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Abstract: Automated unit testing strategies that execute a large ruofliest
cases are becoming more viable. In order to better undergi@relationship be-
tween these strategies, we define “explorative” unit tgsttrategies as those which
choose unit tests by exploring a large search space with@esstructure, and we
study three particular explorative strategies: bounddweastive, randomized, and
a combined strategy.

In order to do this, we define canonical forms of unit tests giveé precise
definitions of the search spaces and strategies. We then bii@xcombination of
analysis and experimentation, that the bounded-exha&ustrategy is superior to
randomized testing only when a small proportion of the deapace of unit tests
fails. We also show that we can arbitrarily and cost-efl@tyi increase the failing
proportion of the search space by simply increasing the munmbmethod calls in

the unit test.
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1 Introduction

Unit testing is the practice of testing methods, groups ahods or classes. A unit
test is usually a piece of code written in the same languadbkeasnit under test
(UUT). The test code makes a sequence of method calls, eablodnzall possibly
preceded by code setting up the arguments of the call andbpossilowed by
code evaluating whether the methods did the right thing.

Recently it has become more cost-effective to run very larg@bers of unit
tests when testing critical units. Two trends have led te daevelopment. The first
is the trend toward reuse of general-purpose libraries;nitére important to assure
the quality of heavily-reused units than of seldom-reusgitsu The second is the
well-known trends of increasing processor speed and mefoithe same price.
To this we can now add the trend toward multi-core computitgze multiple test
cases can be easily run on multiple processors.

In this paper, we examine a class of automated unit testmagegies that run
large numbers of test cases. We refer to thesexalerative strategies. Our def-
inition of an explorative testing strategy is one in which dedine a search space
with a relatively simple structure, consisting of a vengkmnumber of test cases,
and explore this search space systematically. In contoasbriventional black-
box or white-box testing techniques, in which we devote nodsiur human effort
to carefully choosing individual test cases that cover mjiggteria, in explorative
strategies we concentrate our human effort on defining theckespace, and we
count on the processing power available to us to do the rest.

As an illustrative example, consider a hypothetical obg@atnted UUT that
has a single constructor taking no arguments, and threeoae i, ms andms)
that each take two integer arguments. We define the searca apdhe space of all
test cases consisting of a constructor call followed by 1thotkcalls. We restrict
all the integer arguments to be in the range 0 to 9 because Wegdéhat we can
thoroughly test the unit even with the restriction in pladéere are 300 possible
method calls that can be done at any stage (3 choices of methdd 0 choices for
each argument), so the number of possible test cases indhehsspace i800'°,
or approximatelys x 1024,

Two of the strategies that we study here arelibended-exhaustive andran-
domized strategies. In the bounded-exhaustive strategy [7, 14kystematically
execute every test case in the search space; for the exampléhis would mean
6 x 10%* test executions. In the randomized-testing strategy j&éjnstead choose
test cases from the search space randomly, with the hop# ¢htdiling test case
exists, we will reach one relatively quickly; for instanbefore executing0' test
cases. We also study a strategy that combines the advardbgesh bounded-
exhaustive and randomized.



The word “bounded” in “bounded-exhaustive” refers to tharms such as “10
method calls” and “integers between 0 and 9”, which we chaoseder to bound
the search space. However, randomized strategies alsmmetymilar bounds.
Typically, a randomized strategy does not try to avoid ekiaguest cases that it
has executed before, so randomized strategies are someataied “randomized
testing with replacement”, suggesting the metaphor ofaekitrg a test case from
the search space, running it and then putting it back in taechespace.

There are two main potential benefits of explorative stiatetike bounded-
exhaustive and randomized. The first is that even the bedewdd black-box
testing strategies can miss failing test cases [10], wiseesalorative strategies
give the potential or the guarantee of executing any tes tathe search space,
including failing test cases that would not be predictedadmfy by non-explorative
strategies. The second is that the amount of human effodedeto define the
search space may be less than the amount of human effortchemdefine test
cases that meet black- or white-box test adequacy criteria.

There are also two main potential problems for explorativategies. The first
is the “oracle problem”: explorative strategies executensmy test cases that it's
impossible for a human to evaluate them all to see if theyeseabed or failed, re-
quiring us to do automatic evaluation of test results. Tglapproaches to the ora-
cle problem include the definition of “high-pass” oraclas,ifistance that evaluate
a test case as failing only if it leads to an uncaught excefi6]; defining oracles
via formal specifications, for units with clear and simplenfal specifications [8];
and deducing likely invariants by machine learning techag[9].

The second potential problem for explorative strategi¢isadifficulty of opti-
mally defining the search space of test cases. Antoy and H§hend Doong and
Frankl [8] may have been the first to observe that changesrampters such as
the length of test cases (number of method calls) and rangeyoments can have
a major impact on the effectiveness of the testing. Muchnee®rk on explo-
rative strategies concentrates on overcoming these jtprablems, for instance
by pruning the search space or by learning effective paens?, 15].

In this paper, we concentrate not on enhancing the benefisheliorating the
problems of explorative strategies, though these are itapbareas of research.
Instead we concentrate on comparing strategies directyth other. In particu-
lar, we compare bounded-exhaustive (BE) unit testing,oamnged (R) unit testing,
and a combined strategy that we refer to as “Best of Both \Eb(BOBW). In or-
der to compare the strategies fairly and directly, we s#dia¢ work in the context
of canonical-form unit test cases that we prove to be suffilsiejeneral to encom-
pass all explorative testing strategies. The main reseametnibutions of this work
are:



1. We show that any Java unit test case can be converted tooéaeveral
canonical forms.

2. We define the strategies BE, R and BOBW relative to the génetions of
“test context” and canonical form.

3. We show analytically that, given reasonable assumptionshe average
case, the strategy R finds failing test cases more quickly B, except
at low failure densities, and that BOBW finds failing testammore quickly
than either R or BE, at all failure densities.

4. We show analytically that in the average case, incredbimtength (number
of method calls) of a unit test case increases the failursitjerncreasing
the viability of R compared to BE. We also show that this iasein length
results in more failures per method call executed, makingédo test cases
more cost-effective, until a maximum cost-effectivenesseached.

5. We give experimental evidence that, consistent with oahais, the number
of test cases needed to find failures in units is less with R thith BE,
except at small test case lengths.

6. We show that, in our implementations of R, BE and BOBW,tsgja BE
takes longer in computation time to find a failing test casetstrategy R.

The rest of this paper is organized as follows. In Section€skow that every
unit test can be put into a canonical form. In Section 3, wenddfie strategies we
study in terms of the search space of canonical-form uni$.tda Section 4, we
compare the strategies by a mathematical analysis. IndBegtive show by further
analysis that increasing the length (in number of methols)caf a test case can
cost-effectively cause randomized testing to be supesibbtinded-exhaustive. In
Section 6, we present an experiment that we performed withsigject units to
corroborate our non-empirical analysis. In Section 7, veeulis the threats to the
validity of the empirical results. In Section 8, we discuise implications of the
work.

2 Unit Test Canonical Forms

In this section, we show that every Java unit test hesnanical form: a simplified
form into which it can be put which are equivalent to the av&i The useful
consequence of this is that as long as an explorative syramggenerate and run
all canonical-form test cases, it can effectively perfomy anit test case.



(a) (b)

if (t.size() <n+l int i1, i2;

&& ! found) { il =1t.size();
X = t.get(n+42); i 2 = n+42;
} X = t.get(i2);
assert (x !'= 210); b2 = (x '= 210);
assert b2;

(¢c) (d)
int[] intVP = new int[4];
int i1, i2; intVP[0O] = 53;

il =t.size(); Tree[] treeVP = new Tree[1];
i2 = 583,

X = t.get(i2); intVP[1] = treeVP[O0].size();
b2 = fal se; intVP[2] = intVP[O];

assert b2; intVP[3] =

treeVP[ 0] .get (intVP[2]);
bool eanVP[ 1] = bool eanVP[ 0] ;
assert bool eanVP[ 1];

Figure 1. Canonical forms of unit tests. (a): Original ueitt (b), (c), (d): Test
cases in canonical forms 1, 2 and 3 that are u-equivalent)tdofasome imple-
mentation of the units under test.

2.1 Definitions

We define aJava unit test as a sequence of Java statements which would compile
correctly when given as the body of a method. We use the syiqobssibly sub-
scripted, to refer to an arbitrary Java unit test. We saydhatit testT” terminates
unsuccesstully, or fails, if it throws an uncaught exception, and thatatminates
successfully or succeeds otherwise. (The use of the Jaaaser t construct ensures
that we can convert any Java unit test to such a form.)

We say that two Java unit tesf§ and 75 are u-equivalent if 77 throws an
uncaught exception at statemenif and only if 75 does. In the Appendix, we
actually define a sequence of three canonical forms; our thamrem about each
canonical form is that, given a particular implementatidrine methods thai
calls, there is a canonical-form test cdsewhich is u-equivalent to it.

Figure 1 shows an example of a Java unit test for a hypotheliege data
structure, and some equivalent canonical forms. Our mauasfas the rightmost
canonical form, which is called Canonical Form 3 in the apizen



2.2 Canonical Form 3

In a unit test in canonical form 3, all parameters for methaliscare taken from
“pools” of values stored in arrays. Canonical form 3 is matirly easy to generate
automatically because, given some initial decisions, eddts statements can be
generated by choosing a sequence of integers. The initiédidas are how big to
make value pool variables, and what initial values to pu primitive-type value
pools.

We define ararray-canonical method call as an expression of one of the forms
m(...), new m(...), Com(...), ore.m(...), wherem is a method name;' is a
class name, and and all the arguments of. are of the formz[i], wherex is a
variable name anilis an integer constant.

We define ararray-canonical statement recursively as follows.s is an array-
canonical statement if either:

e Itis an array-canonical method call;

e Itis of the formz[i] = e, wherex is an array variable nameéjs an integer
constant, and is an array-canonical method call; or

e ltisoftheformtry { S} catch (E e) {x = e;},whereSisan
array-canonical statement.

We say that a Java unit testis in canonical form 3 if it is in four parts:

e A first part in which only array variables are declared andagje for them
is allocated, where no more than one variable is declaredyfjen type.
We refer to these variables as “value pools”. For instartoe,declaration
int[] intValuePool = new int[100] declares a value pool for
i nt of size 100.

e A second part in which constant values are assigned to etsroéprimitive
type value pools; for instancei ht Val uePool [ 3] = 42"

e A third part in which all statements are array-canonicalesteents.
e An assert statement of the fomsser t x, wherez is a variable.

Theorem 1. Let T' be a Java unit test in which every variable which isused in an
expression has previously been assigned a value, and whose arithmetic expressions
do not throw exceptions. Then there is a Java unit test 77 which is u-equivalent to
T, and isin canonical form 3.

Proof. See Appendix A. O



To summarize, every Java unit test case can be convertedtmanthich con-
sists of a block of code setting up and initializing value Ispthen a sequence of
simple method calls that use the value pools as a sourceggttand parameter
values, and a destination for return values; and finally aeréisn.

We conclude that an automated testing strategy that camatit@ally generate
all test cases of this form can generate a unit test that euivaent to any failing
unit test. This in turn means that if any test case can findlaréin a unit under
test, then an automated testing strategy that can aut@ihatienerate test cases
of this form can find a failure.

We will not consider finding value pool sizes and initial vedun this paper, but
note that given information about these choices, all thiestants of a canonical
form 3 unit test can be generated automatically. The stattsme parts 1 and 2 can
be generated deterministically, and the statements irBgzah be generated by (a)
choosing a method, (b) choosing a target for the methodfoalie is needed, (c)
choosing values for the parameters, and (d) choosing ddocat store the return
value, if needed. The point of using value pools is tvaty such choice isreduced
to choosing an integer value pool index. Theassert statement in part 4 can be
similarly generated by choosing an element from the booladure pool.

We have therefore succeeded in reducing the problem of giemgra general
unit test to the three problems of choosing value pool sidespsing initial values,
and generating a sequence of integers.

3 Definition of Strategies

In order to compare test strategies in a fair and precise eramre must define
those test strategies precisely, which we do here. Eachec$ttiategies that we
define is relative to a “test context”, which is a structuredatiing choices that we
make before beginning explorative testing.

In Subsection 3.1, we define the notion of test context. Ins8ctions 2 and
3, we show how a test context and a depth bound induces a featelstree of
test cases. Finally, in Subsection 4, we precisely defin¢httee test strategies BE
(Bounded Exhaustive), R (Randomized), and BoBW (Best ohB@orlds).

3.1 Test Context

Every explorative test strategy explores a search spab@weiertain bounds. Only
a certain set of methods are called, only a fixed number cérdifit variables of a
fixed set of types are declared, and the primitive-type patara to the methods
are chosen from a fixed set of values. We refer to these bouwnastast context”,



and formally define it here.
A test context consists of the following pieces of information:

e The setM of methods to be called. This includes all the methods dgtual
under test, and may also include auxiliary methods that eeeled to set up
arguments for calls to the methods under test.

e The setl of types of interest. This should include all types (pringttypes
and classes) that are targets, parameters and return wdliressmethods to
be called.

e For each type € T7, an integewps(t) representing the value pool size for
t. This is the number of separate values of that type that aiable to act
as parameters for a method call.

e For each primitive typeg € T, a mappinginit from indices: such that
0 < i < vps(t) to values of type. This represents the initial values of the
primitive type value pool elements.

Given a test contexk, a test strategy has access twatue pool for each type
t, € Tr. For each type;, we assume that value pob) is an array whose size is
given byvps(ty).

Note that a choice of test context corresponds to parts 1 arfich2est case in
canonical form 3.

3.2 Method Call Tuples

Given a test contexk = (M¢, Ty, vps,init), and a depth (number of method
calls)n, we can define precisely what test cases are encompassest biydéegies
in that context.

We begin by defining @arameter tuple for a method or constructor, which
encodes the parameters to the call as a sequence of inté¢geda this first in order
to treat methods and constructors homogeneously, and dsetimmogeneously
regardless of whether they are static or non-static, andheh¢heir return type is
void or non-void. In the following}/, represents the value pool for type

o If m is a staticmethod of clas€’ with k& parameters of typef, ..., t; and
avoidreturn type, a parameter tuple foris a tuple of integersiy, . .. , i),
where eachi; is between 0 andps(t;) — 1 inclusive. The parameter tuple
represents the call



o If m is a staticmethod of clas€’ with k& parameters of types, ..., t; and
a non-voidreturn typet;. 1, a parameter tuple for is a tuple of integers

(i1, ..., 1k, ix+1), Where eachi; is between 0 andps(t;) — 1 inclusive. The
parameter tuple represents the call
Vierilig+1] = Com(Vi[ia], ..., Viglig]).

e If m is a constructonof classt;,; with k& parameters of types,, ..., i,
a parameter tuple is a tuple of integéfs, . .. , iy, ir+1), Where each; is
between 0 andps(t;) — 1 inclusive. The parameter tuple represents the call
Vk+1[ik+1] = new m(V1 [il], . ,Vk[lk])

e If m is a non-staticmethod of classl;,; with k£ parameters of types
ti,...,t, a target of clasg;,; and a_voidreturn type, a parameter tuple
for m is a tuple of integersi, . . ., iy, ix+1), Where eacli; is between 0 and
vps(t;) — 1inclusive. The parameter tuple represents the call

Viriligra] m(Valial, - .o, Vilik]).

e Finally, if m is a_non-statianethod of class; ,; with k parameters of types
t1,...,t,, atarget of class, 1 and a non-voideturn typef;. o, a parameter
tuple form is a tuple of integersii, ..., ik, ix+1, ik+2), Where each; is
between 0 andps(t;) — 1 inclusive. The parameter tuple represents the call
Vivalikra] = Vigaligpa ] m(Valial, . .. Vi[ix]).

The definition of parameter tuple makes it clear that, withiast context and using
the value pools defined by it, we can represent any paramistesl a sequence
of integers: one integer representing the method, and therotepresenting the
target, parameters and return value. Each parameter taplesponds to one of
the statements in part 3 of a unit test case in canonical form 3

In what follows, we will treat the target and return value ahathod call, if
any, as “virtual parameters” in positioris= k£ + 1 andj = k + 2.

3.3 Search Trees

We here define three classes of search trees for a given teésktf : the parame-
ter value search tree for a given method, the method caktlséaee fork, and the
explorative strategy search tree fir. See Figure 2 for a diagram of these three
classes of search trees.

Given a test contexi, let the parameter value search tree for method m be
constructed as follows: the tree has a root node at leveldaamumber of other
levels equal to the number of parameters to the method.j Ee+ 1, where the
jth parameter ofn is of typet;, every node at level — 1 hasvps(t;) children,
representing the possible value pool locations from whacdthraw that parameter.

8
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methaod call \
search tree

root

possible value
for param 1 hod call
method cal
. search tree n
pfossnble vaI2ue

or param

search tree for search tree for method call
possible values calls to m1 calls to mq search tree
for param k+

Figure 2. Search trees. (a): parameter value search trgem@thod call search
tree. (c): explorative strategy search tree.

A path from the root of this tree to any leaf of the parametdnevgearch tree
for m therefore encodes one method call tuplerfgras defined above. Note that
the number of leaf nodes in the tree is the product of the vahat sizes of all the
parameters (including virtual parameters).

Let themethod call search tree for K be constructed as follows: the tree has a
root node, and the root node has one child for each methad the test context;
that child is the root node of the parameter value searchftresmethodm. The
number of leaf nodes in the method call search tree is the $uheamumbers of
leaf nodes of all the search trees for calls to the methed$n what follows, we
will call this numbery.

Finally, given a test context, we recursively define #xplorative strategy
search tree for K for depth n. The tree for deptld is the tree with just a sin-
gle root node. The tree for depthis constructed by constructing the tree for depth
n — 1, and then appending to each leaf node the method call seaschNote that
each path through the explorative strategy search trem, foot to leaf, records a
unique sequence of choices of method and, for each method chosen, the unique
choice of parameters, target and return value locationhi@mtethod call. There
are thereforg™ leaf nodes in the explorative strategy search tree for depth

Given the discussion in Section 2, it should be clear thag¥ery unit test case
T, there is a test context and a valueno$uch that the explorative strategy search
tree for deptm contains an encoding of the canonical form 3 versiolfi of he test
context encodes the first two parts of the canonical forffi,adind the explorative
strategy search tree encodes the rest.



3.4 Test Strategies

We are now in a position to define the three strategies thatweky $n this paper:
BE, R and BOBW.

We define th&naive) bounded exhaustive test strategy for length n, or BE(n),
as the strategy that traverses the explorative strategghsdéi@e in a depth-first
fashion, executing the corresponding test case whenesgadhes a leaf.

We define therandomized test strategy for length n and repetitions ¢, or
R(n, q), as the strategy that, times, selects a random path from root to leaf of
the explorative strategy search tree, and executes thespomding test case. At
every internal node, R selects the outgoing edge to followgua uniform distri-
bution. R is “randomized testing with replacement” becaasgy time it selects a
test case, it could be selecting one that it selected before.

Let the total number of leaf nodes in the explorative stnategarch tree be
z. We define thebest-of-both-worlds test strategy for length n, or BOBW(n), as
a strategy that explores the explorative strategy seaeghlly generating all the
numbers fromD to z — 1 in a pseudorandom order. After each humbés gen-
erated, BOBW chooses the test case represented by the pathHe root to the
zth leaf, and executes the corresponding test case. It therekecutes all of the
test cases exactly once, but in a pseudorandom aridesut replacement. We give
more details of the implementation of BOBW in Section 4.3.

Many published test strategies are variants or speciairatf the first two
strategies, and much research effort has gone into impgyawvie strategies. For
instance, Korat [14] performs isomorphism breaking to dwiecuting essentially
the same test case twice. This basic idea is also employeafydep [15], which
generates short test cases randomly. Randomized testalgoishe basis of the
lower level of the Nighthawk tool [3].

Many of the published strategies also implement ways offfigpdést contexts
in which given strategies perform well. While this is a caldirection of research,
in this paper, we separate the concerns of test context amdhsstrategy in order
to study in more depth the properties of search strategegaghlves, independent
of test context.

4 Analytical Comparison of Strategies

Explorative test strategies like BE or R execute all or sorihthe test cases in
a large set of test cases, whose size is equdl'tdhe number of nodes in the
explorative strategy search tree. We use the variatiestand forj™ in this section.
It is reasonable to compare BE with R; we do so here analigiaancluding that

10



BE is reliably superior to R only when failure density is lomdafailing test cases
are not clustered.

4.1 Uniform Distribution of Failure

Let the number of failing test cases in the search treg. We defined, thefailure
density of the search trée as f/z. The probability thatk test cases randomly
selected from the search tree are all non-failinglis- d)*. If we assume that
failing test cases are spread evenly over the search tee ctharly BE will find
the first one in an expected number of test cases less tharual qthat of R,
since R uses “randomized search with replacement”.

However, it is likely that the failing test cases will not gesad evenly. This
is because a fault in a method will lead to a failure only iftthreethod is executed,
and sometimes only if it is executed after given patterndiuéiomethod calls. The
nodes in the search tree corresponding to failing test ¢hsesfore tend to cluster
in certain areas of the tree.

4.2 Non-Uniform Distribution of Failure

We start our analysis with a concrete example. Assume thdinBE its first failing

test case after the first 0.1% of the sequence, i.e. aftdi00 test cases. We then
expect R to do better than BE only(if — d)(*/19%0)  the probability that R has not
found a failing test case by that time, is less thd@. This inequality is equivalent

to
1l—d< e—(lOOOln(Q)/z)

Sincee” > 1 + x for anyx, we expect R to do better than BE if
1—d<1-(1000In(2)/2)

that is, if f is greater than000/n(2) = 693.15.

In general, if BE finds its first failing test case aftefp test cases, then R is
expected to do better if there afe= p x In(2) failing test cases or more — a result
that isindependent of the size =z of the search tree. Thus, as: grows, even if BE
finds its first failure within the same fraction of the sequerbe failure densityl
above which R does better falls, favoring R more and more.ekplorative unit
testing strategies; grows exponentially in the numberof method calls in each
unit test.

“Note the distinction betweefault density, which is typically measured in faults per 1000 lines
of code, andailure density, which is a dimensionless quantity expressed as a ratiodegtiwumber
of failing test cases and total number of test cases.

11



Thus, except at low failure densities, R is likely to perfdoetter than BE due
to the risk of clustering of failing test cases. Becauseanfgitest case clustering is
unpredictable, BE is inherently unreliable, better thamRsbme test contexts and
worse for others. We therefore conclude that R is a bettategly than BE during
development, initial testing and debugging, until failakensities are low enough
that long random test runs find no failures and BE becomes attraetive.

4.3 Best of Both Worlds

The goal of the BOBW (Best of Both Worlds) strategy, whichgates and runs all
test cases in the search tree but in a pseudo-random orttegas the advantages
of both R and BE. Because BOBW executes all test cases exauiy like BE it
avoids duplicate test case executions; but because itsadeioth-first traversal, it
avoids the clustering that can defeat BE.

To generate the numbers, any linear congruential pseudomamumber gen-
erator with a full period will do [13]. For simplicity, our ft implementations
generated the next number in the sequence by adding a lange pumber to the
previous number and taking the remainder on divisiorr byThis is equivalent to
a linear congruential pseudorandom number generator hatimiultiplier equal to
the modulus.) A simple number-theoretic proof shows this Will generate all
numbers fron? to z — 1 before repeating.

We define the integer index of a test case in the following wWagume a given
test context’ and a number. of method calls.

e Given a methodn, letty,t, ..., t; be types of thé& arguments ten (includ-
ing the pseudo-arguments for target and return value). \leedec(m ), the
number of distinct calls ten, asvps(t1)-vps(ta)-- - - -vps(ty), wherevps(t)
is the size of the value pool far

o Let (v1,v9,...,v;) be a sequence df parameter values te, such that
0 < wv; < vps(t;) for all i. We defing[[(v1, va, ..., v)]], theindex of the
parameter lis{vy, vo, ..., v ), as the number

v1 + vps(ty) - (v2 +ops(te) - (-« (vg—1 + vps(te—1) - (vx)) - +))

Given the index of a parameter list, it is possible to retidve parameters
themselves by dividing by each of thes(¢;) in turn and taking the remain-
der as the value;.

e Let my,...,m, be a listing of all the methods in/;. We definej, the
number of distinct method calls, as:(m;) + --- + nc(m,). We define

12



[[mp(vi, v, ..., vg)]], theindex of the method call[m, (v, va, ..., vg)]], @s
the number

ne(my) + -« -+ ne(mp—1) + [[(vi,v2, ..., v)]]

Given the index of a method call, it is possible to retrieve tthethod call
itself by subtracting each of thec(m;) in turn until the result is less than
nc(m;41); this identifies which method is being called, and the patarse
can be extracted as above.

e We define z, the number of possible test cases, j& as noted ear-

lier. Let (mc1, meo,...,mc,) be a test case, i.e. a sequence of method
calls. We define[[(mci,mea,...,me,)]], the index of the test case
(mey, meg, ..., mey), as the number

[[mer]] + [[mea]lj + [mes]li® + -+ - + [[mea )]

Given the index of a test case, itis possible to retrievedeisnce of method
calls by repeatedly dividing byand taking the remainder as the index of the
next method call.

The test case indices are so large that they typically cammoepresented in
primitive-type numeric variables, but they can easily hgre@eented in Java’s stan-
dardBi gl nt eger type. The representation takes a number of bits propottiona
to log(z), which isnlog(j). The process of extracting the actual test case from
its index takes: steps of length proportional teg(j). Note that the process of
generating and running a test case for BE and R also takegtiopertional ton.

5 The Effect of Increasing Test Case Length

We have shown that R is better than BE except at low failuresities. Here we
show that there is a simple technique for increasing thariitiensity, namely to
run longer test cases. We also show that not only do longecasss yield higher
failure density, but often yield more cost-effective tagti

5.1 Calculating Failure Density

Our previous work [2] suggests that feasible test caselisrigt R can be as many
as 100,000 method calls (depending on the cost of each medtipd

Assume we have atest contdxt Let the total number of distinct method calls
that could be made at any steph@nd let our test cases be of lengthyielding j™
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possible test cases. Assume further that there is a fadiggence of method calls,
of lengthk. We define®(j, k, n) as the number of test cases that fail, out of the
possible test cases. We can calcufatg, &, n), but only under some assumptions.
We will state these assumptions first, and then discuss thications of dropping
the assumptions. The assumptions are:

e There is only one failing sequence of method calls.

e There is no sequence of method calls such that the failing sequence both
starts and ends with, unlessu is the empty sequence or the whole failing
sequence. This assumption holds, for instance, if thenfadiequence starts
with a constructor call which is not repeated elsewheredstitjuence.

e The failure can be detected whenever the failing sequeripghie test case.
This is the case if, for instance, the unit under test is sunded by a test
wrapper that catches and processes expected exceptiorterans unex-
pected ones, which is a standard way of implementing higis-pest oracles
used in explorative strategies.

Under these assumptions, we can calcuibfg¢ k,n), the number of failing
test cases, as the following:

0 if n <k
) 1 ifn==%
( 5k = () — ) ) o=

The first term in the third case of this equation (ije-,®(j, k,n — 1)) represents
the number of test cases of lengttihat have the failing sequence within the first
n — 1 method calls. The second term (i.¢”,"%) represents the number of test
cases that have the failing sequence at the end, i.e. thavdta n — k arbitrary
method calls and end with the unique failing sequence. Hewesome of the latter
test cases already have the failing sequence within thexfirsk: method calls, so
we have to subtract the number of such test cases, yieldmghitd term (i.e.,
—®(j,k,n — k)).

®(4, k,n) therefore corresponds to a recurrence relation. The canpige-
bra tool Maple does not yield a simpler equation for this resnce relation, but
we implemented an infinite-precision calculator for it ivdlaising the standard
Bi gDeci nal class.

Given values ofj, k£ andn, we define thdailure density F'D of the search
space as the fraction of test cases that contain the faibggesnce. This can be
calculated ag'D(j, k,n) = ®(j,k,n)/(5). Itis clear that for a givep andk,
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asn increases, the failure density approaches 1. This is becasishe test case
increases in length, the probability of it containing thidifig sequence approaches
certainty (analogously, the probability of a given finiteygence of digits being
somewhere in an infinite random sequence of digits is 1).

5.2 Calculating Failure Density Per Method Call

The previous subsection shows that we can arbitrarily aszehe failure density
of a testing task by increasing the length of the test casesaeker, this is counter-
balanced by the fact that running a long test case is expenBhe more important
guestion is howeost-effective different test case lengths are.

For instance, givem, we can ask: is it more cost-effective to run the random-
ized testing strategy R(2), with 2 test cases of length, or strategy Rin, 1),
with one test case of lengtin? If the failure density at lengthn is more than
twice that at lengtm, then R@n, 1) will be more cost-effective. (The same rea-
soning applies to BE, since the failure density of the seapelte is the same.) We
explored related issues empirically in an earlier publicaf2]. Here we offer a
computational analysis.

Given j, k, and n, we define thefailure density per method call, or
FDpme(j,k,n), asFD(j,k,n)/n. Givenj andk, we would like to choose:
so thatF"Dpmc(j, k,n) is as high as possible, because this yields a higher proba-
bility that each additional method call executed will fAlVe wrote a Java program
using the standard Java cldisgDeci mal in order to calculaté” Dpmc(j, k, n)
for many different values of, k, andn. By increasingn and noting when the
value began to decline, we were able to find the valua baving the first local
maximum F' Dpmc — that is, the point at which explorative testing is more €ost
effective than for all previous values af but not more cost-effective than for the
next value.

We found that for all but the shortest failing test sequeritenethod call), the
optimal test case length is greater than the number of possible method calls
and the optimal length increases dramatically: &screases.

Note that these are reasonable valueskfandn, but very low values for;
for more realistic values of, the most cost-effective value afis almost always
greater than 1000. This in turn indicates that for all butrtiest trivial units under
test and the most trivial faults (resulting in failing seqoes of length 1), it is
always more cost-effective to run test cases of length 1000ave.

5.3 Dropping the Assumptions

Recall our assumptions:
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e There is only one failing sequence of method calls.

e There is no sequence of method calls such that the failing sequence both
starts and ends with, unlessu is the empty sequence or the whole failing
sequence.

e The failure can be detected whenever the failing sequeringhg test case.

If there is not only one failing sequence of method callsnitie failure densi-
ties will increase, but in a way that is more difficult to cdte.

However, it should be noted that even if there is only onénfgisequence of
length &, as test case length increases, it will be common for thefgetonore
failing sequences of length+ 1 and more. This is because there are often method
calls such that, if they are inserted into the failing segeemwill not affect the
failure of the rest of the sequence. We expect that this teffdctend to increase
the failure density at length beyond our calculated value 6tD(j, k,n).

Most failing sequences will start with one or more conswucills which are
never repeated through the rest of the sequence, sinceigefailll generally hap-
pen when a constructed object has been subjected to a séwgerations that
have changed its internal state. However, it is possibleaftailing sequence to
start instead with a call to a static method, or for constnucbde to interact with
other objects in such a way as to produce a subsequence thagthds and ends
the failing sequence. In this case, the failure densityutaled byF D (j, k, n) will
be an overestimate. We do not expect this situation to ocenyr aften.

If failure is equated to throwing an uncaught exception,raSection 2, then
any execution of the failing sequence will result in detacf the failure. It is not
always the case that failure is detected in this way, howeéwesome situations,
the oracle (test result evaluation) is expensive and isrgfauntil the end of the
test case. In such situations, the effects of later methisl can mask failures,
so failure densities will not be as high in long sequencesuasscalculation of
FD(j,k,n) predicts.

In summary, it is not clear whether, in real-world units, therease in failure
density caused by dropping the first assumption is balanoethyoa decrease in
failure density caused by dropping the second and thirdnagson. It is therefore
important to consider our calculation 6tD(j, k,n) as a simplified estimate, and
to collect empirical data that will confirm or deny the trenlat it shows.

6 Experimental Comparison of Strategies

In order to ground the above theory in empirical study, wel@mgnted BE, R,
and BOBW, and we ran experiments to compare their performdinectly on real
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Mutants Mutants
Unit SLOC | Compiled | Non-Equiv.
ArrayList 150 100 47
EnumMap 239 100 0
HashMap 360 100 29
HashSet 46 41 6
Hashtable 355 100 45
IHashMap 392 100 30
LHashMap | 103 74 5
LHashSet 9 0 0
LinkedList 227 100 44
PQueue 203 100 38
Properties 249 100 1
Stack 17 33 28
TreeMap 562 100 24
TreeSet 62 45 8
Vector 200 100 92
WHashMap| 338 100 38
| Total | 3512 | 1293 | 435 |

Figure 3: Data concerning experimental subjects.

units, and to measure the failure density of those units.

6.1 Subject Units

Our experimental subject was a set of heavily-used datetsteiunits: the 16 units
in java.util version 1.5 which inherit from th€ol | ect i on andMap interfaces.
These subjects contain a total of 3512 SLOC (lines of codematting comments
or whitespace).

6.2 Experimental Preparation

We generated mutants of the source files to act as faultyorexsiPrevious stud-
ies [1] have indicated that mutants can be good stand-inadtual faults when
assessing the effectiveness of testing techniques. Weaaedethem using the
same mutant generator as in [1], which generates mutanésl lwas four classes

of changes: “replace operator”, “replace constant”, “iegkecision” and “delete
statement”.
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In order to simplify the experimental infrastructure, foacé of the
java. util classes, we also generated a “wrapper” class that iniehtthe
generic type parameters tmt eger . Each wrapper class contained the same set
of methods as the correspondipgva. ut i | class, but with the generic type pa-
rameters and the corresponding method parameters irsgéhtdl nt eger . For
eachj ava. uti| class, we selected a8~ (the methods to be called) all the
methods in the class, and As(the types of interest) all the types of all the method
parameters, targets and return values.

We implemented the BE and R algorithms in Java. Each algorithok as
parameters a depth bound and two objects representingstieotgext. One of the
text context objects referred to the original, “gold” implentation of the class and
its methods. The other referred to a mutant implementation.

The test context that we used was one in which all primitiyietyalue pools
had two members and all class value pools had one membernantich the
primitive type value pools were initialized with distinabrestants (e.g., 0 and 100
for the integer value pool).

For detecting the failure of a mutant, we implemented an @ppration of
what a test engineer with access to a good oracle would ingsienEach algo-
rithm generated and ran test cases on both the gold and tratvarsion. Any
exceptions thrown as a result of the method calls were siaradist. At the end
of the run of both test cases, the size of the exception lidttha values in the
primitive-type value pools were compared directly. If theesof the exception list
was different or the values in the value pools were differastjudged that we had
found a failure in the mutant unit (killed the mutant).

6.3 Experimental Procedure

The experiment proceeded in two phases. In the first phasejeméfied which
mutants were equivalent and which were non-equivalent. hénsecond phase,
we measured failure densities and compared the strategidsemon-equivalent
mutants.

For identifying which mutants were equivalent, we first rarategy R(10,
1000), then R(100, 1000), then R(1000, 1000); that is, 1@80dases of length
10, 100, and 1000. We did this first because we believed thabiRdibe the best
way to quickly identify failing test cases. In order not t@biour experiment in
favour of R, we also ran BE testing with 3, 4, and 5 method galstest case, until
we either detected a failure or 30 minutes of clock time ha$ed.

For comparing strategies and measuring failure densitfirstean R, 1000),
starting withn = 1 and increasing by 1 untit = 8, and then doubling. until
n = 1024. On each run, we recorded how long R took to find its first fail(in
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Figure 4: Failure densities fgrava. ut i | mutants, by test case length.

CPU time and number of test cases), and how many of the te=t &ziked. We use
E(n) to stand for the index of the earliest failure at length

Running BE for a complete run for all but the shortest lengthas infeasible.
We therefore ran BE() for n = 1 to 8, stopping as soon as a failure was found or
E(n) test cases were run. We collected information on whethdhadavas found
by BE, how many test cases were run, and how much total CPUiseneeded.

6.4 Results

In the first phase of the experiment (identifying equivalentants), we found that
435 mutants over ajJlava. uti | classes were non-equivalent; that is, that either
R or BE could find a failing test case for 435 of the mutants. d8them were
found by runs of R; only one (a mutant dasht abl e) was found by BE but not
by R. This mutant was one which changed the order of entri¢lserhash table,
causing its oSt r i ng method to return a different string from the gold version.

In the second phase, the data we extracted allowed us to mdagure den-
sity. Figure 4 shows the failure density for thava. uti | units, averaged over
all non-equivalent mutants of all subject units, as comgphfitern the data from the
runs of R. Consistent with our analysis, the failure density climtzadily asn
increases.

In order to examine whether the clustering of failing tesesamentioned in
Section 4 occurs in practice, we examined the situationshiscR (2, 1000) could
kill a mutant (i.e., find a failing test case for the mutantd &BE(n) could Kill
the mutant in fewer test cases. If failures are evenly sptleadighout the search
space, or clustered in a way that favours BE, we would expedtBE would kill
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Figure 5. Percentage of cases in which BEKilled mutants in fewer test cases
than Rg), for cases in whichR could kill a mutant in fewer than 1000 test cases.

50% or more of the mutants more quickly than R. BE has the énrtldvantage of
not repeating test cases, which should give it the edge wdikmd densities are
low, as explained in Section 4. Only if failures are clusteie BE's disadvantage
should we see BE taking a larger number of test cases to kithmtsi over 50% of
the time.

Figure 5 shows the results of this comparison. BE indeed sores kills over
50% of the mutants in fewer test cases than R. However, tisisreonly for short
test case lengthsi(= 1, 2, and 3), which as explained in Section 4 is where we
expect the lowest failure densities. At= 4 and higher, BE does not break even,
indicating that the combination of higher failure densibddailure clustering has
rendered R more effective

We also studied the total amount of CPU time taken by the renfopned in
Phase 2. The statistic of interest here is number of failiesd per CPU second.
R achieved its lowest number of failures per CPU second J3aafd = 1. By
n = 8, where the comparison to BE ended, it was achieving 15.4drési per
CPU second. In contrast, BE achieved its highest numberiloféa per CPU
second (0.0014) at = 2, and decreased consistently to a low of 0.00018 &t 8.
The poor performance of BE here is despite the fact that itaratrictly smaller
number of test cases than R. We should note, however, thatipgtions such as
symmetry breaking [14] would erase this advantage if theyrmake BE 2000 or

SNote that this graph must be interpreted carefully: it dogtsshow that BE finds fewer failures
than R, since we have restricted ourselves to mutants fatwRifinds failures in 1000 test cases or
fewer. It therefore does not contradict the fact that a fufi of BE for a given test case length will
find failures that R will not find when running the same numifeest cases.
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Figure 6: Number of mutants killed by R and BE (log scale x axitie solid line

is the number of mutants overall, i.e. the maximum number atfamts that could
be killed.

more times faster.

Finally, we compared the number of mutants killed by our enpéntations of
the R and BOBW strategies. The results are in Figure 6. leardhat our BOBW
implementation usually does not do as well as R, and in fatwally “flatlines”
after a test case length of 8.

Our interpretation of these results is as follows. We im@atad BOBW by
choosing a large prime numbg@and generating the next test case index by adding
p moduloz. Givenz, our implementation will result in a full period (all testdites
from 0 toz — 1 eventually chosen); however, fis close to a multiple op or vice
versa, then there will be a (possibly small) finite number @ihfs in the search
space sampled, and then the next test cases will be verytoltise previous ones.

Furthermore, when is much larger thap, as happens very quickly when
increases, we explore only the initial part of the searcltaspdhe “flatlining” is
due to the fact that the index generated determines firsnttialimethod calls in
the sequence; whemis large enough, the set of test cases executed for length
are identical to those generated for 1, except that an extra index-0 method call
is tacked on the end of each one.

Clearly, the choice of constants in our implementation ofB¥D did not
achieve the desired properties of a pseudorandom numberajen We are ex-
ploring other ways of implementing it.

21



7 Threats to Validity

We here summarize the threats to the validity of our expertaigorocedures.

Threats to internal validity would come only from bad deystent procedure
or mistakes in data collection. We have guarded against teemmuch as pos-
sible, and have excluded from this paper any data that wetillreegiewing for
correctness.

Threats to construct validity would come from using inaatermeasures.
We use mutant-killing ability as a measure of testing effectess; this is an
increasingly-used practice but not without detractors. N&fee detected failures
of the units under test by comparison to the gold versionelitit; this obviously
does not reflect industrial practice, but is used here beocaadelieve that the gold
versions of the units that we studied are reliable. Also, n@se one particular test
context to run, one with relatively small value pools. We daink of no reason
why this would bias the experiment in favour of one partictdssting strategy, but
the possibility exists.

Threats to external validity would come from not drawing sés from a rep-
resentative enough set of units. We indeed wish to run therarpnts on a larger
sample of units, in more languages. However,jta@a. uti | classes are a re-
alistic, widely-used set of subject units which are ofteadus experiments. We
believe that they are sufficient for the purpose of corrotimgathe results that we
obtained first by analysis.

8 Discussion and Related Work

8.1 BEorR?

Our analysis and experiments here do not resolve the gnestiwwhether some
particular, optimized implementation of BE would perforratter or worse than
some particular, optimized implementation of R on a paldicunit under test.
They attempt instead to abstract away from particular taal$ implementations
and study the mathematical structures underlying the mumsstHowever, we can
make some general observations.

We have shown that (naive) BE performs better than R (withaogment)
when failure densities are low, and/or when failures areaprevenly over the
whole search tree. The only possible source of this bettdoqpeance is the re-
running of previously used test cases by R, since the twtegiss execute test
cases from exactly the same search space.

Eliminating this re-running by using the BOBW strategy ohgeating all test
case indices exactly once in a pseudo-random order williedita any difference
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between the two strategies, unless other optimization®meed by some imple-
mentation are subverted by BOBW (we are unaware of any sutimiaptions).
We can view the improvements brought by BOBW as either maRiadess naive,
or eliminating replacement from R; the effect is the same.

For very large search spaces, such as those that result fimptirsg large value
pools and long test runs, it may not be realistic to perforroraplete run of BE or
BOBW (i.e., the running of all test cases), because the rundv&imply take too
long. However, as the number of test cases run falls to a enaatld smaller frac-
tion of z, R executes fewer and fewer duplicate test cases, and itrfescmore and
more likely that the overhead of BOBW (the large-integethanietic operations)
will outweigh the benefit over R. Since BOBW will on averagdpmiform BE in
number of test cases run, this implies that in these situgtidis the best strategy.

8.2 Related Work

Boyapati et al's system Korat performed BE testing [6, Mihere the bound
(“scope”) was defined as the size of input data structurespted. Here we make
a more general definition (length of sequence of method)calisl consider not
only data structure testing, but unit testing in generalydpati et al. compared BE
testing to random testing, finding that random search waallysoot better than
BE search. However, the depth bound for BE that they usedein #xperiments
was just large enough to kill all mutants of the data stricttode, and the depth
bound for R was just one greater. This may have led to a Suat which the
failure density was low, the situation in which BE perfornettbr than R. As we
show in this paper, the failure density can be increasedlIgimprunning longer
sequences, and this increase in failure density is alseeffesitive.

Coppit et al. [7] also studied BE testing, in the context ohaecstudy of apply-
ing the tool TestEra to a complex fault-tree analysis todie &uthors concluded
that BE was not able to generate inputs to meaningful bouritt®ut refactoring
the specification, but that when this refactoring was peréat, BE testing found
non-trivial faults.

Visser et al. found random testing competitive (in termsaverage, execution
time, and memory used) with model checking methods thatantjme performed
similarly to BE, and with various variations with and with@iate matching, sym-
bolic execution, and abstraction of states [17, 16]. Expditate model checking
with Java Pathfinder or SPIN provides an alternative explaanethod, not con-
sidered in this paper because it is considerably more difficapply to many pro-
grams than BE or RT. Holzmann et al. give a survey of the mastteadvances in
this area [12].

In our own previous work [2], we found that the choice of tesidth did impact
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the effectiveness of random testing, and that the numbaeiilafés per method call
did rise to a maximum at long test case lengths. This work i mpativated the
present paper.

The work that comes closest to implementing the BOBW styatkgscribed
here is the work by Pacheco et al. on the Randoop system [l&dhdeo et al.
generate random test cases, and avoid duplicate test gasesiparing the state of
previously-run test cases. However, Randoop’s strategptimized for generating
short test cases, rather than the long test cases that werstitg paper are more
cost-effective. Furthermore, instead of generating tases that are guaranteed to
not duplicate earlier ones, Randoop generates new test aadehen checks to see
if they have been executed before; this will lead to more andendiscarded test
cases as the run proceeds.

A persistent problem in the research about random testittgeisnconsistent
definition of random testing. Arcuri et al., for instance,[ppint out that many
previous studies comparing a particular testing techniquandom testing adopt
a definition of random testing that inherently biases expents against it. Our
approach is similar in that it attempts to define randomizsdirig precisely, in
order to compare it more precisely to competing approaches.

9 Conclusions and Future Work

We have shown, through a mixture of analytical and empincathods, that ran-
domized testing finds failures in less time and with a smallenber of test cases
than naively-implemented bounded-exhaustive testinpssrfailure densities are
low. We have also shown that failure densities can be inetggmrtly negating the
advantage of bounded-exhaustive, by increasing test eagghk. However, we
have also shown that explorative testing can be implementadwvay that com-
bines the advantages of both random and bounded-exhas$tategies. These
results help to clarify more precisely how, when and why oamnided strategies
can be useful in unit testing, and thus they may be usefuldopfe implementing
model checkers and other testing tools having an elemeahofomness.

In order to show the above, we defined a notion of equivaleharibtests, and
showed that all Java unit test cases can be transformed tuarakent canonical
form that can be generated easily. This led to a homogenesfustibn of explo-
rative test strategy that was used as the basis of the aralpind experimental
comparison. These theoretical foundations may be usefthier contexts.

We are currently in the midst of extending the experimersnted on here to
get more complete data comparing the three strategies gedpo
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A Proof of Canonical Form Theorems

In this Appendix, we prove that every Java unit test case eatohverted to canon-
ical forms 1, 2 and 3.
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A.1 Assumptions and Scope

We make the following initial assumptions in order to sirfypthe proofs. For each
assumption, there are well-known or straightforward ti@msations on test case
or UUT code that would transform it into code conforming wtitle assumption.

e T contains no direct references or assignments to objecsfiglth field
access expressions suchxad ; instead, it accesses object fields using getter
and setter methods, which are correctly implemented.

e T contains no references to inner classes inside other slasse

e Each case in awi t ch statement is terminated bybat eak statement, and
there are no othdsr eak statements if".

e There are n@ont i nue statements iff".

e T'is not recursive, i.e. the test code is not in a method thahately calls
itself.

e Everyi f statement i’ contains arel se clause.

e Everyif clause,el se clause,whi | e body, etc., is enclosed by braces
{...},evenif the clause or body contains a single statement.

e There are no compound-assignment statemerily ire. statements involv-
ing operators like +=".

e There are no variable assignment expressionsljni.e. instances of
(x = e) embedded in other expressions.

e There are no increment{*+") or decrement (* - ”) operators inf".
e There are no anonymous class objects creatdd in
e There are no local class declarations inside

e The arithmetic operations that appeariirdo not themselves cause excep-
tions or errors to be thrown. Exceptions and errors can lmavilin called
methods, and assertionsdhcan causésser ti onErr or s to be thrown,
but the code of" does not do such things as dividing by zero.

We restrict the scope of our claims for simplicity, but weiéet that our model
is sufficiently general to be useful.
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We do not consider the fact that an object of a subclass camdseg to a
superclass parameter.

We assumd’ contains nd i nal | y clauses irt r y statements.

We assuméd” does not raise out-of-memory conditions arising from a com-
bination of test case code heap usage and UUT heap usage.

We assumé” does not contain the keywortl$ii s or super .

Note thatf i nal | y,t hi s andsuper can appear in the unit under test, just not
in the test case code itself. Subclass parameters can bergeddor, with some
loss of simplicity, by extending superclass value pool$weiements that contain
copies of subclass value pool elements.

A.2 Canonical Form 1

Intuitively, to convert a unit test to canonical form 1, weedk all complex ex-
pressions out of their enclosing expressions or statenvamsever possible, and
simplify conditional statements according to how they atecated in the actual
run of the unit test.

We define asimple expression as a variable or a constant. We say that a Java
unit testT" is in canonical form 1 if it has the following properties:

e Every expression iff’ is either a simple expression, a unary operator applied
to a simple expression, a binary arithmetic operator agpti¢wo simple ex-
pressions, or a method or constructor call whose argumentdlavariables.
(For simplicity, we here consider an array element selaaipression of the
form x[eq, ..., ex] to be a pseudo-method callelement At(eq, ..., ex).)

e Every statement iff’ is either of the formz = e, wherez is a variable
ande is a simple expression, or of the forassert e wheree is a sim-
ple expression, or a method call whose arguments are aliblas, or a
try. .. cat ch block in which both thd ry block and thecat ch block
consist of these kinds of statements. (For simplicity, wie heonsider an
array element assignment statement of the fefm,...,ex] = e to be a
pseudo-method call.set(eq, ..., e, €).)

e Every declaration ifl" is of the formtype var, i.e. it contains no assignment.

Theorem 2. Let T be a Java unit test. Then there is a Java unit test 7/ which is
u-equivalent to 7', and is in canonical form 1.
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Proof. We state and (for non-trivial proofs) prove the followingpositions about
u-equivalence. Each proposition about a statenSgriteing equivalent tes in-
duces a transformation from a unit test containéigo the corresponding unit test
with Sy replaced byS,. We can therefore view these propositions equivalently as
steps in a transformation process.

1. Lets be a statement ifi’ of the form 'while (e) { S }7, and lets
be not enclosed within any other loop construct. Thes u-equivalent to
“bool ean b; b = e;”, whereb is a new variable (variable not appear-

ing in T), followed by zero or more repetitions 0, b = e;”.

Proof: sinces is not enclosed in any other loopas a whole will be executed

0 or 1 time (depending on whether it is enclosed in a statesgit as an

i f,caseortry. .. catch,anddepending on the branch of that statement
taken). If it is not executed, then the new code acts the sartteeald code.

If the while loop is executed, then the loop contents will keaaitedn times,

n > 0. Itis therefore equivalent to an initial evaluation of teep decision

e followed by n repetitions of the loop content, each followed by a re-
evaluation of the loop decision.

2. Lets be a statement i which is some other looping construct (e.gf,a@
ordo. . . whi | e loop) not inside any other loop construct. Thenan be
transformed in a similar way towhi | e loop.

* After a finite number of repetitions of steps 1-2, we can assthat there
are no loops ir{". We will assume this from now on.

3. Let s be a statement of the formif (e) {S1} el se {S2}",
where e is not a Vvariable. Then s is u-equivalent to
“boolean b; b =e; if (b) {S1} else {S2}".

4. Let s be a statement of the form stwitch (e) {...}",

where e is not a Vvariable. Then s is u-equivalent to
“Tx; x =e; switch (x) {...}”, where T is the appropri-
ate type.

5. Lets be a statement of the form f (x) {S1} el se {S2}”, wherex
is a variable. Then is u-equivalent to eithe®l or S2.

Proof: in the actual execution of the , either one branch or the other will
be taken.

6. Lets be a statement of the fornstv t ch (x) {...}”, wherex is a
variable. Thers is u-equivalent to onease inside theswi t ch.
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10.

11.

* After a finite number of repetitions of steps 3-6, we can assthat there
are noi f sorswi t ches. We will assume this from now on.

. Lets be a statement of the formassert e;”, wheree is not a variable.

Thens is u-equivalent tobool ean x; x=e; assert x;".

. Let s be a statement involving a method call at its top level, of ohthe

following forms:

e.nl(...).m2(...);

y = e.m(...).n2(...);

wheree is an expression. That ig, involves a method call followed by
another method call on the result of the first call. Thénu-equivalent to the
following (respectively), where is a new variable and is the appropriate

type:
Tz, z=enm(...); z.n2(...);
Tz, z=enm(...); y =z.n2(...);

. Lets be a statement of the forne! "or “x = e; ", wheree is a method or

constructor call of one of the following forms:

mxl, ..., xk, e, ..., Xn)
Cmx1, ..., xk, e, ..., xn)
new C(x1, ..., xk, e, ..., Xxn)
y.mx1, ..., xk, e, ..., xn)

where eachx parameter is a variable, amd is not a variable. Then is
u-equivalenttoT w;, w = e’ ; s, wheres’ is s with the occurrence of
e’ replaced byw.

Lets be a statement of the fornx“= el op e2;”, whereop is the
operator &&" or “| | ”. Then s is u-equivalent either toX' = el; " or
“x = el; x = e2;".

Proof: by Java’s short-circuit (McCarthy) evaluationof is “&&” (resp.
“I'| M, then evaluation will end if the left-hand operand evassato false
(resp. true). If the left-hand operand evaluates to trugp(rialse), then both
operands will be evaluated, and the value of the whole egfmesvill be the
value of the right-hand operand.

Lets be a statement of one of the following forms:

X = el op ez

X = op el;

whereel is not a variable, andp is an operator but no&&” or“| | ”. Then
s is u-equivalent to the following respective form:
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Ty, v =el, x =y op ez
Ty, y=el, x =opy;

12. Lets be a statement of the forrx“=y op e2;”, wherex andy are
variables,e? is not a variable, andp is an operator but not&&” or “| | ”.
Thens is u-equivalenttoT z; z = e2; x =y op z;".

13. Let s be a statement of the formx“= (el ? e2 : e3);"”. Then
s is u-equivalent either to Boolean y; y = el; x = e2;” or
“boolean y; y = el; x = e3;".

* After a finite number of repetitions of steps 7-13, we canuass that
all assignment statementsihare of the formx = e;”,“x = op z;”,
“Xx =y op z;"or*x = myl, ..., yn);”(oritsclass, non-static
and constructor variants), whexeand all operands are variables, andis
either a constant or a variable. We can also assume that tilbcheall state-
ments are of the formM(y1, ..., yn);”*“C.myl, ..., yn);”,
or“x.myl, ..., yn);”, where all theys are variables. We will as-

sume this from now on.

14. Letsbe astatementoftheformfy { S} catch (T1 x) { S1 }
catch (Tn x) { Sn }”. Then s is u-equivalent tcS, or to
“try { S} catch (Ti x) { Si }7, forsomei.

Proof: in the actual execution, zero or one of t&t ch blocks will be
executed.

15. Lets be a statement of the form
“try { S1; S2 } catch (T x) { S3 }" Then s is u-
equivalent either tot‘'ry { S1 } catch (T x) { S3 }7,
orto“Sl; try { S2 } catch (T x) { S3 }".

Proof: If S1 ; S2 raises alhr owabl e, then either it will do so inS1
orin S2. If S1 raises arhr owabl e which is an instance of typ€, then
S2 will not be executed an&3 will be executed. IfS1 does not raise a
Thr owabl e at all, then its execution will be identical to as if it weret o
thet ry clause. IfS1 raises arhr owabl e which is not an instance of type
T, then neithelS2 nor S3 will be executed, which again is identical to the
situation where it is not in ther y block at all.

After a finite number of repetitions of all of the transformoat induced by the
above equivalences, the test case will be in canonical form 1 O
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A.3 Canonical Form 2

It is reasonable to assume that a unit fEstoes not contain uses of variables that
have not been assigned a value, and also that the arithnpetiators in7" do not
cause exceptions to be thrown. (The methodsthedlls may do these things, but
the code off" itself does not.) Under these assumptions, we can furthegliy a
unit test to canonical form 2, in which no arithmetic caltigas are done.

We say that a Java unit testis in canonical form 2 if it is in canonical form 1,
and in addition all assignment statements are of the form e, wheree is either
a constant or a method or constructor call.

Theorem 3. Let T' be a Java unit test in which every variable which isused in an
expression has previously been assigned a value, and whose arithmetic expressions
do not throw exceptions. Then there is a Java unit test 7/ which is u-equivalent to
T, and isin canonical form 2.

Proof. By the previous Theorem, we can convérto a unit testl” in canoni-
cal form 1. Every statement ifi” of the formxz = e wheree is an arithmetic
expression terminates successfully, yielding a detestiinvaluee’, without any
methods or constructors being called. We can therefor@acephe statement by
x = €. Every statement i of the formxz = y wherey is a variable can be
eliminated if later references toare replaced by referencesgauntil x receives
another value. The result will be a unit t§stin canonical form 2. O

A.4 Canonical Form 3

Recall Theorem 1:Let T be a Java unit test in which every variable which is
used in an expression has previously been assigned a value, and whose arithmetic
expressions do not throw exceptions. Then there is a Java unit test 77 which is
u-equivalent to 7", and isin canonical form 3.

Proof. By the previous Theorem, we can convérto a unit testl” in canonical
form 2.

All assertions inl™ are of the formassert z, wherez is a variable. We can
eliminate all of the assertions for whiehevaluates to true, and eliminate all of the
statements following the first assertion wherevaluates to false.

For every type in the unit test, we can count the numhgrof separate vari-
ables of that type, and the numher of constants of that type useddr{'. Let the
numberu; + w; be called thevalue pool size of ¢, abbreviatedps(t).

For a given type, let V; be the name of the value pool far We can convert
T" to canonical form 3 by the following transformations.
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e Replace each referenceig theith variable of type (counting from 0) by
the expressioi;[i].

¢ Replace each referencedg the jth constant of type (counting from 0) by
the expressiofv;[k], wherek is u; + j.

e Precede the transformed statementd'6fby one block of statements for
each type mentioned inl". The block of statements for a given typbas
the form:

t[] Vi
Vi = newt[vps(t)];
Vilug) = co;

Vilugt1) = ¢

Vilug + wi—1] = cw,_y;

The final unit test will be in canonical form 3. O
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