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Abstract—A poorly understood but important factor in ran-

dom testing is the selection of a maximum length for test runs.
Given a limited time for testing, it is seldom clear whether
executing a small number of long runs or a large number of
short runs maximizes utility. It is generally expected thatlonger
runs are more likely to expose failures — which is certainly
true with respect to runs shorter than the shortest failing trace.
However, longer runs produce longer failing traces, requiring
more effort from humans in debugging or more resources for
automated minimization. In testing with feedback, increasing
ranges for parameters may also cause the probability of failure to
decrease in longer runs. We show that the choice of test length
dramatically impacts the effectiveness of random testing,and
that the patterns observed in simple models and predicted by
analysis are useful in understanding effects observed in a large
scale case study of a JPL flight software system.

I. I NTRODUCTION

Random testing, an approach in which test inputs are
generated at random (with a probability distribution that may
change as testing proceeds, and usually with the possibility
that inputs may be generated more than once), has recently
been shown to be an effective and easy-to-use automatic
test generation technique for a wide variety of software.
This software can be divided into two categories [1]:batch
or interactive. Batch programs take a single input, such as
a string, and return an output. Interactive programs take a
sequenceof inputs (typically including a choice ofoperation,
usually a function or method call) that may change the state
of the program, affecting output for future inputs. Many
safety critical programs, such as operating systems, network
applications, and control systems fall into this category.As
in all testing, the goal of random testing is to produce test
failures: test cases in which a programfault (a particular bug,
repaired by a particular fix) induces error in program state that
propagates to observable output.

Recent work on random testing has focused on strategies
for testing interactive programs, including file systems [2], data
structures [3], [4], [5], and device drivers. For such programs, a
random test suiteis a set oftest runs. Each test run is described
by a sequence of operations performed starting from a fixed
initial program state. A test budget (the time available for
testing, approximated by limiting the number of operations)
is typically divided into more than one test run, as failures
can result from one-time decisions made at the beginning
of a run. Intuitively, testers expect that using the entire test

budget for a single run and re-initializing the program state
after every operation (performing many runs of length one)
are both unwise strategies, but little more is known about how
to divide a budget. Testers may assume that longer runs (up to
some point short of a single run) will be more likely to expose
faults, motivated in part by the fact that for every program
there is some (unknown) shortest failing trace and that no
shorter run can fail, but often have little empirical support for
this suspicion. Even random testing researchers often choose
a length based on little more than an educated guess and do
not experiment with thisad hocchoice [2].

It is also assumed that longer runs will produce longer
failing traces, which are more difficult to analyze and more ex-
pensive as regression tests. In particular, with random testing,
long runs will contain a large number of irrelevant operations,
hindering debugging. Automated test case minimization via
delta-debugging [6] can reduce long traces to a more man-
ageable length, and is essential for making random testing
useful [7]. Delta-debugging performs a kind of binary search,
potentially quadratic in the test length, to find a shorter 1-
minimal test case (a failing test case that succeeds if any
operation is removed). While quadratic behavior is seldom
observed, the cost of delta-debugging does indeed increase
with test length, and (because it finds a 1-minimal rather than
globally minimal trace) delta-debugging will tend to produce
longer minimized traces from longer runs.

In this paper, we demonstrate that the length of test runs
does indeed significantly impact the number of failures dis-
covered as well as the length of failing traces found, and may
be a major factor in random test effectiveness.
Are Longer Runs Better at Finding Failures? In a limited
sense, longer runsare always better, under two assumptions:
Assumption 1: Checks for failure are performed after every
step of a sequence, rather than only at the end of the sequence.
Assumption 2: The probability that a generated test run of
lengthk +1 will have a certain prefix of lengthk is the same
as the probability of generating that run of lengthk.

If both assumptions hold, then a test run of lengthk + 1
will necessarily have a probability of failure equal to or greater
than that of a test case of lengthk. That is, if our random test
consists of one test run and we aim to maximize the probability
of failure, it should be as long as possible, if the maximum
length does not affect the selection of test operations — even
if the probability of failuredecreaseswith each step.

In reality, as noted above, software is tested in limited time
and with more than one run. A more realistic model is to



consider how a test budget should be partitioned into runs.
Given a fixed budget ofB operations, choosing a lengthk
determines how many runs will be executed — ranging from
one run of lengthB to B runs of length one. While the actual
cost in machine time of test operations may vary, controlling
testing time by fixing a budget of operations is reasonable:
the choice to terminate a test usually cannot be made in mid-
operation, and if operations are equally probable the average
cost ofk-length tests is often predictable. In some experiments
and analysis, we assume that even if a test terminates early
after detecting a failure,k operations are still counted against
the budget. This is not unreasonable, as the purpose of the
budget is to limit resources, and the cost of minimizing the
failing test case is likely to begreater than the cost of the
remaining operations. In this model, increasing run lengthcan
decrease the effectiveness of a test effort, as the expected
number of failures depends on the number of runs executed.
Let P (k) be the probability of finding a failure at lengthk. The
total number of failing traces found with a test budget ofB
operations with lengthk test runs isN(k) =

⌊

B
k

⌋

·P (k). The
expected number of traces found increases when we increase
length fromk1 to k2 iff

⌊

B
k2

⌋

·P (k2) >
⌊

B
k1

⌋

·P (k1). That is,
if we double the length of runs, welower the expected number
of failing traces, unless the probability of failure doubles.

Related Work. Although many random testing strategies
have been proposed, factors that influence the effectiveness
of all such test strategies have not been deeply explored.
Only recently has the effect of the seed and timeout been
investigated thoroughly [8]. Whittaker and Thomason propose
using a Markov chain model in stochastic testing, but do not
address factors for selecting run length [9]. Doong and Frankl
[10] also noted that different numbers of operations in random
testing resulted in different failure rates.

Contributions. This paper presents the first large empirical
study of how test run length affects failure detection and
trace quality. In our simple examples and larger case studies,
we show that there often exists an optimal length of input
sequences for failure detection, and that longer runs lead to
longer failing traces and more time spent minimizing tests.We
begin by examining two small models, providing an intuitive
understanding of the effects of run length. We then show
how these effects appear during the large-scale testing of an
embedded file system at JPL and in unit testing of Java data
structures. We focus on how run length affects failure detection
— how the number of failures discovered for a given testing
budget varies with test run length. Of course, discovering many
traces exposing the same fault is not the goal of testing (though
it can be useful in evaluating fixes). However, in cases where
there is only one fault in a system (or a small number of
faults of roughly equal probability),failure detection for large
budgets serves to approximate the chance of finding any failure
at all (and thus any fault) with a smaller budget, and is a
simpler statistic to compute and understand than expected-
probability-of-finding-a-fault (which is easy to derive from
failure detection in our examples).
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Fig. 1. Probability of failure, Buffer overflow

The particular effects of run length vary with program
(and version of that program): we here present astudy of
those effectsrather thana method for selecting optimal run
length. We do not, therefore, study the large range of “mixed”
strategies for dividing a budget in whichk is not constant
but varies over time. We do note that an “iterative deepening”
method of starting with smallk and increasing it until failure
detection rates decrease might be useful.
Threats to Validity. There is some possibility that our 5
programs (with 9 versions for one) might be unrepresentative.
In particular, effects of run length might not be similar for
programs with very low failure incidence. Results for low
failure versions of the file system do not contradict our
findings, but producing statistically significant results for such
programs appears to be prohibitively expensive.

II. EXAMPLES

For interactive programs, a sequence of operations may lead
to failure. For many faults, there exists a finite set of minimized
failure tracesE — minimal sequences that expose the fault.
For example, one bug in the JPL file system is described by
minimized traces of only 2 operations, onemkdir and one
open. If the random tester has a finite set of operationsM
to choose from at each step of the test run, then the set of all
possible test runs or traces of lengthk or less,Tk, is also finite.
From the set of minimized failing traces, a finite set of failing
traces of length less than or equal tok, Fk, can be derived by
including all operations that do not contribute to (or prevent)
failure for each minimized failure trace. Given a random trace
of lengthk, there is aP (k) = |Fk|/|Tk| probability of failing.

For this category of programs and faults, there exists some
finite optimal run length. To simplify calculations, we assume
that at each step the tester chooses an operation fromM
uniformly. For each minimized failing traceρ, we can calculate
the number of traces of lengthk that contain the failing trace
as B(k, |ρ|) =

(

k
|ρ|

)

(|M | − b)k−|ρ|, where b are the unique
operations inρ. The probability of finding failure for length
k is thusP (k) =

P

ρ∈E B(k,|ρ|)

|M|k
.

An example of the probability functionP is shown in
Figure 1. All interactive programs with this class of faults
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Fig. 2. Failure detection with and without the testing budget counting the
full run, Buffer overflow

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

A
ve

ra
ge

 fa
ili

ng
 te

st
 c

as
e 

le
ng

th

Maximum test run length (k)

Fig. 3. Avg. failing trace length, Buffer overflow

will produce a similar binomial cumulative distribution curve.
From this distribution, the existence of some optimal test
run length can be predicted, by calculatingP (k)/k. We
precisely calculate the probability for a simple example of
buffer overflow to demonstrate that this calculation accurately
predicts the optimal test run length. Case studies, although we
cannot precisely calculateP , show similar behavior, hinting
that real experiments exhibit the properties described by our
simple examples.

A. Buffer Overflow

This example shows how we can predict how the length of
test runs affects the probability of failure where each operation
is uniformly selected. This example is representative of more
complex failures found in our case studies, where a certain
sequence of operations must be performed before failure.
Suppose there are 10 buffers, one of which is incorrectly
allocated and overflows as soon as a 10th item is added to
it. We can “test” this system with a very simple driver:

for (i = 0; i < k; i++) {
j = rand() % 10;
amount = rand() % 2 + 1;
write (buffers[j], amount);
assert (buffers[BADBUFF] < 10);

}
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Fig. 4. Avg. minimized failing trace length, Buffer overflow

At each step, one or two items are written to a random
buffer. The simulation fails if the bad buffer has 10 or more
items. We stop a run afterk steps. Atrace is a sequence of
writes (b, n) whereb is the buffer written andn ∈ {1, 2} is
the number of items written. Afailing trace is a trace that
ends with the assertion failure. Failing traces contain writes
to the bad buffer and may contain writes to other buffers.
If the writes to the other buffers are removed, the trace is a
minimized failing trace. Ideally, we want to find a test length
k such that we find the most failing traces, and such that all
failing traces or all minimized failing traces have the shortest
possible length.
Failure Detection.To calculate the probability of failing given
a test case of lengthk, we calculateP (k) = Fk/Tk. We now
define B(k, s) =

(

k
s

)

(18)k−s as the number of traces that
contain a sequence ofs writes to a bad buffer of lengthk.
There are10 classes of traces that do not lead to failure: traces
that do not have writes to the bad buffer (s = 0) and traces
that inserts = 1 . . . 9 items in the bad buffer. Figure 1 shows
the plot ofP (k) for k between1 and200.

To find the k that maximizes failure detection, we want
to increasek1 to k2 if and only if P (k2)/k2 > P (k1)/k1.
P (k)/k is maximized whenk = 92. Therefore, the optimal
run length should be 92. Figure 2 shows failures found per
1,000,000 operations by using random tests with a budget of
10,000,000 operations with run lengths from 1 to 200. As
predicted, the graph peaks whenk is 92. In one experiment,
if there is an assertion failure in the beginning of the test run,
we continue the test and count all operations performed. In a
second experiment we terminate the test run at the assertion
failure and do not count the subsequent operations toward
the testing budget. In this case, failures found per operation
stabilize to some constant as we increase the input length,
confirming the notion that longer runs result in better failure
detection.
Failing Trace Length. There are 144 minimized failing
traces: 89 that result in 10 items being in the buffer and
55 where the final insertion adds two items to the buffer,
for a total of 11. The smallest minimized failing trace is
(bad, 2) : (bad, 2) : (bad, 2) : (bad, 2) : (bad, 2); the longest



A → B : {NA, A}KP B
B → A : {NA, NB}KP A

A → B : {NB}KP B

A → I : {NA, A}KP I
I → B : {NA, A}KP B
B → I : {NA, NB}KPA
I → A : {NA, NB}KPA
A → I : {NB}KP I

I → B : {NB}KP B

Fig. 5. Needham-Schroeder (NSPK):(a) Protocol (b) Man-in-the-middle
attack

is a trace of 9 writes of 1 item to the bad buffer followed
by (bad, 1) or a (bad, 2). Figure 3 shows the average failing
trace length fork = 1...200 with a budget of107 operations.
Figure 4 shows the average minimized failing trace length. In
both graphs,k = 92, the optimum choice for failure detection,
has an average (minimized) failing trace length close to the
maximum length, hinting that there is a trade-off between the
ability to detect faults and the quality of traces.

B. Needham-Schroeder

This example shows how there exists an optimal test run
length when operation selection is not uniform — e.g., when
the probability that an operation leading to error is selected
decreases as the test run increases. The Needham-Schroeder
Public-Key Protocol (NSPK) [11] provides authentication be-
tween two partiesA and B. A sendsB a nonce andA’s
identity encrypted byB’s public key.B replies withA’s nonce
and a newly generated nonce encrypted byA’s public key.A
replies withB’s nonce encrypted withB’s public key. At the
end of the protocol,B is supposed to know thatA is indeed
talking with B and vice versa. Unfortunately, there is a known
man-in-the-middle attack [12]. An impostorI can initiate the
protocol and induceB to believe that the protocol is executing
with A rather thanI. I operates by forwarding messages to
A, sinceI never needs to encode its identity withA’s key.
The protocol and the attack are shown in Figure 5.

Random testing can find this man-in-the-middle by model-
ing two legitimate parties,A andB, and a random adversaryR
on a shared network.A andB will always follow the protocol:
each may randomly choose some party and begin authentica-
tion. If A choosesB, authentication will occur as in Figure 5.
If either A or B choosesR, A or B will ignore messages that
do not follow the protocol.A or B will reset after receiving
n unexpected messages.R randomly generates message from
communications overheard and randomly selects a receiver.
R does not know the protocol, but can decrypt messages
encrypted by its public key and assemble new messages. This
model represents a realistic approach to randomly testing a
protocol for a wide variety of attacks.
Failure Detection. Figure 6 shows how the length of each
run affected authentication failure detection with a test budget
of 1,000 operations. The y-axis shows failing traces found
per 100 operations. We find that the most effective length is
50 operations. Increasing past 50 decreases the effectiveness,
becauseR has too many recorded messages to choose from.
Again, we show results when operations after failure are both
counted against the total and returned to the test budget.
This is a simple example where feedback [3], [2] influences
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Fig. 6. Failure detection with and without the testing budget counting the
full run, NSPK
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Fig. 7. Avg. failing trace length, NSPK

failure detection: as a run accumulates history, the range of the
random choices increases, and at some point the probability
of failing (by matching a nonce) begins to diminish. In this
case, the intuition that longer test runs find more failing traces
is incorrect.
Failing Trace Length. In this case, the final result of mini-
mization is pre-determined: there is one unique failing trace
(abstracting nonces) leading to the exploit (Figure 5(b)).Figure
7 shows howk affected the failing trace length. The optimum
test run length for failure detection produces failing traces
with an average of 29 operations, significantly more than the
minimum of 6 operations. Very smallk produce near-optimal
failing traces but are less likely to produce failures.

III. C ASE STUDY: FLASH FILE SYSTEM

The results in this section were generated using a random
test framework for file systems used in space missions [2]
(which we are now applying to file systems for the Mars
Science Laboratory [13]). We selected versions of the file
system and framework ranging from the earliest working
versions to stable versions almost identical to the current
release (identified by date from 01-19-2006 to 09-06-2006).
Failure density ranges from very low (two failing test cases



01-19 02-03 02-17 03-03 03-17 04-03 04-27 04-28 09-06

Failure detection 8 9 10 11 11 11 12 S S
Failure rates 13 14 14 15 15 15 14 S S
Avg. failing trace length 16 17 17 17 17 17 17 S S
Minimization cost 18 C C 18 18 18 C 18 18
% minimization cost 19 C C 19 19 19 C 19 19
Avg. minimized trace length 20 C C 20 20 20 C L L
Shortest minimized trace length L C C L L L C 21 21

Reasons for omission: L = lack of interesting features, C = computation-time limits, S = too few points for significance

TABLE I
FILE-SYSTEM GRAPH OVERVIEW(NUMBERS ARE REFERENCES TO FIGURES)
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Fig. 8. Failure detection, 01-19
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Fig. 9. Failure detection, 02-03

in two days of testing) to very high (thousands of failing test
cases per hour).

Our results are based on further execution of approximately
25 billion test operations (over 60 machine days). For each
version, depending on the density observed during logged
tests, we ran with a testing budget of 1, 10, or 100 million
operations and a run lengthk ranging in 128 even steps
from 13 to 1,600 (in most cases). In some cases, we only
examined test lengths up to 1,400, as the file system releases
for these versions were compiled with resource limitations
that caused false warnings to dominate the test results with
longer tests (the effect does not appear in shorter tests, but
false warnings become difficult to filter out with longer tests).
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Fig. 10. Failure detection, 02-17
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Fig. 11. Failure detection, 03-03, 03-17, 04-03

For other versions, this problem did not appear until a length
of around 1,600. For 01-19, we observed convergence to very
few failures at low test lengths, and increased the number of
sample points for lower values to better show this behavior.
For each k, we recorded (1) the number of failing test
cases produced. For some versions we also computed (2) the
average failing test case length, (3) the lengths of minimized
failing traces produced from the failing test cases, and (4)
the number of operations spent minimizing test cases. An
operation, for testing or minimization, took an average ranging
from about 0.0002 to 0.0004 seconds to execute, depending
on the version of the file system. Failures represent one fault
or two faults of approximately equal probability, to the best
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Fig. 12. Failure detection, 04-17
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Fig. 13. Failure rates, 01-19

of our knowledge, in all but one case. Thus failure detection
approximates probability of finding all faults, as desired.Table
I gives an overview of locations for results, indicating those
omitted due to a lack of interesting features (L), computation-
time limits (C), or because there are too few data points for
significance (S).

A. Failure Detection

Figures 8-12 show the number of failing test cases for each
choice of the test run lengthk. As noted in earlier work, the
number of unique faults (identified by bug fixes) decreased
with time [2]. These figures show that failure detection for
test periods with one or two faults also generally decreased
as the software grew more stable: there were fewer bugs
and the bugs were (usually) less likely to occur in any test
run. The effect was most marked at the beginning of the test
period (where for smallk the detection rate was nearly 2,000
failures per 1,000,000 random operations) and at the end of
testing (0.08 failures per 1,000,000 operations). From 03-03
to 04-03, failure detection remained fairly constant, before
peaking again then stabilizing very low. One observation isthat
optimizing failure detection was usually unimportant during
early testing, as it was easy to find faults. For later versions,
we were fortunate that our (ad hoc) selection ofk = 1, 000
was close to the optimal.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  200  400  600  800  1000  1200  1400  1600

F
ai

lu
re

 r
at

e 
(f

ai
le

d 
/ t

ot
al

 te
st

s)

Maximum test run length (k)

 02-03
 02-17
 04-17

Fig. 14. Failure rates, 02-03, 02-17, 04-17
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Fig. 15. Failure rates, 03-03, 03-17, 04-03

The effect of k on failure detection is unclear for the
final versions of the software, 04-28 and 09-06, where the
probability of failure is too low to show any meaningful
trends. With a test budget of 100 million operations, testing
never produced more than 8 failing test cases for any choice
of k. We speculate that trends might be evident for these
versions if we increased the budget to 10 billion or more
operations (but estimate that producing these results would
take at least 2,000 machine days, a daunting prospect even
given the embarrassingly parallel nature of random testing).

As Figures 14 and 15 show, therate of failure for tests was
still increasing at the point at which false warnings forcedus
to end our experiments. This appeared to be the case for 04-28
and 09-06, though in these cases the infrequency of failures
made it difficult to be certain. In three cases, the increase in
failure rate was sufficient to make the failure detection appear
roughly constant, while in other cases the rate had decreased
enough to produce a decrease in failure detection. Figure 13
shows a fundamentally different pattern (and demonstratesthat
the file system test framework can violate ourAssumption 2).
Behavior for Larger k. False positives cause the “failure rate”
to approach 1.0 quickly after a certain test length is reached.
At this point experiments show only that increasingk means
performing fewer tests.
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Fig. 16. Avg. failing trace length, 01-19
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Fig. 17. Avg. failing trace length, 02-03, 02-17, 03-03, 03-17, 04-03, 04-17

B. Failing Trace Length and Delta-Debugging

Figures 16 and 17 show how run length related to the
length of failing traces. Only the results for 01-19 show any
surprising features. For 01-19, we believe that one fault, with
high probability of appearing just after initialization and zero
probability thereafter, is responsible for the very low average
up throughk = 100. Thereafter, another failure resulting
from a different fault became possible and rapidly increased
average length. To some extent, this makes 01-19 less useful
for predicting fault detection.

The change in trace length affected delta-debugging cost and
effectiveness. As Figure 18 shows, the cost of delta-debugging
does increase with failing trace length (we only report costs
for a sample of versions, as delta-debugging all traces for
versions with more failures proved too expensive) — note that
this is a graph over trace length, notk. For very low density
versions the increase with trace length was most extreme, but
the number of traces to minimize so small that delta-debugging
costs never amounted to more than 3% of the budget. However,
as Figure 19 shows, when random testing finds more failures
the cost of delta-debugging all traces can be quite significant
— rising to almost 150% of the test budget for 04-03 (one
and a half hours). The cost would be even higher for versions
with more failures.
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Figure 20 shows how theaverage length of minimized
traces changed, for three medium-density versions (note the
different axis for 01-19). For 03-03, the average length never
exceeded 4 operations, and for the other two versions the
average remained below 15 operations. For these versions
of the file system, delta-debugging “flattens” increasing trace
length, andk has little effect on the quality of test cases
provided to developers (it may slightlyimprove with rising
k, for 03-17, because of a larger pool of traces). On the other
hand, Figure 21 shows the length of thesmallestminimized
test for the two lowest failure-density versions of the software
— perhaps the most effective measure of the quality of traces
for debugging purposes (not reported for the other versionsas
the shortest length is actually a constant for those versions).
Here there is a much more significant relationship between
the test run length and the size of minimized traces. The best
failing trace ranges in size from 3 operations to 321 operations,
depending on how we divide up our budget: a poor choice of
k here can considerably increase the difficulty of debugging.

IV. CASE STUDIES: DATA STRUCTURES

The results in this section were based on the random testing
of two data structure units: theMoneyBag unit from version
3.8 of the JUnit distribution [14], and a version of the TreeMap
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unit from the Java 1.4.2 distribution into which a fault had been
introduced. In each of these settings, an operation is a method
call.

A. MoneyBag

TheMoneyBag unit distributed with JUnit represents vary-
ing amounts of money in different currencies. The version dis-
tributed with version 3.8 of JUnit contained a fault involving
the interaction of two methods. TheappendTo method, a
kind of specialized addition operation, created aMoneyBag
with only one currency under some circumstances; however,
the equals operation expected allMoneyBag objects to
have more than one currency, leading it to judge two objects
to be unequal when they should have been equal.

Using the framework with which the fault was originally
found, we ran 10,000 test cases of each length from 5 to 420 in
increments of 5. We measured the number of failures detected
by the framework for eachk, and also counted the number
of method calls actually performed, taking into account the
fact that the test case could fail before the requested length
had been reached. We then calculated the average number of
failures per method call actually performed.

The results are shown in Figure 22. The shape of the
graph suggests that for theMoneyBag, any length over
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Fig. 22. Number of failures per method call, Money unit

approximately 200 results in about the same failure detection
rate. It also suggests that this efficiency is optimal.

B. TreeMap

In earlier experiments [14], we tested mutants of the stan-
dard JavaTreeMap unit, a red-black tree implementation,
by calling random methods with parameters drawn randomly
from given ranges. The driver tended to cause the size (number
of keys) of theTreeMap being tested to gradually increase
until it stabilized at a level where the driver was as likely to
remove an element as it was to add a new element.

We wanted to simulate a fault in which a lower test sequence
length was more efficient at forcing failure. We therefore
seeded a fault into the code inTreeMap which caused it
to fail when trying to find a key in an empty tree. We
hypothesized that the failure was more likely to occur at
lower test lengths, since at high test lengths the driver would
have to remove all keys first. We ran 200 test cases of each
length from 1 to 196 in increments of 5, and measured the
number of failures per actual method call, as we had done with
MoneyBag. Figure 23 shows the results. The unit was much
more likely to fail when the number of operations was low, but
the number of failures per method call appeared to eventually
stabilize at about 0.025, one failure for approximately every
40 method calls. The graph is most similar to the file system
results from 01-19 (Figure 8).

V. A NALYSIS OF RESULTS

We formulate two hypotheses, together capable of explain-
ing our results. The first hypothesis is that the test procedure
in some cases behaves as a Markov chain; we show that this
is sufficient to explain the buffer overflow and data structures
results. We begin with another more general analysis than the
binomial approach in Section II, based on Markov chains, of
the probability that a test case will fail and the average length
of a failing test case. Our second hypothesis is that the test
approach in the file system cases can induce a probability of
failure that can appear linear in the number of operations,
which explains apparently anomalous results for some file
system versions.
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Fig. 23. Number of failures per method call, fault-seeded TreeMap unit

A. Probabilities of Failure

We assume that the random test (the test harness plus tested
program) is in some state from a finite setS = {s1, s2,
. . . , sn} of states. At each states ∈ S, there is a probability
φ(s) that the next operation will cause an observable failure.
Statess ∈ S may not be equally likely after every operation.
We use the notationp(s, j) for the likelihood that the system is
in states after operationj. The probabilitypf(j) that a failure
occurs at operationj is therefore the sum, over all statess, of
p(s, j) · φ(s).

This can be used to calculate the average length of a test run.
The system checks an oracle after each operation, and stops the
sequence if it detects a failure. If no failure is detected, then the
length of the sequence performed isk; if a failure is detected,
then the length ism where m ≤ k. The probability of no
failure being detected is

∏k
j=1(1−pf(j)); the probability of a

failure being detected at operationi is pf(i)·
∏i−1

j=1(1−pf(j)).
Therefore, when a sequence ofk operations is requested, the
average lengthal(k) of the actual test case performed isk ·
∏k

j=1(1 − pf(j)) +
∑k

i=1(i · pf(i) ·
∏i−1

j=1(1 − pf(j))). The
difference in average length when the test run length isk vs.
k + 1 operations can be denoted byal(k + 1) − al(k); this
expression simplifies to

∏k
j=1(1 − pf(j))).

B. Markov Chain Hypothesis

Under certain reasonable assumptions, a random test can
be considered to be a Markov chain. Here we show that this
hypothesis explains why the number of failures per actual
operation performed stabilizes at a constant value in the buffer
overflow and data structures testing.

A Markov chain [15] consists of a finite setS =
{s1, s2, . . . , sn} of states, and a probabilityPij , for eachi, j
such that1 ≤ i ≤ n and 1 ≤ j ≤ n. Pij represents the
probability that the next operation will cause the Markov chain
to make a transition from statesi to statesj. The Markov chain
is time-homogeneousif the probabilitiesPij do not change
over time. In the rest of the paper, we will assume all Markov
chains are time-homogeneous.

In most circumstances, it is reasonable to make the hypoth-
esis that a system for random testing acts as a Markov chain,

in which the states represent the state of the memory and disk
data that the software has access to, and the transitions rep-
resent the randomly-selected operations. Situations in which
this Markov chain hypothesis does not hold include situations
in which the software has an effectively infinite set of states,
such as when the program is able to access and change data on
an unlimited number of networked machines. These situations,
however, are rare in testing environments.

Time-homogeneous Markov chains always approachequi-
librium. That is, for each statesi there is astationary state
probability πi, such that the probability that the system is
in state si after a transition approachesπi; in symbols,
limj→∞(p(si, j)) = πi.

Under the Markov chain hypothesis, the probabilitypf(j)
that a failure will be detected at operationj must converge
toward a constant. Since we have seen that the difference
al(k + 1) − al(k) is

∏k
j=1(1 − pf(j))), we have two cases.

First, if the constant thatpf(j) converges toward is0, then
it is possible thatal(k + 1) − al(k) converges to a nonzero
value ask increases. This means that test runs of requested
length k increase in actual length ask increases, because a
failure is less and less likely to occur ask increases — when
none of the Markov chain statessi for which πi > 0 are states
in which a failure can occur on the next operation.

Second, if the constant thatpf(j) converges toward is
greater than0, thenal(k+1)−al(k) converges toward 0. This
means that test cases of requested lengthk typically converge
in actual length to some constant ask increases. This situation
happens when there is always some accessible state in which
a failure can occur.

However, since we stop a test case when the first failure
is detected, we note that the number of failures per operation
when lengthk is requested is1/al(k). Therefore in both of the
cases above, the number of failures per operation converges
to a constant: whenal(k) grows without bound, the constant
is 0, and whenal(k) converges toc, the constant is1/c. The
Markov chain hypothesis is therefore sufficient to predict that
as k increases, the numberfpo(k) of failures per operation
converges to a constant. Formally, it predicts that there isa
constantc such that for all positive real numbersǫ, there is a
lengthk such that|fpo(k) − c| < ǫ.

Although the Markov chain hypothesis predicts thatfpo(k)
will converge to a constant, it does not predict whether this
constant is a maximum offpo(k) over all k, a minimum of
fpo(k) over all k, or something in-between. Our empirical
results show two of the behaviors. In the graphs offpo(k)
for the buffer overflow example and theMoneyBag unit, the
asymptotic value was a maximum. In the graph offpo(k)
for the seededTreeMap fault, the asymptotic value was a
minimum. As discussed below, the asymptotic argument does
not hold for the file system.

This behavior reflects the possible probabilities of failure at
different distances from the start of the test case, and appears
to be independent of the number of faults. For example, a
graph offpo(k) that starts at 0, rises to a peak atk = m and
then tails off to a lower constant may reflect only one fault, if
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the probability that we are in a state in which the fault can be
triggered is highest atm; however, it may reflect two different
faults, one of which can only occur early in the sequence, and
the other of which can happen at any time.

C. Linear Failure Rate Increase

Three of the file system versions show a failure rate that
seems to increase linearly withk. We attribute this somewhat
unexpected behavior to a violation ofAssumption 2: the test
framework adjusts the probability of hardware faults such that
the expected total number of faults per test is constant for all k,
in order to avoid terminating tests early due to device failure.
The underlying Markov model is therefore different for each
k. If discovering an error depends on (1) simulating a certain
number of faults and (2) performing operations after the faults,
the influence ofk on the probability of faults apparently
produces a binomial distribution, but extends the range over
which the graph of failure rates may appear linear, a likely
explanation for Figure 15. Figure 24 shows failure rates fora
toy model, featuring a single type of hardware fault. To expose
the “error” a trace must first enter a state with exactly 3 faults
and then perform, in order (with other operations allowed in
between), 3 (out of 10) operations. The graph compares failure
rates for this program if the tester (1) fixes the probabilityof
hardware faults,P (fault), or (2) adjustsP (fault) with k so
that 4 faults are expected ink operations.

VI. CONCLUSIONS ANDFUTURE WORK

The most important lesson for practitioners and random
testing researchers is that run length has a major influence on
the effectiveness of random testing for interactive programs.
For all programs we tested, changing run length could increase
the number of failures found by an order of magnitude or
more. Run length also controlled the quality of failing traces
produced. Delta-debugging, in many cases, reduced the impor-
tance of run length, but the cost of delta-debugging increased
with length, in some cases consuming more operations than
testing itself. Our study shows that the optimal run length
and relationships between run length and quality and cost of
minimized failing traces varied dramatically, even duringthe

development cycle of a single program, but fit into a small
number of patterns.

We also note that behaviors were generally continuous: for
programs where failures are even moderately probable events,
an iterative deepening approach to finding a “good-enough”
run length would appear to be practical. We will investigate
such an approach as future work, using both our historical data
and new testing projects — in particular, we are concerned that
the cost of experiments to determine failure detection for small
k may result in an overall less efficient use of the budget than
simply choosing a larger, sub-optimal,k in the first place. We
hope to investigate how good testers are at guessing a goodk
— in the file system case, the difference in failure detection
between the optimal point and the somewhat arbitrary choice
used (k = 1000) was often too small to justify expensive
experimentation (from 02-17 to 04-17) but was occasionally
quite high (a factor of two for 02-03, and over two orders of
magnitude for 01-19).
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