state of the reference 
file system before the start of the interrupted operation. 



The randomization strategy proved effective in 
finding defects in our initial module implementation. 
Once the test regimen stops finding errors, though, we 
lose faith that sufficient coverage is realized. At this 
point, we reinvestigated the possibility to use a model 
checker to increase the thoroughness of our testing. 

Starting with SPIN version 4, the model checkers 
generated by SPIN can be linked to the compiled C 
code of an external application to verify hybrid models 
that consist of high-level behavior fragments specified 
in PROMELA, and low-level behavior fragments from 
the application itself [7,8]. The PROMELA fragments 
in such hybrid models are normally used to formalize 
assumptions about the environment against which the 
application is to be verified. In our application, the 
PROMELA fragments capture possible user behavior as 
well as the assumed functioning and malfunctioning of 
the flash hardware (i.e., the upper and lower interfaces 
to the code being verified). The C code is the actual 
code from the flash file system we built. 

As noted, exhaustive verification of even an 
abstracted version of this type of system cannot be 
completed in any reasonable amount of time, no matter 
how much memory is available to perform the search. 
Given a runtime limit of say one day, it is also not 
attractive to simply cut-off a standard search once the 
time limit is reached. The model checker would 
explore only a relatively insignificant initial portion of 
the search tree: the top few layers if a breadth-first 
search is used, or the left-most part of the search tree if 
a depth-first search is used. In both cases, critically 
important behavior would not be explored at all, and in 
that sense even random testing techniques can have a 
better chance at finding the errors that are hiding there. 

We can improve our odds of finding errors by 
combining three basic ideas to modify the search 
process:  

 
1. search randomization, 
2. search diversification, and 
3. search parallelization. 
 
The parallelization of the search is meant to exploit 

the availability of both small multi-core systems, and 
potentially vast numbers of computers in a larger 
network. To do so, we choose an “embarrassingly 
parallel” approach, rather than the more sophisticated 
strategies normally used in the multi-core application 
of model checking, e.g. [9]. To gain optimal advantage 
from the parallelism, the algorithms we use require no 
communication between processors at all, thus 
avoiding one of the main bottle-necks in the scaling of 
multi-core algorithms. 

Each of the three basic techniques is very simple 
when used separately, but the combination with a 
model checking engine can turn their joint use into an 
unexpectedly powerful approach. 

 
2.1. Randomization and Diversification 
 

Search randomization is relatively simple to 
implement in a model checker. At each point where the 
model checker must resolve a non-deterministic 
choice, there normally is a pre-determined order in 
which it will do so. In very large applications, the 
search typically cannot be performed exhaustively, 
being limited by either a time bound (e.g., a day of 
computation) or a memory bound (e.g., 32 GByte). 
Since in these cases not all available search options can 
be explored, it becomes important to choose the ones 
that are explored more fairly. Randomization 
techniques can come to the rescue here.  

We can distinguish between two basic sources of 
non-determinism in verifications with the SPIN model 
checker: (1) process scheduling decisions and (2) non-
deterministic choices made within processes. The first 
type of non-determinism is fundamental to the 
modeling of asynchronous process behavior in a 
distributed system. The latter type is typically the 
result of the use of abstractions in the model itself. In 
our case, these abstractions are captured in the 
PROMELA portion of the verification models (and not 
in the embedded C code portion). The current version 
of SPIN (version 5.1.6) has support for modifying the 
default behavior of the model checker for both types of 
decisions. 

For process level non-determinism, i.e., transition 
selection within a process, a first method to change the 
search order is to simply perform the search for 
executable transitions in reverse – starting with what 
otherwise would be the last transition inspected. This 
is done by compiling the pan.c model checker 
generated by SPIN with compiler directive -
DT_REVERSE. Another method is to randomize that 
part of the search, which can be more effective if there 
are larger numbers of enabled transitions available for 
execution. The latter search mode is enabled by using 
the compiler directive –DRANDOMIZE=N, where N 
is an arbitrary integer that is used to seed the random 
number generator that SPIN will now use to perform 
the search. 

By varying N, and performing searches forwards or 
in reverse, we can already vary the search strategy over 
a fairly broad range. There is a second level of the 
search that we can modify though, and that is at the 
level where process scheduling decisions are made. 



SPIN supports a third new directive, –DREVERSE, to 
reverse search over processes in the resolution of top-
level scheduling decisions. Randomizing the search 
engine at this point as well could provide a fourth 
option, but this capability is not quite as 
straightforward to implement and remains pending. 

We now have three ways to influence the search 
order, plus the capability to vary the seeding of the 
random number generator in one of these options. 
This, in combination with other existing search options 
such as breadth-first search, , and standard depth-first 
search, hash-compact, depth-limited search, and 
bitstate hashing with different hash-arrays sizes, gives 
us the capability to perform a wide diversity of 
searches, each with a different chance of finding errors 
in very large statespaces. 
 
2.2. Diversification and Parallelization 
 

The capabilities we have described could in 
principle be used on a single CPU, by performing 
multiple searches sequentially. The true power of 
search diversification and randomization comes, 
though, if we can perform the searches in parallel. All 
searches we have described can be performed 
completely independently, on separate hardware. No 
access to shared memory is required and no 
communication overhead will be involved in running 
these ‘verification tests.’ 

We use the term ‘verification test’ deliberately here, 
to distinguish this approach from exhaustive 
verification, which can provide a stronger guarantee of 
the correctness (or incorrectness) of an application. In 
a verification test our aim is to use a model checker to 
increase the coverage of a test suite significantly, when 
we compare this approach with standard testing. While 
doing so, we accept that within available constraints of 
memory and time our verification effort cannot be 
truly exhaustive. 

To support the generation and parallel execution of 
a broad diversity of search jobs, we built a relatively 
simple scripting tool called ‘swarm.’2 [10] 

 
4. Tool Support and Application 
 
The swarm tool is a relatively simple front-end to 

SPIN. The tool reads a configuration file that details 
the specific constraints under which we would like to 
execute the verification test and uses it to generate a 
script that can run hundreds of small verification jobs 
on one or more CPUs. A sampling of options from the 

                                                           
2 http://spinroot.com/swarm/ 

default swarm configuration file is as follows. Lines 
starting with a pound sign are comments. 

 
# ranges 
w 20 32 
d 100 10000 
k 2 5 
 
# limits 
cpus 2 
memory 512M 
time 1h  
 
The first group of options shown here defines the 

range of search depths (d), hash-array sizes (w) and 
number of hash-functions that can be used to define 
alternate search modes. The depth range can be used to 
define a series of depth-bounded searches. The has-
array size range can be used to define a series of 
bitstate hash runs with varying coverage, and hence 
with varying runtime limits. 

The second group of options defines a few more 
global constraints: the number of CPUs that is 
available to perform the searches, the amount of 
memory that can maximally be used per job, and the 
maximum time that can be used for the entire sweep of 
verification tests that will be generated by swarm 
based on these settings. For the memory settings, the 
suffixes M and G are recognized, and for the time 
settings the suffixes d (days), h (hours), m (minutes), 
and s (seconds) are recognized. Swarm uses the 
bounds to generate a script that can be executed by the 
user to perform the verification test. Optionally, the 
user can also specify additional search modes and 
ways to compile the pan.c model checking code, to 
expand the range of options that swarm can use. 

For larger applications the swarm tool typically 
generates several hundred different search jobs, that 
can be completed within a one or two hour time limit. 
In our applications, the model checking code in pan.c 
itself is compiled in nine different ways by swarm, 
using the directives we discussed in the previous 
section. Multiple runs are performed with each of 
those nine executables, to boost the level of search 
diversification. Some runs, e.g., those performed with 
bitstate hashing for small hash-array sizes, complete in 
seconds. Others can take a more significant portion of 
the allocated time. Because the slower running jobs 
can be executed on separate processors or processing 
cores, they do not interfere with the faster ones, and no 
time is lost. 

For the verification of our mission-critical file 
system modules, we used two 8-core machines for the 
verification tests, each with 32 GByte of memory, and 

http://spinroot.com/swarm/


we performed each set of verification tests within a 
time bound of one hour. 

The effectiveness of this approach has surprised us. 
Counter-examples are typically generated within the 
first few minutes of a search, and often the result of the 
one hour of running swarm jobs is a range of different 
failure scenarios, rather than one single trail-file. 
Defects that reveal themselves only after hours or days 
of standard exhaustive verification attempts with SPIN 
on a single processor now show up in minutes with the 
swarm approach. The results of our applications have 
been strong enough that the swarm testing has become 
the primary mode of testing that we perform on all 
large applications. 

It should be noted that the applications that we 
apply this type of verification testing to are indeed 
large enough that exhaustive verification would be 
prohibitively expensive. Each application includes a 
significant amount of embedded C code. The file 
system module, for instance, defines a state-vector of 
3,623 bytes (with a worst-case number of 210,000 system 
states). The model checking system for this application 
is setup to perform a broad range of randomized 
differential tests, under the control of the model 
checker to avoid repeatedly visiting the same states 
(which is much more difficult to prevent in a standard 
test run). 

To still support the differential test approach also 
when using the model checker to perform the search 
for errors, we include two full software modules into 
the SPIN-driven verification tests, as embedded C 
code. One module contains the file system code being 
tested; the second module contains the reference model 
against which its operation is being compared. In our 
case, both modules execute completely in core (e.g., 
for obvious reasons we do not use an external file 
system for the reference system when executing in this 
mode). For the file system application, each of the two 
modules used currently consists of roughly 5,000 lines 
of C. SPIN uses the c_track primitive [7] to track the 
memory used in these modules. Using these primitives, 
the model checker can set and restore each module to 
its proper state during the search. 

We have also applied this method to re-verify 
several large applications that we, and others, studied 
in the past. For two of these applications the swarm 
verification tests revealed errors that had been missed 
in the earlier verification attempts with the standard 
sequential model checking algorithms [10]. One of 
these two applications was a model extracted from the 
call processing code of a commercial voice and data-
switch [6], the other was a model of an experimental 
Fleet processor architecture design, provided by R. 
Limaye and N. Sundaram from UC Berkeley. In both 

cases, the randomized search process could quickly 
home in on errors that were too deep in the search tree 
for a standard run to find. 
 
4. Conclusion  
 

The relatively recent switch of chip makers from 
the development of single-core to multi-core chips, as 
used for desktop systems, is matched by a similar trend 
that applies to the internet as a whole. Several names 
have been used to describe this new trend. The term 
“grid computing” first appeared in the nineties (e.g., 
[4]). More recent are terms such as “cloud computing” 
and “network centric computing.” Companies such as 
Amazon, Microsoft, and Google are all working on 
services that can make thousands of computers 
available to customers for a defined period of time, 
thus enabling the user to run massively parallel jobs. 

We believe that this trend will continue. Once it 
solidifies it will dramatically change the way software 
verification tasks can be performed. Still, despite many 
years of work in this area, we do not know of multi-
core model-checking algorithms that can scale 
effortlessly to the use of thousands of loosely 
connected computers in a network, so existing 
technology does not yet allow us to take full advantage 
of the vast array of compute power that may soon 
become available. 

In this paper we have outlined a relatively simple 
approach that will allow us to leverage this trend to 
some extent. On multi-core systems with large 
memories, swarm can produce scripts that execute a 
large diversity of verification jobs that complete within 
a user-defined time bound, whether is a minute, an 
hour, or several days. The same principle can be used 
for using swarm verification scripts on the network at 
large. In a larger network with thousands of available 
computers, swarm may generate hundreds of 
thousands of small verification jobs, all randomly 
different, to search different parts of a very large 
statespace and thus optimize our chances of finding 
bugs. 

The ‘swarm’ part in the term swarm verification 
means that we both ‘swarm’ the statespace of a large 
model checking application, and we ‘swarm’ the set of 
computers available to perform the verification as 
efficiently as possible. A good extension of this work 
would be to find a way to divide a large verification 
job into smaller pieces that can all be verified 
separately, so that we can derive more solid guarantees 
from a swarm verification effort. If sufficiently many 
computers are available, it may not even matter much 
if there is redundancy in such an effort. 



 
5. References 
 
[1] J. Appavoo, V. Uhlig , D. da Silva, “Scalability: The 
Software Problem,” Proc. Second Workshop on Software 
Tools for Multi-Core Systems, San Jose, CA, March 2007.  
 
[2] J. Barnat, L. Brim, and P. Rockai, “Scalable Multi-Core 
LTL Model-Checking,” Proc. 14th Spin Workshop, Berlin, 
Germany, July 2007, Springer,LNCS 4595. 
 
[3] R. Bryant and J. Hawkes, “Linux Scalability for Large 
NUMA Systems,” Proc. Linux Symp., June 2003, Ottawa, 
Canada, pp.83-95. 
 
[4] Foster, I., and C. Kesselman, The Grid: Blueprint for a 
new computing infrastructure, Morgan Kaufmann Publ., San 
Francisco,  CA., 1998 (1st ed.). 
 
[5] A. Groce, G.J. Holzmann, R. Joshi, “Randomized 
differential testing as a prelude to formal verification,”  
Proc. Int. Conf. on Software Engineering (ICSE 2007).  
Minneapolis, Minnesota, May 2007, pp. 621-631. 
 
[6] G.J. Holzmann and M.H. Smith, “An automated 
verification method for distributed systems software based 
on model extraction,” IEEE Trans. on Software Engineering, 
Vol. 28, No. 4, pp. 364-377, April 2002. 
 
[7] G.J. Holzmann, The Spin Model Checker: Primer and 
Reference Manual, Addison-Wesley, 2004. 

 
[8] G.J. Holzmann and R. Joshi, “Model-driven software 
verification.” Proc. 11th Spin Workshop, Barcelona Spain, 
April 2004, Springer, LNCS 2989, pp. 77-92. 
 
[9] G.J. Holzmann, and D. Bosnacki, “The design of a multi-
core extension of the Spin model checker,” IEEE Trans. On 
Software Eng., Vol. 33, No. 10, Oct. 2007, pp. 659-674. 
 
[10] G.J. Holzmann, R. Joshi, and A. Groce, “Tackling large 
verification problems with the Swarm tool,” Proc. 15th Spin 
Workshop, Los Angeles, US, August 2008, Springer, LNCS 
5156, pp. 134-143. 
 
[11] R. Joshi and G.J. Holzmann, “A mini challenge: build a 
verifiable file-system,” Grand Challenge in Verification, 
Verified Software: Theories, Tools, Experiments, Zurich, 
Sw., October 2005, Formal Aspects of Computing, 2007, 
Vol. 19, 4 pgs. 
 
[12] K.L. McMillan: Symbolic Model Checking. Kluwer 
Academic Publishers, 1993 
 
[13] G.E. Moore, Cramming more components onto integra-
ted circuits, Electronics, 38, (8), April 9, 1965. 
 
[14] U. Stern and D. Dill. “Parallelizing the Murφ verifier,” 
Proc. 9th Int. Conf. on Computer Aided Verification, Haifa, 
Israel, June 1997, Springer, LNCS 1254, pp 256–278. 
 
 

 


	1. Introduction
	2. Swarm Verification
	2.1. Randomization and Diversification
	2.2. Diversification and Parallelization

	4. Tool Support and Application
	4. Conclusion 
	5. References

