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Abstract—A poorly understood but important factor in ran-
dom testing is the selection of a maximum length for test runs
Given a limited time for testing, it is seldom clear whether
executing a small number of long runs or a large number of
short runs maximizes utility. It is generally expected thatlonger
runs are more likely to expose failures — which is certainly
true with respect to runs shorter than the shortest failing trace.
However, longer runs produce longer failing traces, requiing
more effort from humans in debugging or more resources for
automated minimization. In testing with feedback, increaing
ranges for parameters may also cause the probability of failre to
decrease in longer runs. We show that the choice of test lertgt
dramatically impacts the effectiveness of random testingand
that the patterns observed in simple models and predicted by
analysis are useful in understanding effects observed in ailge
scale case study of a JPL flight software system.

I. INTRODUCTION

budget for a single run and re-initializing the program estat
after every operation (performing many runs of length one)
are both unwise strategies, but little more is known about ho
to divide a budget. Testers may assume that longer runs (up to
some point short of a single run) will be more likely to expose
faults, motivated in part by the fact that for every program
there is some (unknown) shortest failing trace and that no
shorter run can fail, but often have little empirical sugdor

this suspicion. Even random testing researchers oftensghoo
a length based on little more than an educated guess and do
not experiment with thisd hocchoice [2].

It is also assumed that longer runs will produce longer
failing traces, which are more difficult to analyze and mote e
pensive as regression tests. In particular, with randotmtgs
long runs will contain a large number of irrelevant openasio
hindering debugging. Automated test case minimization via
delta-debugging [6] can reduce long traces to a more man-
ageable length, and is essential for making random testing

Random testing, an approach in which test inputs awseful [7]. Delta-debugging performs a kind of binary searc
generated at random (with a probability distribution thatym potentially quadratic in the test length, to find a shorter 1-

change as testing proceeds, and usually with the posgibilihinimal test case (a failing test case that succeeds if any
that inputs may be generated more than once), has receofheration is removed). While quadratic behavior is seldom
been shown to be an effective and easy-to-use automatizserved, the cost of delta-debugging does indeed increase
test generation technique for a wide variety of softwarguith test length, and (because it finds a 1-minimal rathen tha
This software can be divided into two categories [Afitch globally minimal trace) delta-debugging will tend to pradu
or interactive Batch programs take a single input, such denger minimized traces from longer runs.
a string, and return an output. Interactive programs take aln this paper, we demonstrate that the length of test runs
sequence®f inputs (typically including a choice afperation does indeed significantly impact the number of failures dis-
usually a function or method call) that may change the statevered as well as the length of failing traces found, and may
of the program, affecting output for future inputs. Manye a major factor in random test effectiveness.
safety critical programs, such as operating systems, mitwére Longer Runs Better at Finding Failures? In a limited
applications, and control systems fall into this categdty. sense, longer runare always better, under two assumptions:
in all testing, the goal of random testing is to produce testssumption 1: Checks for failure are performed after every
failures test cases in which a progrdiawlt (a particular bug, step of a sequence, rather than only at the end of the sequence
repaired by a particular fix) induces error in program sthét t Assumption 2: The probability that a generated test run of
propagates to observable output. lengthk + 1 will have a certain prefix of length is the same
Recent work on random testing has focused on strategasthe probability of generating that run of length
for testing interactive programs, including file systems @ata If both assumptions hold, then a test run of length- 1
structures [3], [4], [5], and device drivers. For such peogs, a will necessarily have a probability of failure equal to oegter
random test suités a set oftest runs Each test run is describedthan that of a test case of lengthThat is, if our random test
by a sequence of operations performed starting from a fixednsists of one test run and we aim to maximize the probgbilit
initial program state. A test budget (the time available faof failure, it should be as long as possible, if the maximum
testing, approximated by limiting the number of operatjonsength does not affect the selection of test operations — eve
is typically divided into more than one test run, as failurei§ the probability of failuredecreasesvith each step.
can result from one-time decisions made at the beginningln reality, as noted above, software is tested in limitedetim
of a run. Intuitively, testers expect that using the entgstt and with more than one run. A more realistic model is to



consider how a test budget should be partitioned into runs.
Given a fixed budget oB operations, choosing a length
determines how many runs will be executed — ranging from 08 -
one run of lengthB to B runs of length one. While the actual
cost in machine time of test operations may vary, contrgllin
testing time by fixing a budget of operations is reasonable:
the choice to terminate a test usually cannot be made in mid-
operation, and if operations are equally probable the gecra
cost ofk-length tests is often predictable. In some experiments
and analysis, we assume that even if a test terminates early
after detecting a failurek operations are still counted against

Probability of failure

the budget. This is not unreasonable, as the purpose of the °5 w 100 150 200
budget is to limit resources, and the cost of minimizing the e estrin eno (0
failing test case is likely to bgreater than the cost of the Fig. 1. Probability of failure, Buffer overflow

remaining operations. In this model, increasing run lerogtt

decrease the effectiveness of a test effort, as the expected

number of failures depends on the number of runs executedThe particular effects of run length vary with program
Let P(k) be the probability of finding a failure atlength The (and version of that program): we here presenstady of
total number of failing traces found with a test budgeti®f those effectsather thana method for selecting optimal run
operations with lengtl test runs isN (k) = L%J - P(k). The length We do not, therefore, study the large range of “mixed”
expected number of traces found increases when we incresisategies for dividing a budget in which is not constant
length fromk;, to k, iff k_Bz - P(kg) > {% -P(k1). That is, but varies over time. We do note that an “iterative deepéning
if we double the length of funs, wiewerthé expected number Method of starting with smak and increasing it until failure

of failing traces, unless the probability of failure double ~ detection rates decrease might be useful.
Threats to Validity. There is some possibility that our 5

Related Work. Although many ra_ndom testing Strat?g'e%rograms (with 9 versions for one) might be unrepresergativ
have been proposed, chtors that influence the effectlsenﬁ.f, particular, effects of run length might not be similar for
of all such test strategies have not been deeply explorgd, o with very low failure incidence. Results for low

Only recently has the effect of the seed and timeout begly e yersions of the file system do not contradict our
|n\{est|gated thoroug_hly [8]. W.hlttaker anq Thor_nason F)Ecmoﬁndings, but producing statistically significant resulbs $uch
using a Markov chain model in stochastic testing, but do n Fograms appears to be prohibitively expensive.

address factors for selecting run length [9]. Doong and ral
[10] also noted that different numbers of operations in cand 1. EXAMPLES

testing resulted in different failure rates. For interactive programs, a sequence of operations may lead

Contributions. This paper presents the first large empiricdP failure. For many faults, there exists a finite set of miazied
study of how test run length affects failure detection arf@ilure tracesE — minimal sequences that expose the fault.
trace quality. In our simple examples and larger case studiEOr example, one bug in the JPL file system is described by
we show that there often exists an optimal length of inpuitinimized traces of only 2 operations, on&di r and one
sequences for failure detection, and that longer runs leadoen. If the random tester has a finite set of operatidis
longer failing traces and more time spent minimizing tegfts. to choose from at each step of the test run, then the set of all
begin by examining two small models, providing an intuitiv@0ssible test runs or traces of lengtlor less,T}, is also finite.
understanding of the effects of run length. We then shoafom the set of minimized failing traces, a finite set of fajli
how these effects appear during the large-scale testing oftgaces of length less than or equalitpFy;, can be derived by
embedded file system at JPL and in unit testing of Java dé#tgluding all operations that do not contribute to (or preye
structures. We focus on how run length affects failure digtec failure for each minimized failure trace. Given a randontéra
— how the number of failures discovered for a given testingf lengthk, there is aP(k) = | Fi|/|T}| probability of failing.
budget varies with test run length. Of course, discoveriagyn ~ For this category of programs and faults, there exists some
traces exposing the same fault is not the goal of testingugtho finite optimal run length. To simplify calculations, we assi

it can be useful in evaluating fixes). However, in cases whelfeat at each step the tester chooses an operation frtbm
there is only one fault in a system (or a small number ¢fiformly. For each minimized failing trage we can calculate
faults of roughly equal probabilityJailure detection for large the number of traces of lengththat contain the failing trace
budgets serves to approximate the chance of finding anydail@s B(k, |o|) = () (|M| — b)*71*l, whereb are the unique

at all (and thus any fault) with a smaller budgeind is a oOperations inp. 'Fhe probability of finding failure for length
simpler statistic to compute and understand than expectédis thus P (k) = w.

probability-of-finding-a-fault (which is easy to deriveofn An example of the probability functior” is shown in
failure detection in our examples). Figure 1. All interactive programs with this class of faults
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100

At each step, one or two items are written to a random
buffer. The simulation fails if the bad buffer has 10 or more
w0 1 items. We stop a run aftde steps. Atrace is a sequence of
writes (b,n) whereb is the buffer written anch € {1,2} is
the number of items written. Aailing trace is a trace that
ends with the assertion failure. Failing traces containtesri
to the bad buffer and may contain writes to other buffers.
If the writes to the other buffers are removed, the trace is a
minimized failing traceldeally, we want to find a test length
k such that we find the most failing traces, and such that all
failing traces or all minimized failing traces have the sher

60 -

40

Average failing test case length

20

o5 w 100 150 possible length.
s o © Failure Detection. To calculate the probability of failing given
Fig. 3. Avg. failing trace length, Buffer overflow a test case of length, we calculateP (k) = Fj. /Tk. We now

define B(k,s) = (*)(18)¥~* as the number of traces that
contain a sequence of writes to a bad buffer of lengtf.
will produce a similar binomial cumulative distributionrwe.  There arel0 classes of traces that do not lead to failure: traces
From this distribution, the existence of some optimal te$fat do not have writes to the bad buffer< 0) and traces
run |ength can be predicted' by Ca|cu|atir}d]€)/]€_ We that inserts = 1...9 items in the bad buffer. Figure 1 shows
precisely calculate the probability for a simple example dhe plot of P(k) for k betweenl and200.
buffer overflow to demonstrate that this calculation acelya ~ T0 find the k& that maximizes failure detection, we want
predicts the optimal test run length. Case studies, althovgy 10 increasek; to k» if and only if P(ks)/ke > P(k1)/k:1.
cannot precisely calculat®, show similar behavior, hinting P(k)/k is maximized wherk: = 92. Therefore, the optimal
that real experiments exhibit the properties described iy dun length should be 92. Figure 2 shows failures found per

simple examples. 1,000,000 operations by using random tests with a budget of
10,000,000 operations with run lengths from 1 to 200. As
A. Buffer Overflow predicted, the graph peaks whénis 92. In one experiment,

This example shows how we can predict how the length gfthere is an assertion failure in the begln_mng of the test r
we continue the test and count all operations performed. In a

test runs affects the probability of failure where each apien . : .
is uniformly selected. This example is representative ofemosecond experiment we terminate the test run at the assertion

complex failures found in our case studies, where a certa{ lure z?md do not coun_t the subs_equent operations tOWf""d
sequence of operations must be performed before failu N t_e_stmg budget. In this case, fa|_|ures found per opmmal
Suppose there are 10 buffers, one of which is incorrec b!l|zg to some _constant as we increase Fhe Input Igngth,
allocated and overflows as soon as a 10th item is added Pdmrmmg the notion that longer runs result in better #lu

) . . . . detection.
it. We can “test” this system with a very simple driver: I~ . .

y y P Failing Trace Length. There are 144 minimized failing
for (i =0; i <k; i++) {

i = rand() %10’ traces: 89 that result in 10 items being in the buffer and
anount = rand()i%z + 1 55 where the final insertion adds two items to the buffer,
wite (buffers[j], amount); for a total of 11. The smallest minimized failing trace is

assert (buffers[ BADBUFF] < 10);
} (bad,2) : (bad,2) : (bad,2) : (bad,2) : (bad,2); the longest
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Failing test cases (per 100 operations)

is a trace of 9 writes of 1 item to the bad buffer followed
by (bad, 1) or a (bad,2). Figure 3 shows the average failing
trace length fork = 1...200 with a budget ofl07 operations. |
Figure 4 shows the average minimized failing trace length. | 0 50 Max‘mumsi})f’m.engm 150 200

both graphsk = 92, the optimum choice for failure detection,

has an average (minimized) failing trace length close to tif@. 6. Failure detection with and without the testing budgeunting the
maximum length, hinting that there is a trade-off betwean tfull run, NSPK

ability to detect faults and the quality of traces.

B. Needham-Schroeder

This example shows how there exists an optimal test run w0t
length when operation selection is not uniform — e.g., when
the probability that an operation leading to error is seldct
decreases as the test run increases. The Needham-Schroede
Public-Key Protocol (NSPK) [11] provides authenticatice b
tween two partiesA and B. A sendsB a nonce andA’s
identity encrypted byB’s public key.B replies withA’s nonce
and a newly generated nonce encrypted4yy public key. A o
replies with B’s nonce encrypted witlB’s public key. At the
end of the protocolB is supposed to know that is indeed 0
talking with B and vice versa. Unfortunately, there is a known
man-in-the-middle attack [12]. An impostdrcan initiate the
protocol and induce3 to believe that the protocol is executing
with A rather thanl. I operates by forwarding messages to

A, since never needs to encode its identity withis key. fajjure detection: as a run accumulates history, the raftfeso
The protocol and the attack are shown in Figure 5. random choices increases, and at some point the probability
~ Random testing can find this man-in-the-middie by mode}s fajling (by matching a nonce) begins to diminish. In this
ing two legitimate partiesd andB, and a random adversafy  case, the intuition that longer test runs find more failirgés

on a shared networki and B will always follow the protocol: s incorrect.

each may randomly choose some party and begin authentiegqing Trace Length. In this case, the final result of mini-
tion. If A choosesB, authentication will occur as in Figure 5'mization is pre-determined: there is one unique failingdra

If either A or B choosesk, A or B will ignore messages that (3pstracting nonces) leading to the exploit (Figure S@Epure

do not follow the protocolA or B will reset after receiving 7 shows howk: affected the failing trace length. The optimum
n unexpected messages.randomly generates message froffugt ryn length for failure detection produces failing &mc
communications overheard and randomly selects a recei\giy, 4n average of 29 operations, significantly more than the

R does not know the protocol, but can decrypt messagesnimum of 6 operations. Very small produce near-optimal
encrypted by its public key and assemble new messages. Thigng traces but are less likely to produce failures.
model represents a realistic approach to randomly testing a

protocol for a wide variety of attacks.

Failure Detection. Figure 6 shows how the length of each
run affected authentication failure detection with a tasidet The results in this section were generated using a random
of 1,000 operations. The y-axis shows failing traces foundst framework for file systems used in space missions [2]
per 100 operations. We find that the most effective length (@hich we are now applying to file systems for the Mars

50 operations. Increasing past 50 decreases the effeetigenScience Laboratory [13]). We selected versions of the file
becauseR has too many recorded messages to choose frosystem and framework ranging from the earliest working

Again, we show results when operations after failure aré botersions to stable versions almost identical to the current
counted against the total and returned to the test budgeiease (identified by date from 01-19-2006 to 09-06-2006).
This is a simple example where feedback [3], [2] influencdzailure density ranges from very low (two failing test cases
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Fig. 7. Avg. failing trace length, NSPK

IIl. CASE STUDY: FLASH FILE SYSTEM



| [[ 01-19 | 0203 | 02-17 | 03-03 | 03-17 | 04-03 | 0427 | 04-28 | 09-06 |

Failure detection 8 9 10 11 11 11 12 S S
Failure rates 13 14 14 15 15 15 14 S S
Avg. failing trace length 16 17 17 17 17 17 17 S S
Minimization cost 18 C C 18 18 18 C 18 18
% minimization cost 19 C C 19 19 19 C 19 19
Avg. minimized trace length 20 C C 20 20 20 C L L
Shortest minimized trace length L C [ L L L C 21 21

Reasons for omission: L = lack of interesting features, C mpmuatation-time limits, S = too few points for significance
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in two days of testing) to very high (thousands of failingttes=or other versions, this problem did not appear until a lengt
cases per hour). of around 1,600. For 01-19, we observed convergence to very
Our results are based on further execution of approximatégw failures at low test lengths, and increased the number of
25 hillion test operations (over 60 machine days). For eashmple points for lower values to better show this behavior.
version, depending on the density observed during loggEdr eachk, we recorded (1) the number of failing test
tests, we ran with a testing budget of 1, 10, or 100 millionases produced. For some versions we also computed (2) the
operations and a run length ranging in 128 even stepsaverage failing test case length, (3) the lengths of mirgahiz
from 13 to 1,600 (in most cases). In some cases, we orijling traces produced from the failing test cases, and (4)
examined test lengths up to 1,400, as the file system releathes number of operations spent minimizing test cases. An
for these versions were compiled with resource limitatiorgperation, for testing or minimization, took an averagegiag
that caused false warnings to dominate the test results witbm about 0.0002 to 0.0004 seconds to execute, depending
longer tests (the effect does not appear in shorter tests, ba the version of the file system. Failures represent one faul
false warnings become difficult to filter out with longer st or two faults of approximately equal probability, to the bes
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of our knowledge, in all but one case. Thus failure detection . L

approximates probability of finding all faults, as desiréable _ The eff_ect ofk on failure detection is unclear for the

| gives an overview of locations for results, indicating gko final Versions Of_ the §oftware, 04-28 and 03-06, Whgre the
omitted due to a lack of interesting features (L), compaotati probability of failure is too low to show any meaningful

time limits (C), or because there are too few data points fge nds. With a test budget of 100 million operations, tegtin
significance (S). never produced more than 8 failing test cases for any choice

of k. We speculate that trends might be evident for these
versions if we increased the budget to 10 billion or more
Figures 8-12 show the number of failing test cases for ea@Rerations (but estimate that producing these results dvoul
choice of the test run length. As noted in earlier work, the take at least 2,000 machine days, a daunting prospect even
number of unique faults (identified by bug fixes) decreasé&dven the embarrassingly parallel nature of random tejting
with time [2]. These figures show that failure detection for As Figures 14 and 15 show, tiate of failure for tests was
test periods with one or two faults also generally decreasgd! increasing at the point at which false warnings foreexd
as the software grew more stable: there were fewer bugsend our experiments. This appeared to be the case for 04-28
and the bugs were (usually) less likely to occur in any tegnd 09-06, though in these cases the infrequency of failures
run. The effect was most marked at the beginning of the tesade it difficult to be certain. In three cases, the increase i
period (where for smalk the detection rate was nearly 2,00@ailure rate was sufficient to make the failure detectioneswp
failures per 1,000,000 random operations) and at the endrefighly constant, while in other cases the rate had deatease
testing (0.08 failures per 1,000,000 operations). Fron08®3-enough to produce a decrease in failure detection. Figure 13
to 04-03, failure detection remained fairly constant, befoshows a fundamentally different pattern (and demonstthses
peaking again then stabilizing very low. One observatidghas the file system test framework can violate dsgsumption 2).
optimizing failure detection was usually unimportant aigri Behavior for Larger k. False positives cause the “failure rate”
early testing, as it was easy to find faults. For later vessiorto approach 1.0 quickly after a certain test length is redche
we were fortunate that oua¢l hog selection ofk = 1,000 At this point experiments show only that increasitigneans
was close to the optimal. performing fewer tests.

A. Failure Detection
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B. Failing Trace Length and Delta-Debugging Figure 20 shows how thaveragelength of minimized

Figures 16 and 17 show how run length related to theaces changed, for three medium-density versions (n@e th
length of failing traces. Only the results for 01-19 show angifferent axis for 01-19). For 03-03, the average lengthenev
surprising features. For 01-19, we believe that one fauth w exceeded 4 operations, and for the other two versions the
high probability of appearing just after initializationczero average remained below 15 operations. For these versions
probability thereafter, is responsible for the very lowrage of the file system, delta-debugging “flattens” increasiragér
up throughk = 100. Thereafter, another failure resultinglength, andk has little effect on the quality of test cases
from a different fault became possible and rapidly incrdas@rovided to developers (it may slightiynprove with rising
average length. To some extent, this makes 01-19 less uséfufor 03-17, because of a larger pool of traces). On the other
for predicting fault detection. hand, Figure 21 shows the length of theallestminimized

The change in trace length affected delta-debugging cakt aast for the two lowest failure-density versions of the waite
effectiveness. As Figure 18 shows, the cost of delta-debhggg— perhaps the most effective measure of the quality of traces
does increase with failing trace length (we only report €ostor debugging purposes (not reported for the other versisns
for a sample of versions, as delta-debugging all traces fitve shortest length is actually a constant for those vesgion
versions with more failures proved too expensive) — noté thilere there is a much more significant relationship between
this is a graph over trace length, nlat For very low density the test run length and the size of minimized traces. The best
versions the increase with trace length was most extrente, failing trace ranges in size from 3 operations to 321 openati
the number of traces to minimize so small that delta-delmgygidepending on how we divide up our budget: a poor choice of
costs never amounted to more than 3% of the budget. Howevehere can considerably increase the difficulty of debugging.
as Figure 19 shows, when random testing finds more failures
the cost of delta-debugging all traces can be quite sigmnifica IV. CASE STUDIES: DATA STRUCTURES
— rising to almost 150% of the test budget for 04-03 (one The results in this section were based on the random testing
and a half hours). The cost would be even higher for versioobtwo data structure units: thegbneyBag unit from version
with more failures. 3.8 of the JUnit distribution [14], and a version of the TresgM
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o approximately 200 results in about the same failure detecti
. rate. It also suggests that this efficiency is optimal.
100 4
: - - x B. TreeMap
80 [ + A . .
g . In earlier experiments [14], we tested mutants of the stan-
E o0 f v v « A dard JavaTr eeMap unit, a red-black tree implementation,
5 v . = - by calling random methods with parameters drawn randomly
A o e W S ] f i The driver tended t the si b
g R e o N AL rom given ranges. The driver tended to cause the size (numbe
ol %gxxx Tk L | of keys) of theTr eeMap being tested to gradually increase
I T ' until it stabilized at a level where the driver was as likety t
o T \ \ . remove an element as it was to add a new element.
0 200 400 600 800 1000 1200 . . .
Maximum test run ength (X We wanted to simulate a fault in which a lower test sequence
. — length was more efficient at forcing failure. We therefore
Fig. 21. Shortest minimized trace length, 04-28, 094065z + 13.57, R? = 9 . 9 . .
0.33) (0.04z + 10.34, R? — 0.15) seeded a fault into the code ifr eeMap which caused it

to fail when trying to find a key in an empty tree. We

hypothesized that the failure was more likely to occur at
unit from the Java 1.4.2 distribution into which a fault hakh lower test lengths, since at high test lengths the driverlevou
introduced. In each of these settings, an operation is agdetthave to remove all keys first. We ran 200 test cases of each
call. length from 1 to 196 in increments of 5, and measured the
number of failures per actual method call, as we had done with
MoneyBag. Figure 23 shows the results. The unit was much

TheMoneyBag unit distributed with JUnit represents vary-more likely to fail when the number of operations was low, but

ing amounts of money in different currencies. The versi@a dithe number of failures per method call appeared to evegtuall
tributed with version 3.8 of JUnit contained a fault invelgi stabilize at about 0.025, one failure for approximatelyrgve
the interaction of two methods. TheppendTo method, a 40 method calls. The graph is most similar to the file system
kind of specialized addition operation, createttaneyBag results from 01-19 (Figure 8).
with only one currency under some circumstances; however,

A. MoneyBag

the equal s operation expected allbneyBag objects to V. ANALYSIS OF RESULTS
have more than one currency, leading it to judge two objectsWe formulate two hypotheses, together capable of explain-
to be unequal when they should have been equal. ing our results. The first hypothesis is that the test promedu

Using the framework with which the fault was originallyin some cases behaves as a Markov chain; we show that this
found, we ran 10,000 test cases of each length from 5 to 420drsufficient to explain the buffer overflow and data struesur
increments of 5. We measured the number of failures detectedults. We begin with another more general analysis than th
by the framework for eact, and also counted the numbebinomial approach in Section Il, based on Markov chains, of
of method calls actually performed, taking into account thie probability that a test case will fail and the averagetlen
fact that the test case could fail before the requested hengff a failing test case. Our second hypothesis is that the test
had been reached. We then calculated the average numbegipgdroach in the file system cases can induce a probability of
failures per method call actually performed. failure that can appear linear in the number of operations,

The results are shown in Figure 22. The shape of thehich explains apparently anomalous results for some file
graph suggests that for thebneyBag, any length over system versions.
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in which the states represent the state of the memory and disk
data that the software has access to, and the transitions rep
resent the randomly-selected operations. Situations iichwh
this Markov chain hypothesis does not hold include situregio
in which the software has an effectively infinite set of state
such as when the program is able to access and change data on
an unlimited number of networked machines. These situgtion
however, are rare in testing environments.
Time-homogeneous Markov chains always approaghi-
librium. That is, for each state; there is astationary state
probability 7;, such that the probability that the system is
in state s; after a transition approaches;; in symbols,
hm]éoo(p(sl,j)) = T;.

Under the Markov chain hypothesis, the probabifitf(;)
that a failure will be detected at operatignmust converge
toward a constant. Since we have seen that the difference
A. Probabilities of Failure al(k+1) — al(k) is [[5_; (1 — pf(j))), we have two cases.

We assume that the random test (the test harness plus testddrst, if the constant thaif(j) converges toward i8, then
program) is in some state from a finite st = {s;, s, it is possible thatl(k + 1) — al(k) converges to a nonzero
..., s, } Of states. At each statec S, there is a probability value ask increases. This means that test runs of requested
¢(s) that the next operation will cause an observable failurength k increase in actual length dsincreases, because a
Statess € S may not be equally likely after every operationfailure is less and less likely to occur &sncreases — when
We use the notatiop(s, 5) for the likelihood that the system is none of the Markov chain states for which; > 0 are states
in states after operatiory. The probabilitypf(;) that a failure in which a failure can occur on the next operation.
occurs at operation is therefore the sum, over all statesof Second, if the constant thatf(j) converges toward is
p(s,7) - (s). greater thar), thenal(k+1) —al(k) converges toward 0. This

This can be used to calculate the average length of a test nin@ans that test cases of requested lekdypically converge
The system checks an oracle after each operation, and ktpsn actual length to some constant/agicreases. This situation
sequence if it detects a failure. If no failure is detecthdntthe happens when there is always some accessible state in which
length of the sequence performedkisif a failure is detected, a failure can occur.
then the length isn wherem < k. The probability of no However, since we stop a test case when the first failure
failure being detected @le(l—pf(j)); the probability of a is detected, we note that the number of failures per operatio

failure being detected at operatiois pf(i)-]_[;;ll(l—pf(j)). when lengthk is requested i$/al(]<:). Therefore in b_oth of the
Therefore, when a sequence fooperations is requested, thetases above, the number of failures per operation converges
average lengtul(k) of the actual test case performediis !0 @ constant: whenl (k) grows without bound, t_he constant
H?:l(l —pf()) + Zf:l(i pf(d) - Hé;ll(l —pf(4))). The 180, and wh_eml(k) converges ta, the constant id/c. T_he
difference in average length when the test run length is. Markov chain hypothesis is therefore sufficient to predett t

k + 1 operations can be denoted by(k + 1) — al(k); this as k increases, the numbefipo(k) of failures per operation
expression simplifies t(ﬂ’? (1= pf()) converges to a constant. Formally, it predicts that thera is
Jj= ’

_ . constantc such that for all positive real numbersthere is a
B. Markov Chain Hypothesis length & such that fpo(k) — ¢| < e.

Under certain reasonable assumptions, a random test caAlthough the Markov chain hypothesis predicts tliab(k)
be considered to be a Markov chain. Here we show that thisll converge to a constant, it does not predict whether this
hypothesis explains why the number of failures per actuabnstant is a maximum ofpo(k) over all k, a minimum of
operation performed stabilizes at a constant value in tifebu fpo(k) over all k, or something in-between. Our empirical
overflow and data structures testing. results show two of the behaviors. In the graphsfpb(k)

A Markov chain [15] consists of a finite sef for the buffer overflow example and tibneyBag unit, the
{s1,892,..., sy} Of states, and a probabilit);;, for eachi,; asymptotic value was a maximum. In the graph foio(k)
such thatl < i < nandl < j < n. P; represents the for the seededlreeMap fault, the asymptotic value was a
probability that the next operation will cause the Markoaich minimum. As discussed below, the asymptotic argument does
to make a transition from state to states;. The Markov chain not hold for the file system.
is time-homogeneous the probabilitiesP;; do not change  This behavior reflects the possible probabilities of failat
over time. In the rest of the paper, we will assume all Markadifferent distances from the start of the test case, andaappe
chains are time-homogeneous. to be independent of the number of faults. For example, a

In most circumstances, it is reasonable to make the hypograph of fpo(k) that starts at O, rises to a peakkat m and
esis that a system for random testing acts as a Markov chahen tails off to a lower constant may reflect only one fadlt, i

Fig. 23.  Number of failures per method call, fault-seededeMap unit



development cycle of a single program, but fit into a small
number of patterns.

We also note that behaviors were generally continuous: for
programs where failures are even moderately probable vent
an iterative deepening approach to finding a “good-enough”
run length would appear to be practical. We will investigate
such an approach as future work, using both our historidal da
and new testing projects — in particular, we are concernad th
the cost of experiments to determine failure detectionficals
k may result in an overall less efficient use of the budget than
simply choosing a larger, sub-optimaéljn the first place. We
hope to investigate how good testers are at guessing a/good
— in the file system case, the difference in failure detection
between the optimal point and the somewhat arbitrary choice
used £ = 1000) was often too small to justify expensive
experimentation (from 02-17 to 04-17) but was occasionally
the probability that we are in a state in which the fault can kguite high (a factor of two for 02-03, and over two orders of
triggered is highest at; however, it may reflect two different magnitude for 01-19).
faults, one of which can only occur early in the sequence, aAdknowledgments. The authors would like to thank Carlos
the other of which can happen at any time. Pacheco, Gerard Holzmann, Rajeev Joshi, and Klaus Havelund
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Fig. 24. Failure rates, file-system model with fault injenti

C. Linear Failure Rate Increase

Three of the file system versions show a failure rate that
seems to increase linearly with We attribute this somewhat [1]
unexpected behavior to a violation AEsumption 2 the test 2]
framework adjusts the probability of hardware faults sudt t
the expected total number of faults per test is constantifdr, a
in order to avoid terminating tests early due to device failu
The underlying Markov model is therefore different for each
k. If discovering an error depends on (1) simulating a certaiffl
number of faults and (2) performing operations after thét$au
the influence ofk on the probability of faults apparently [5]
produces a binomial distribution, but extends the range ove
which the graph of failure rates may appear linear, a Iikel)f6
explanation for Figure 15. Figure 24 shows failure ratesafor
toy model, featuring a single type of hardware fault. To esgpo
the “error” a trace must first enter a state with exactly 3ttaul [7]
and then perform, in order (with other operations allowed in
between), 3 (out of 10) operations. The graph comparegéailul8]
rates for this program if the tester (1) fixes the probabibty
hardware faultsP( fault), or (2) adjustsP(fault) with k so

that 4 faults are expected i operations. El

VI. CONCLUSIONS ANDFUTURE WORK [10]

The most important lesson for practitioners and random
testing researchers is that run length has a major ianuence[pl]
the effectiveness of random testing for interactive progra
For all programs we tested, changing run length could irs@ea
the number of failures found by an order of magnitude &2
more. Run length also controlled the quality of failing &ac
produced. Delta-debugging, in many cases, reduced therimgé3]
tance of run length, but the cost of delta-debugging ineeas’?
with length, in some cases consuming more operations than
testing itself. Our study shows that the optimal run length
and relationships between run length and quality and cost !t
minimized failing traces varied dramatically, even durihg

for helpful comments. We also thank NSERC for support.
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