
Swarm Verification1

Gerard J. Holzmann, Rajeev Joshi, Alex Groce
Jet Propulsion Laboratory, California Institute of Technology

firstname.lastname@jpl.nasa.gov

1 The research described in this paper was carried out at the Jet propulsion Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. The work was supported in part by NASA’s Exploration Technology Development Program
(ETDP) on Reliable Software Engineering.

Abstract

Reportedly, supercomputer designer Seymour Cray
once said that he would sooner use two strong oxen to
plow a field than a thousand chickens. Although this is
undoubtedly wise when it comes to plowing a field, it is
not so clear for other types of tasks. Model checking
problems are of the proverbial “search the needle in a
haystack” type. Such problems can often be
parallelized easily. Alas, none of the usual divide and
conquer methods can be used to parallelize the
working of a model checker. Given that it has become
easier than ever to gain access to large numbers of
computers to perform even routine tasks it is becoming
more and more attractive to find alternate ways to use
these resources to speed up model checking tasks. This
paper describes one such method, called swarm
verification.

1. Introduction

The search for efficient ways to implement logic
model checking algorithms already started around the
time that the PC was first introduced, in the late
seventies and early eighties. Since then, we have seen
a truly impressive rise in the computational power of
desktop machines. Every doubling of speed and every
doubling of the memory available on those machines
translated directly into comparable increases in the
reach and power of the available logic model checking
tools. These increases, paired with the algorithmic
improvements that could be made to improve search
efficiency (e.g., the use of partial order reduction and
bitstate hashing techniques in software model checkers
such as SPIN [7], or symbolic model checking
techniques in hardware model checkers like SMV
[12]) have helped us to produce tools that can tackle
problems of a size that were unimaginable before. It

has made it possible for us to continue to reach further
and further. For approximately the last decade, our
goal has been to apply logic model checkers directly to
implementation level problems, using on-the-fly
abstraction techniques [8]. The hope was that our
algorithms and machines would be able to catch up
with the potentially very large computational
complexity of these problems.

Approximately five years ago, though, chip
manufacturers decided to adopt a new strategy for the
fabrication of CPUs. Instead of focusing on the
continued trend to shrink the size of chips, increasing
clockspeed and raw performance, they switched to
placing larger numbers of CPU cores onto a single
chip. In principle, this strategy can bring equivalent
performance increases to desktop systems. Large
numbers of independent threads of execution can now
all be executed in parallel, with mostly limited
competition for shared resources. Instead of continuing
to double the raw speed of CPUs, the chip makers now
plan to double the number of cores on a chip with each
new generation.

Curiously, although the raw speed of CPUs has
stalled at roughly 2002 levels, the size of RAM
memory that is available on standard desktop systems
continues to follow Moore’s curve [13]. Clearly, in
multi-core systems the need for memory increases at
least linearly with the number of CPU cores used, so
the trend is understandable. But the growing
divergence between memory size and the basic speed
of a single CPU has important consequences for our
work.

At a fixed speed, it takes a fixed amount of time to
fill one GByte of RAM memory. If we do not change
the speed, but we do change the amount of available
memory, the time needed to fill that memory will also
change. A fast implementation of the SPIN bitstate
hashing algorithm, for instance, typically takes three

hours to “fill” a bitstate hash-array of 1 GByte. The
runtime will trivially increase by roughly two orders of
magnitude if we upgrade our memory from 1 to128
GByte, and try to fill that. Three hours now becomes
12.5 days, which is a little more noticeable.

We “fill” the bitstate hash-array when we try to

perform model-checking on an application that has
significantly more reachable states than can fit in
memory. At some point during this search, all bits
in the hash-array have been set, and the search will
complete without having visited all states. Bitstate
hashing is the fastest way we know of to search a
very large statespace – other techniques can
sometimes cover more reachable states but they are
invariably very much slower. If therefore we can
show that even the bitstate hashing algorithm will
become to slow on future machines, a switch to
even slower algorithms will not be an option.

If we continue our thought experiment and switch

to a machine with 1 TByte of main memory, at the
same speed the bitstate hashing algorithm would now
take 1,024 times 3 hours to fill the memory. Twelve
days now turns into roughly three months which makes
the approach quite impractical.

 There is one bright point in this outlook. When the
one TByte desktop arrives on our desktops, it will
likely come equipped with hundreds of compute cores
as well.

Our back-of-the-envelope calculation shows that it
will be quite unattractive, one could even say
infeasible, to run the old trusted sequential model
checking algorithms on the new systems.

Multi-core model checking techniques have been an
active area of research for at least a decade (e.g., [14],
[9], [2]). The early indications are, though, that these
algorithms do not always give predictable
performance, and they do not necessarily scale well to
the use of very large numbers of CPUs (e.g., hundreds
or thousands). There are several reasons for the
difficulty in scaling. A first factor is the
communication overhead that is incurred in
coordinating a search across multiple machines.
Sometimes significant amounts of data must be
exchanged between machines to avoid overlapping
work. This data exchange can be expensive. In shared
memory machines, the very access to shared memory
can become costly once the machine reaches a certain
size. The root cause of this lies in the use of NUMA
(non-uniform memory access) machine architectures,
that make the internals of a large distributed machine
with thousands of processing nodes look like a mini
computer network with substantial overhead required

for cache synchronization and relatively slow data
transfer times between compute nodes [1], [3].

2. Swarm Verification

Our work on swarm verification has grown out of
attempts to use aggressive test randomization
techniques to verify the correctness of mission critical
software modules we developed for use in a spacecraft.
Initially, a direct application of logic model checking
techniques to this problem seemed infeasible, due to
the impressive size of the search space for even
abstract versions of these modules. One of these
modules, for instance, implements a robust POSIX-
compatible file-system on flash hardware, with
guarantees for file-system integrity across sudden
reboots, loss of power, and arbitrary bit-flips caused by
cosmic radiation. The problem itself is sufficiently
challenging that we have also proposed it as an
element of the ‘Grand Challenge in Verification’
project [11].

The state of a flash disk can be abstracted as the
number of current, obsolete, and free pages, and the
number of free, used, and bad blocks. Both current and
obsolete pages carry version numbers and information
that ties them to specific files or directories in the file
system hierarchy. Even if we abstract from all data
contents, and restrict to small numbers of blocks and
pages, the number of abstract disk states can be
overwhelming. Our first verification attempts were
based on the use of a regimen of randomized and
differential testing [5]. In differential testing one uses a
reference system to check the behavior of the system
under test. For the implementation of a file system,
reference systems were of course not hard to find.
Differences in behavior between the new module and
the reference system that are revealed by randomized
testing can quickly be diagnosed and remedied.

The differential testing approach also allowed us to
test the robustness requirements of our new system,
without requiring that the reference system (e.g., a
standard Linux file system) satisfied the same
requirements. In the event of power loss or sudden
reboot, the behavior of our flash file system has to
preserve the state of the system as it existed before the
interrupted operation is initiated, even for complex
multi-step operations, such as moving an entire sub-
tree in the file system to a new place in the directory
hierarchy. We can perform these checks by verifying
that the file system under test restores its disk after the
reboot in a way that matches the state of the reference
file system before the start of the interrupted operation.

The randomization strategy proved effective in
finding defects in our initial module implementation.
Once the test regimen stops finding errors, though, we
lose faith that sufficient coverage is realized. At this
point, we reinvestigated the possibility to use a model
checker to increase the thoroughness of our testing.

Starting with SPIN version 4, the model checkers
generated by SPIN can be linked to the compiled C
code of an external application to verify hybrid models
that consist of high-level behavior fragments specified
in PROMELA, and low-level behavior fragments from
the application itself [7,8]. The PROMELA fragments
in such hybrid models are normally used to formalize
assumptions about the environment against which the
application is to be verified. In our application, the
PROMELA fragments capture possible user behavior as
well as the assumed functioning and malfunctioning of
the flash hardware (i.e., the upper and lower interfaces
to the code being verified). The C code is the actual
code from the flash file system we built.

As noted, exhaustive verification of even an
abstracted version of this type of system cannot be
completed in any reasonable amount of time, no matter
how much memory is available to perform the search.
Given a runtime limit of say one day, it is also not
attractive to simply cut-off a standard search once the
time limit is reached. The model checker would
explore only a relatively insignificant initial portion of
the search tree: the top few layers if a breadth-first
search is used, or the left-most part of the search tree if
a depth-first search is used. In both cases, critically
important behavior would not be explored at all, and in
that sense even random testing techniques can have a
better chance at finding the errors that are hiding there.

We can improve our odds of finding errors by
combining three basic ideas to modify the search
process:

1. search randomization,
2. search diversification, and
3. search parallelization.

The parallelization of the search is meant to exploit

the availability of both small multi-core systems, and
potentially vast numbers of computers in a larger
network. To do so, we choose an “embarrassingly
parallel” approach, rather than the more sophisticated
strategies normally used in the multi-core application
of model checking, e.g. [9]. To gain optimal advantage
from the parallelism, the algorithms we use require no
communication between processors at all, thus
avoiding one of the main bottle-necks in the scaling of
multi-core algorithms.

Each of the three basic techniques is very simple
when used separately, but the combination with a
model checking engine can turn their joint use into an
unexpectedly powerful approach.

2.1. Randomization and Diversification

Search randomization is relatively simple to
implement in a model checker. At each point where the
model checker must resolve a non-deterministic
choice, there normally is a pre-determined order in
which it will do so. In very large applications, the
search typically cannot be performed exhaustively,
being limited by either a time bound (e.g., a day of
computation) or a memory bound (e.g., 32 GByte).
Since in these cases not all available search options can
be explored, it becomes important to choose the ones
that are explored more fairly. Randomization
techniques can come to the rescue here.

We can distinguish between two basic sources of
non-determinism in verifications with the SPIN model
checker: (1) process scheduling decisions and (2) non-
deterministic choices made within processes. The first
type of non-determinism is fundamental to the
modeling of asynchronous process behavior in a
distributed system. The latter type is typically the
result of the use of abstractions in the model itself. In
our case, these abstractions are captured in the
PROMELA portion of the verification models (and not
in the embedded C code portion). The current version
of SPIN (version 5.1.6) has support for modifying the
default behavior of the model checker for both types of
decisions.

For process level non-determinism, i.e., transition
selection within a process, a first method to change the
search order is to simply perform the search for
executable transitions in reverse – starting with what
otherwise would be the last transition inspected. This
is done by compiling the pan.c model checker
generated by SPIN with compiler directive -
DT_REVERSE. Another method is to randomize that
part of the search, which can be more effective if there
are larger numbers of enabled transitions available for
execution. The latter search mode is enabled by using
the compiler directive –DRANDOMIZE=N, where N
is an arbitrary integer that is used to seed the random
number generator that SPIN will now use to perform
the search.

By varying N, and performing searches forwards or
in reverse, we can already vary the search strategy over
a fairly broad range. There is a second level of the
search that we can modify though, and that is at the
level where process scheduling decisions are made.

SPIN supports a third new directive, –DREVERSE, to
reverse search over processes in the resolution of top-
level scheduling decisions. Randomizing the search
engine at this point as well could provide a fourth
option, but this capability is not quite as
straightforward to implement and remains pending.

We now have three ways to influence the search
order, plus the capability to vary the seeding of the
random number generator in one of these options.
This, in combination with other existing search options
such as breadth-first search, , and standard depth-first
search, hash-compact, depth-limited search, and
bitstate hashing with different hash-arrays sizes, gives
us the capability to perform a wide diversity of
searches, each with a different chance of finding errors
in very large statespaces.

2.2. Diversification and Parallelization

The capabilities we have described could in
principle be used on a single CPU, by performing
multiple searches sequentially. The true power of
search diversification and randomization comes,
though, if we can perform the searches in parallel. All
searches we have described can be performed
completely independently, on separate hardware. No
access to shared memory is required and no
communication overhead will be involved in running
these ‘verification tests.’

We use the term ‘verification test’ deliberately here,
to distinguish this approach from exhaustive
verification, which can provide a stronger guarantee of
the correctness (or incorrectness) of an application. In
a verification test our aim is to use a model checker to
increase the coverage of a test suite significantly, when
we compare this approach with standard testing. While
doing so, we accept that within available constraints of
memory and time our verification effort cannot be
truly exhaustive.

To support the generation and parallel execution of
a broad diversity of search jobs, we built a relatively
simple scripting tool called ‘swarm.’2 [10]

4. Tool Support and Application

The swarm tool is a relatively simple front-end to

SPIN. The tool reads a configuration file that details
the specific constraints under which we would like to
execute the verification test and uses it to generate a
script that can run hundreds of small verification jobs
on one or more CPUs. A sampling of options from the

2 http://spinroot.com/swarm/

default swarm configuration file is as follows. Lines
starting with a pound sign are comments.

ranges
w 20 32
d 100 10000
k 2 5

limits
cpus 2
memory 512M
time 1h

The first group of options shown here defines the

range of search depths (d), hash-array sizes (w) and
number of hash-functions that can be used to define
alternate search modes. The depth range can be used to
define a series of depth-bounded searches. The has-
array size range can be used to define a series of
bitstate hash runs with varying coverage, and hence
with varying runtime limits.

The second group of options defines a few more
global constraints: the number of CPUs that is
available to perform the searches, the amount of
memory that can maximally be used per job, and the
maximum time that can be used for the entire sweep of
verification tests that will be generated by swarm
based on these settings. For the memory settings, the
suffixes M and G are recognized, and for the time
settings the suffixes d (days), h (hours), m (minutes),
and s (seconds) are recognized. Swarm uses the
bounds to generate a script that can be executed by the
user to perform the verification test. Optionally, the
user can also specify additional search modes and
ways to compile the pan.c model checking code, to
expand the range of options that swarm can use.

For larger applications the swarm tool typically
generates several hundred different search jobs, that
can be completed within a one or two hour time limit.
In our applications, the model checking code in pan.c
itself is compiled in nine different ways by swarm,
using the directives we discussed in the previous
section. Multiple runs are performed with each of
those nine executables, to boost the level of search
diversification. Some runs, e.g., those performed with
bitstate hashing for small hash-array sizes, complete in
seconds. Others can take a more significant portion of
the allocated time. Because the slower running jobs
can be executed on separate processors or processing
cores, they do not interfere with the faster ones, and no
time is lost.

For the verification of our mission-critical file
system modules, we used two 8-core machines for the
verification tests, each with 32 GByte of memory, and

http://spinroot.com/swarm/

we performed each set of verification tests within a
time bound of one hour.

The effectiveness of this approach has surprised us.
Counter-examples are typically generated within the
first few minutes of a search, and often the result of the
one hour of running swarm jobs is a range of different
failure scenarios, rather than one single trail-file.
Defects that reveal themselves only after hours or days
of standard exhaustive verification attempts with SPIN
on a single processor now show up in minutes with the
swarm approach. The results of our applications have
been strong enough that the swarm testing has become
the primary mode of testing that we perform on all
large applications.

It should be noted that the applications that we
apply this type of verification testing to are indeed
large enough that exhaustive verification would be
prohibitively expensive. Each application includes a
significant amount of embedded C code. The file
system module, for instance, defines a state-vector of
3,623 bytes (with a worst-case number of 210,000 system
states). The model checking system for this application
is setup to perform a broad range of randomized
differential tests, under the control of the model
checker to avoid repeatedly visiting the same states
(which is much more difficult to prevent in a standard
test run).

To still support the differential test approach also
when using the model checker to perform the search
for errors, we include two full software modules into
the SPIN-driven verification tests, as embedded C
code. One module contains the file system code being
tested; the second module contains the reference model
against which its operation is being compared. In our
case, both modules execute completely in core (e.g.,
for obvious reasons we do not use an external file
system for the reference system when executing in this
mode). For the file system application, each of the two
modules used currently consists of roughly 5,000 lines
of C. SPIN uses the c_track primitive [7] to track the
memory used in these modules. Using these primitives,
the model checker can set and restore each module to
its proper state during the search.

We have also applied this method to re-verify
several large applications that we, and others, studied
in the past. For two of these applications the swarm
verification tests revealed errors that had been missed
in the earlier verification attempts with the standard
sequential model checking algorithms [10]. One of
these two applications was a model extracted from the
call processing code of a commercial voice and data-
switch [6], the other was a model of an experimental
Fleet processor architecture design, provided by R.
Limaye and N. Sundaram from UC Berkeley. In both

cases, the randomized search process could quickly
home in on errors that were too deep in the search tree
for a standard run to find.

4. Conclusion

The relatively recent switch of chip makers from
the development of single-core to multi-core chips, as
used for desktop systems, is matched by a similar trend
that applies to the internet as a whole. Several names
have been used to describe this new trend. The term
“grid computing” first appeared in the nineties (e.g.,
[4]). More recent are terms such as “cloud computing”
and “network centric computing.” Companies such as
Amazon, Microsoft, and Google are all working on
services that can make thousands of computers
available to customers for a defined period of time,
thus enabling the user to run massively parallel jobs.

We believe that this trend will continue. Once it
solidifies it will dramatically change the way software
verification tasks can be performed. Still, despite many
years of work in this area, we do not know of multi-
core model-checking algorithms that can scale
effortlessly to the use of thousands of loosely
connected computers in a network, so existing
technology does not yet allow us to take full advantage
of the vast array of compute power that may soon
become available.

In this paper we have outlined a relatively simple
approach that will allow us to leverage this trend to
some extent. On multi-core systems with large
memories, swarm can produce scripts that execute a
large diversity of verification jobs that complete within
a user-defined time bound, whether is a minute, an
hour, or several days. The same principle can be used
for using swarm verification scripts on the network at
large. In a larger network with thousands of available
computers, swarm may generate hundreds of
thousands of small verification jobs, all randomly
different, to search different parts of a very large
statespace and thus optimize our chances of finding
bugs.

The ‘swarm’ part in the term swarm verification
means that we both ‘swarm’ the statespace of a large
model checking application, and we ‘swarm’ the set of
computers available to perform the verification as
efficiently as possible. A good extension of this work
would be to find a way to divide a large verification
job into smaller pieces that can all be verified
separately, so that we can derive more solid guarantees
from a swarm verification effort. If sufficiently many
computers are available, it may not even matter much
if there is redundancy in such an effort.

5. References

[1] J. Appavoo, V. Uhlig , D. da Silva, “Scalability: The
Software Problem,” Proc. Second Workshop on Software
Tools for Multi-Core Systems, San Jose, CA, March 2007.

[2] J. Barnat, L. Brim, and P. Rockai, “Scalable Multi-Core
LTL Model-Checking,” Proc. 14th Spin Workshop, Berlin,
Germany, July 2007, Springer,LNCS 4595.

[3] R. Bryant and J. Hawkes, “Linux Scalability for Large
NUMA Systems,” Proc. Linux Symp., June 2003, Ottawa,
Canada, pp.83-95.

[4] Foster, I., and C. Kesselman, The Grid: Blueprint for a
new computing infrastructure, Morgan Kaufmann Publ., San
Francisco, CA., 1998 (1st ed.).

[5] A. Groce, G.J. Holzmann, R. Joshi, “Randomized
differential testing as a prelude to formal verification,”
Proc. Int. Conf. on Software Engineering (ICSE 2007).
Minneapolis, Minnesota, May 2007, pp. 621-631.

[6] G.J. Holzmann and M.H. Smith, “An automated
verification method for distributed systems software based
on model extraction,” IEEE Trans. on Software Engineering,
Vol. 28, No. 4, pp. 364-377, April 2002.

[7] G.J. Holzmann, The Spin Model Checker: Primer and
Reference Manual, Addison-Wesley, 2004.

[8] G.J. Holzmann and R. Joshi, “Model-driven software
verification.” Proc. 11th Spin Workshop, Barcelona Spain,
April 2004, Springer, LNCS 2989, pp. 77-92.

[9] G.J. Holzmann, and D. Bosnacki, “The design of a multi-
core extension of the Spin model checker,” IEEE Trans. On
Software Eng., Vol. 33, No. 10, Oct. 2007, pp. 659-674.

[10] G.J. Holzmann, R. Joshi, and A. Groce, “Tackling large
verification problems with the Swarm tool,” Proc. 15th Spin
Workshop, Los Angeles, US, August 2008, Springer, LNCS
5156, pp. 134-143.

[11] R. Joshi and G.J. Holzmann, “A mini challenge: build a
verifiable file-system,” Grand Challenge in Verification,
Verified Software: Theories, Tools, Experiments, Zurich,
Sw., October 2005, Formal Aspects of Computing, 2007,
Vol. 19, 4 pgs.

[12] K.L. McMillan: Symbolic Model Checking. Kluwer
Academic Publishers, 1993

[13] G.E. Moore, Cramming more components onto integra-
ted circuits, Electronics, 38, (8), April 9, 1965.

[14] U. Stern and D. Dill. “Parallelizing the Murφ verifier,”
Proc. 9th Int. Conf. on Computer Aided Verification, Haifa,
Israel, June 1997, Springer, LNCS 1254, pp 256–278.

	1. Introduction
	2. Swarm Verification
	2.1. Randomization and Diversification
	2.2. Diversification and Parallelization

	4. Tool Support and Application
	4. Conclusion
	5. References

