
Comparing Automated Unit Testing Strategies

James H. Andrews1, Yihao Zhang2, and Alex Groce3

Report No. 736

December 2010

Department of Computer Science
University of Western Ontario

London, Canada
N6A 5B7

Abstract: Automated unit testing strategies that execute a large number of test
cases are becoming more viable. In order to better understand the relationship be-
tween these strategies, we define “explorative” unit testing strategies as those which
choose unit tests by exploring a large search space with a simple structure, and we
study three particular explorative strategies: bounded-exhaustive, randomized, and
a combined strategy.

In order to do this, we define canonical forms of unit tests andgive precise
definitions of the search spaces and strategies. We then show, by a combination of
analysis and experimentation, that the bounded-exhaustive strategy is superior to
randomized testing only when a small proportion of the search space of unit tests
fails. We also show that we can arbitrarily and cost-effectively increase the failing
proportion of the search space by simply increasing the number of method calls in
the unit test.

1Department of Computer Science, University of Western Ontario; andrews@csd.uwo.ca
2Department of Computer Science, University of Western Ontario; yzhan694@csd.uwo.ca
3Department of Computer Science, Oregon State University;

alex@eecs.oregonstate.edu



1 Introduction

Unit testing is the practice of testing methods, groups of methods or classes. A unit
test is usually a piece of code written in the same language asthe unit under test
(UUT). The test code makes a sequence of method calls, each method call possibly
preceded by code setting up the arguments of the call and possibly followed by
code evaluating whether the methods did the right thing.

Recently it has become more cost-effective to run very largenumbers of unit
tests when testing critical units. Two trends have led to this development. The first
is the trend toward reuse of general-purpose libraries; it is more important to assure
the quality of heavily-reused units than of seldom-reused units. The second is the
well-known trends of increasing processor speed and memoryfor the same price.
To this we can now add the trend toward multi-core computing,since multiple test
cases can be easily run on multiple processors.

In this paper, we examine a class of automated unit testing strategies that run
large numbers of test cases. We refer to these asexplorative strategies. Our def-
inition of an explorative testing strategy is one in which wedefine a search space
with a relatively simple structure, consisting of a very large number of test cases,
and explore this search space systematically. In contrast to conventional black-
box or white-box testing techniques, in which we devote mostof our human effort
to carefully choosing individual test cases that cover given criteria, in explorative
strategies we concentrate our human effort on defining the search space, and we
count on the processing power available to us to do the rest.

As an illustrative example, consider a hypothetical object-oriented UUT that
has a single constructor taking no arguments, and three methods (m1, m2 andm3)
that each take two integer arguments. We define the search space as the space of all
test cases consisting of a constructor call followed by 10 method calls. We restrict
all the integer arguments to be in the range 0 to 9 because we believe that we can
thoroughly test the unit even with the restriction in place.There are 300 possible
method calls that can be done at any stage (3 choices of method, and 10 choices for
each argument), so the number of possible test cases in the search space is30010,
or approximately6 × 1024.

Two of the strategies that we study here are thebounded-exhaustive andran-
domized strategies. In the bounded-exhaustive strategy [7, 14], wesystematically
execute every test case in the search space; for the example unit, this would mean
6×1024 test executions. In the randomized-testing strategy [11],we instead choose
test cases from the search space randomly, with the hope thatif a failing test case
exists, we will reach one relatively quickly; for instance,before executing1010 test
cases. We also study a strategy that combines the advantagesof both bounded-
exhaustive and randomized.
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The word “bounded” in “bounded-exhaustive” refers to the bounds such as “10
method calls” and “integers between 0 and 9”, which we choosein order to bound
the search space. However, randomized strategies also relyon similar bounds.
Typically, a randomized strategy does not try to avoid executing test cases that it
has executed before, so randomized strategies are sometimes called “randomized
testing with replacement”, suggesting the metaphor of extracting a test case from
the search space, running it and then putting it back in the search space.

There are two main potential benefits of explorative strategies like bounded-
exhaustive and randomized. The first is that even the best white- and black-box
testing strategies can miss failing test cases [10], whereas explorative strategies
give the potential or the guarantee of executing any test case in the search space,
including failing test cases that would not be predicted as failing by non-explorative
strategies. The second is that the amount of human effort needed to define the
search space may be less than the amount of human effort needed to define test
cases that meet black- or white-box test adequacy criteria.

There are also two main potential problems for explorative strategies. The first
is the “oracle problem”: explorative strategies execute somany test cases that it’s
impossible for a human to evaluate them all to see if they succeeded or failed, re-
quiring us to do automatic evaluation of test results. Typical approaches to the ora-
cle problem include the definition of “high-pass” oracles, for instance that evaluate
a test case as failing only if it leads to an uncaught exception [15]; defining oracles
via formal specifications, for units with clear and simple formal specifications [8];
and deducing likely invariants by machine learning techniques [9].

The second potential problem for explorative strategies isthe difficulty of opti-
mally defining the search space of test cases. Antoy and Hamlet [4] and Doong and
Frankl [8] may have been the first to observe that changes in parameters such as
the length of test cases (number of method calls) and range ofarguments can have
a major impact on the effectiveness of the testing. Much recent work on explo-
rative strategies concentrates on overcoming these potential problems, for instance
by pruning the search space or by learning effective parameters [3, 15].

In this paper, we concentrate not on enhancing the benefits orameliorating the
problems of explorative strategies, though these are important areas of research.
Instead we concentrate on comparing strategies directly toeach other. In particu-
lar, we compare bounded-exhaustive (BE) unit testing, randomized (R) unit testing,
and a combined strategy that we refer to as “Best of Both Worlds” (BOBW). In or-
der to compare the strategies fairly and directly, we situate the work in the context
of canonical-form unit test cases that we prove to be sufficiently general to encom-
pass all explorative testing strategies. The main researchcontributions of this work
are:
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1. We show that any Java unit test case can be converted to eachof several
canonical forms.

2. We define the strategies BE, R and BOBW relative to the general notions of
“test context” and canonical form.

3. We show analytically that, given reasonable assumptions, in the average
case, the strategy R finds failing test cases more quickly than BE, except
at low failure densities, and that BOBW finds failing test cases more quickly
than either R or BE, at all failure densities.

4. We show analytically that in the average case, increasingthe length (number
of method calls) of a unit test case increases the failure density, increasing
the viability of R compared to BE. We also show that this increase in length
results in more failures per method call executed, making longer test cases
more cost-effective, until a maximum cost-effectiveness is reached.

5. We give experimental evidence that, consistent with our analysis, the number
of test cases needed to find failures in units is less with R than with BE,
except at small test case lengths.

6. We show that, in our implementations of R, BE and BOBW, strategy BE
takes longer in computation time to find a failing test case than strategy R.

The rest of this paper is organized as follows. In Section 2, we show that every
unit test can be put into a canonical form. In Section 3, we define the strategies we
study in terms of the search space of canonical-form unit tests. In Section 4, we
compare the strategies by a mathematical analysis. In Section 5, we show by further
analysis that increasing the length (in number of method calls) of a test case can
cost-effectively cause randomized testing to be superior to bounded-exhaustive. In
Section 6, we present an experiment that we performed with real subject units to
corroborate our non-empirical analysis. In Section 7, we discuss the threats to the
validity of the empirical results. In Section 8, we discuss the implications of the
work.

2 Unit Test Canonical Forms

In this section, we show that every Java unit test has acanonical form: a simplified
form into which it can be put which are equivalent to the original. The useful
consequence of this is that as long as an explorative strategy can generate and run
all canonical-form test cases, it can effectively perform any unit test case.
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(a)
...
if (t.size() < n+1

&& !found) {
x = t.get(n+42);

}
assert (x != 210);

(b)
...
int i1, i2;
i1 = t.size();
i2 = n+42;
x = t.get(i2);
b2 = (x != 210);
assert b2;

(c)
...
int i1, i2;
i1 = t.size();
i2 = 53;
x = t.get(i2);
b2 = false;
assert b2;

(d)
int[] intVP = new int[4];
intVP[0] = 53;
Tree[] treeVP = new Tree[1];
...
intVP[1] = treeVP[0].size();
intVP[2] = intVP[0];
intVP[3] =

treeVP[0].get(intVP[2]);
booleanVP[1] = booleanVP[0];
assert booleanVP[1];

Figure 1: Canonical forms of unit tests. (a): Original unit test. (b), (c), (d): Test
cases in canonical forms 1, 2 and 3 that are u-equivalent to (a), for some imple-
mentation of the units under test.

2.1 Definitions

We define aJava unit test as a sequence of Java statements which would compile
correctly when given as the body of a method. We use the symbolT , possibly sub-
scripted, to refer to an arbitrary Java unit test. We say thata unit testT terminates
unsuccessfully, or fails, if it throws an uncaught exception, and that itterminates
successfully or succeeds otherwise. (The use of the Javaassert construct ensures
that we can convert any Java unit test to such a form.)

We say that two Java unit testsT1 and T2 are u-equivalent if T1 throws an
uncaught exception at statements if and only if T2 does. In the Appendix, we
actually define a sequence of three canonical forms; our maintheorem about each
canonical form is that, given a particular implementation of the methods thatT1

calls, there is a canonical-form test caseT2 which is u-equivalent to it.
Figure 1 shows an example of a Java unit test for a hypothetical Tree data

structure, and some equivalent canonical forms. Our main focus is the rightmost
canonical form, which is called Canonical Form 3 in the appendix.
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2.2 Canonical Form 3

In a unit test in canonical form 3, all parameters for method calls are taken from
“pools” of values stored in arrays. Canonical form 3 is particularly easy to generate
automatically because, given some initial decisions, eachof its statements can be
generated by choosing a sequence of integers. The initial decisions are how big to
make value pool variables, and what initial values to put into primitive-type value
pools.

We define anarray-canonical method call as an expression of one of the forms
m(. . .), new m(. . .), C.m(. . .), or e.m(. . .), wherem is a method name,C is a
class name, ande and all the arguments ofm are of the formx[i], wherex is a
variable name andi is an integer constant.

We define anarray-canonical statement recursively as follows.s is an array-
canonical statement if either:

• It is an array-canonical method call;

• It is of the formx[i] = e, wherex is an array variable name,i is an integer
constant, ande is an array-canonical method call; or

• It is of the formtry { S } catch (E e) {x = e;}, whereS is an
array-canonical statement.

We say that a Java unit testT is in canonical form 3 if it is in four parts:

• A first part in which only array variables are declared and storage for them
is allocated, where no more than one variable is declared of any given type.
We refer to these variables as “value pools”. For instance, the declaration
int[] intValuePool = new int[100] declares a value pool for
int of size 100.

• A second part in which constant values are assigned to elements of primitive
type value pools; for instance, “intValuePool[3] = 42”.

• A third part in which all statements are array-canonical statements.

• An assert statement of the formassert x, wherex is a variable.

Theorem 1. Let T be a Java unit test in which every variable which is used in an
expression has previously been assigned a value, and whose arithmetic expressions
do not throw exceptions. Then there is a Java unit test T ′ which is u-equivalent to
T , and is in canonical form 3.

Proof. See Appendix A.
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To summarize, every Java unit test case can be converted to a form which con-
sists of a block of code setting up and initializing value pools; then a sequence of
simple method calls that use the value pools as a source of target and parameter
values, and a destination for return values; and finally an assertion.

We conclude that an automated testing strategy that can automatically generate
all test cases of this form can generate a unit test that is u-equivalent to any failing
unit test. This in turn means that if any test case can find a failure in a unit under
test, then an automated testing strategy that can automatically generate test cases
of this form can find a failure.

We will not consider finding value pool sizes and initial values in this paper, but
note that given information about these choices, all the statements of a canonical
form 3 unit test can be generated automatically. The statements in parts 1 and 2 can
be generated deterministically, and the statements in part3 can be generated by (a)
choosing a method, (b) choosing a target for the method call if one is needed, (c)
choosing values for the parameters, and (d) choosing a location to store the return
value, if needed. The point of using value pools is thatevery such choice is reduced
to choosing an integer value pool index. Theassert statement in part 4 can be
similarly generated by choosing an element from the booleanvalue pool.

We have therefore succeeded in reducing the problem of generating a general
unit test to the three problems of choosing value pool sizes,choosing initial values,
and generating a sequence of integers.

3 Definition of Strategies

In order to compare test strategies in a fair and precise manner, we must define
those test strategies precisely, which we do here. Each of the strategies that we
define is relative to a “test context”, which is a structure describing choices that we
make before beginning explorative testing.

In Subsection 3.1, we define the notion of test context. In Subsections 2 and
3, we show how a test context and a depth bound induces a finite search tree of
test cases. Finally, in Subsection 4, we precisely define thethree test strategies BE
(Bounded Exhaustive), R (Randomized), and BoBW (Best of Both Worlds).

3.1 Test Context

Every explorative test strategy explores a search space within certain bounds. Only
a certain set of methods are called, only a fixed number of different variables of a
fixed set of types are declared, and the primitive-type parameters to the methods
are chosen from a fixed set of values. We refer to these bounds as a “test context”,
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and formally define it here.
A test context consists of the following pieces of information:

• The setMC of methods to be called. This includes all the methods actually
under test, and may also include auxiliary methods that are needed to set up
arguments for calls to the methods under test.

• The setTI of types of interest. This should include all types (primitive types
and classes) that are targets, parameters and return valuesof the methods to
be called.

• For each typet ∈ TI , an integervps(t) representing the value pool size for
t. This is the number of separate values of that type that are available to act
as parameters for a method call.

• For each primitive typet ∈ TI , a mappinginit from indicesi such that
0 ≤ i < vps(t) to values of typet. This represents the initial values of the
primitive type value pool elements.

Given a test contextK, a test strategy has access to avalue pool for each type
tk ∈ TI . For each typetk, we assume that value poolVk is an array whose size is
given byvps(tk).

Note that a choice of test context corresponds to parts 1 and 2of a test case in
canonical form 3.

3.2 Method Call Tuples

Given a test contextK = 〈MC , TI , vps, init〉, and a depth (number of method
calls)n, we can define precisely what test cases are encompassed by test strategies
in that context.

We begin by defining aparameter tuple for a method or constructorm, which
encodes the parameters to the call as a sequence of integers.We do this first in order
to treat methods and constructors homogeneously, and methods homogeneously
regardless of whether they are static or non-static, and whether their return type is
void or non-void. In the following,Vk represents the value pool for typetk.

• If m is a staticmethod of classC with k parameters of typest1, . . . , tk and
a voidreturn type, a parameter tuple form is a tuple of integers〈i1, . . . , ik〉,
where eachij is between 0 andvps(tj) − 1 inclusive. The parameter tuple
represents the call
C.m(V1[i1], . . . , Vk[ik]).
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• If m is a staticmethod of classC with k parameters of typest1, . . . , tk and
a non-voidreturn typetk+1, a parameter tuple form is a tuple of integers
〈i1, . . . , ik, ik+1〉, where eachij is between 0 andvps(tj)−1 inclusive. The
parameter tuple represents the call
Vk+1[ik+1] = C.m(V1[i1], . . . , Vk[ik]).

• If m is a constructorof classtk+1 with k parameters of typest1, . . . , tk,
a parameter tuple is a tuple of integers〈i1, . . . , ik, ik+1〉, where eachij is
between 0 andvps(tj)− 1 inclusive. The parameter tuple represents the call
Vk+1[ik+1] = new m(V1[i1], . . . , Vk[ik]).

• If m is a non-staticmethod of classtk+1 with k parameters of types
t1, . . . , tk, a target of classtk+1 and a voidreturn type, a parameter tuple
for m is a tuple of integers〈i1, . . . , ik, ik+1〉, where eachij is between 0 and
vps(tj) − 1 inclusive. The parameter tuple represents the call
Vk+1[ik+1].m(V1[i1], . . . , Vk[ik]).

• Finally, if m is a non-staticmethod of classtk+1 with k parameters of types
t1, . . . , tk, a target of classtk+1 and a non-voidreturn typetk+2, a parameter
tuple for m is a tuple of integers〈i1, . . . , ik, ik+1, ik+2〉, where eachij is
between 0 andvps(tj)− 1 inclusive. The parameter tuple represents the call
Vk+2[ik+2] = Vk+1[ik+1].m(V1[i1], . . . , Vk[ik]).

The definition of parameter tuple makes it clear that, withina test context and using
the value pools defined by it, we can represent any parameter list as a sequence
of integers: one integer representing the method, and the others representing the
target, parameters and return value. Each parameter tuple corresponds to one of
the statements in part 3 of a unit test case in canonical form 3.

In what follows, we will treat the target and return value of amethod call, if
any, as “virtual parameters” in positionsj = k + 1 andj = k + 2.

3.3 Search Trees

We here define three classes of search trees for a given test contextK: the parame-
ter value search tree for a given method, the method call search tree forK, and the
explorative strategy search tree forK. See Figure 2 for a diagram of these three
classes of search trees.

Given a test contextK, let theparameter value search tree for method m be
constructed as follows: the tree has a root node at level 0, and a number of other
levels equal to the number of parameters to the method. Forj >= 1, where the
jth parameter ofm is of type tj, every node at levelj − 1 hasvps(tj) children,
representing the possible value pool locations from which to draw that parameter.
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for param k+1

...

...
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method call
search tree

method call
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method call
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(b)

search tree for
calls to m1

search tree for
calls to mq

...

possible values

possible values ...

...
...

(a)

for param 1

for param 2

root
(c)

possible values

Figure 2: Search trees. (a): parameter value search tree. (b): method call search
tree. (c): explorative strategy search tree.

A path from the root of this tree to any leaf of the parameter value search tree
for m therefore encodes one method call tuple form, as defined above. Note that
the number of leaf nodes in the tree is the product of the valuepool sizes of all the
parameters (including virtual parameters).

Let themethod call search tree for K be constructed as follows: the tree has a
root node, and the root node has one child for each methodm in the test context;
that child is the root node of the parameter value search treefor methodm. The
number of leaf nodes in the method call search tree is the sum of the numbers of
leaf nodes of all the search trees for calls to the methodsm. In what follows, we
will call this numberj.

Finally, given a test context, we recursively define theexplorative strategy
search tree for K for depth n. The tree for depth0 is the tree with just a sin-
gle root node. The tree for depthn is constructed by constructing the tree for depth
n − 1, and then appending to each leaf node the method call search tree. Note that
each path through the explorative strategy search tree, from root to leaf, records a
unique sequence ofn choices of method and, for each method chosen, the unique
choice of parameters, target and return value location for the method call. There
are thereforejn leaf nodes in the explorative strategy search tree for depthn.

Given the discussion in Section 2, it should be clear that forevery unit test case
T , there is a test context and a value ofn such that the explorative strategy search
tree for depthn contains an encoding of the canonical form 3 version ofT . The test
context encodes the first two parts of the canonical form ofT , and the explorative
strategy search tree encodes the rest.
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3.4 Test Strategies

We are now in a position to define the three strategies that we study in this paper:
BE, R and BOBW.

We define the(naive) bounded exhaustive test strategy for length n, or BE(n),
as the strategy that traverses the explorative strategy search tree in a depth-first
fashion, executing the corresponding test case whenever itreaches a leaf.

We define therandomized test strategy for length n and repetitions q, or
R(n, q), as the strategy that,q times, selects a random path from root to leaf of
the explorative strategy search tree, and executes the corresponding test case. At
every internal node, R selects the outgoing edge to follow using a uniform distri-
bution. R is “randomized testing with replacement” becauseevery time it selects a
test case, it could be selecting one that it selected before.

Let the total number of leaf nodes in the explorative strategy search tree be
z. We define thebest-of-both-worlds test strategy for length n, or BOBW(n), as
a strategy that explores the explorative strategy search tree by generating all the
numbers from0 to z − 1 in a pseudorandom order. After each numberx is gen-
erated, BOBW chooses the test case represented by the path from the root to the
xth leaf, and executes the corresponding test case. It therefore executes all of the
test cases exactly once, but in a pseudorandom orderwithout replacement. We give
more details of the implementation of BOBW in Section 4.3.

Many published test strategies are variants or specializations of the first two
strategies, and much research effort has gone into improving the strategies. For
instance, Korat [14] performs isomorphism breaking to avoid executing essentially
the same test case twice. This basic idea is also employed by Randoop [15], which
generates short test cases randomly. Randomized testing isalso the basis of the
lower level of the Nighthawk tool [3].

Many of the published strategies also implement ways of finding test contexts
in which given strategies perform well. While this is a crucial direction of research,
in this paper, we separate the concerns of test context and search strategy in order
to study in more depth the properties of search strategies themselves, independent
of test context.

4 Analytical Comparison of Strategies

Explorative test strategies like BE or R execute all or some of the test cases in
a large set of test cases, whose size is equal tojn, the number of nodes in the
explorative strategy search tree. We use the variablez to stand forjn in this section.
It is reasonable to compare BE with R; we do so here analytically, concluding that
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BE is reliably superior to R only when failure density is low and failing test cases
are not clustered.

4.1 Uniform Distribution of Failure

Let the number of failing test cases in the search tree bef . We defined, thefailure
density of the search tree4, asf/z. The probability thatk test cases randomly
selected from the search tree are all non-failing is(1 − d)k. If we assume that
failing test cases are spread evenly over the search tree, then clearly BE will find
the first one in an expected number of test cases less than or equal to that of R,
since R uses “randomized search with replacement”.

However, it is likely that the failing test cases will not be spread evenly. This
is because a fault in a method will lead to a failure only if that method is executed,
and sometimes only if it is executed after given patterns of other method calls. The
nodes in the search tree corresponding to failing test casestherefore tend to cluster
in certain areas of the tree.

4.2 Non-Uniform Distribution of Failure

We start our analysis with a concrete example. Assume that BEfinds its first failing
test case after the first 0.1% of the sequence, i.e. afterz/1000 test cases. We then
expect R to do better than BE only if(1− d)(z/1000), the probability that R has not
found a failing test case by that time, is less than1/2. This inequality is equivalent
to

1 − d < e−(1000ln(2)/z)

Sinceex ≥ 1 + x for anyx, we expect R to do better than BE if

1 − d < 1 − (1000ln(2)/z)

that is, iff is greater than1000ln(2) ∼= 693.15.
In general, if BE finds its first failing test case afterz/p test cases, then R is

expected to do better if there aref = p ∗ ln(2) failing test cases or more – a result
that isindependent of the size z of the search tree. Thus, asz grows, even if BE
finds its first failure within the same fraction of the sequence, the failure densityd
above which R does better falls, favoring R more and more. Forexplorative unit
testing strategies,z grows exponentially in the numbern of method calls in each
unit test.

4Note the distinction betweenfault density, which is typically measured in faults per 1000 lines
of code, andfailure density, which is a dimensionless quantity expressed as a ratio between number
of failing test cases and total number of test cases.
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Thus, except at low failure densities, R is likely to performbetter than BE due
to the risk of clustering of failing test cases. Because failing test case clustering is
unpredictable, BE is inherently unreliable, better than R for some test contexts and
worse for others. We therefore conclude that R is a better strategy than BE during
development, initial testing and debugging, until failuredensities are low enough
that long random test runs find no failures and BE becomes moreattractive.

4.3 Best of Both Worlds

The goal of the BOBW (Best of Both Worlds) strategy, which generates and runs all
test cases in the search tree but in a pseudo-random order, isto gain the advantages
of both R and BE. Because BOBW executes all test cases exactlyonce, like BE it
avoids duplicate test case executions; but because it avoids depth-first traversal, it
avoids the clustering that can defeat BE.

To generate the numbers, any linear congruential pseudorandom number gen-
erator with a full period will do [13]. For simplicity, our first implementations
generated the next number in the sequence by adding a large prime number to the
previous number and taking the remainder on division byz. (This is equivalent to
a linear congruential pseudorandom number generator with the multiplier equal to
the modulus.) A simple number-theoretic proof shows that this will generate all
numbers from0 to z − 1 before repeating.

We define the integer index of a test case in the following way.Assume a given
test contextK and a numbern of method calls.

• Given a methodm, let t1, t2 . . . , tk be types of thek arguments tom (includ-
ing the pseudo-arguments for target and return value). We definenc(m), the
number of distinct calls tom, asvps(t1)·vps(t2)·· · · ·vps(tk), wherevps(t)
is the size of the value pool fort.

• Let (v1, v2, . . . , vk) be a sequence ofk parameter values tom, such that
0 ≤ vi < vps(ti) for all i. We define[[(v1, v2, . . . , vk)]], the index of the
parameter list(v1, v2, . . . , vk), as the number

v1 + vps(t1) · (v2 + vps(t2) · (· · · (vk−1 + vps(tk−1) · (vk)) · · ·))

Given the index of a parameter list, it is possible to retrieve the parameters
themselves by dividing by each of thevps(ti) in turn and taking the remain-
der as the valuevi.

• Let m1, . . . ,mq be a listing of all the methods inMI . We definej, the
number of distinct method calls, asnc(m1) + · · · + nc(mq). We define
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[[mp(v1, v2, . . . , vk)]], theindex of the method call[[mp(v1, v2, . . . , vk)]], as
the number

nc(m1) + · · · + nc(mp−1) + [[(v1, v2, . . . , vk)]]

Given the index of a method call, it is possible to retrieve the method call
itself by subtracting each of thenc(mi) in turn until the result is less than
nc(mi+1); this identifies which method is being called, and the parameters
can be extracted as above.

• We define z, the number of possible test cases, asjn, as noted ear-
lier. Let (mc1,mc2, . . . ,mcn) be a test case, i.e. a sequence of method
calls. We define[[(mc1,mc2, . . . ,mcn)]], the index of the test case
(mc1,mc2, . . . ,mcn), as the number

[[mc1]] + [[mc2]]j + [mc3]]j
2 + · · · + [[mcn]]jn−1

Given the index of a test case, it is possible to retrieve the sequence of method
calls by repeatedly dividing byj and taking the remainder as the index of the
next method call.

The test case indices are so large that they typically cannotbe represented in
primitive-type numeric variables, but they can easily be represented in Java’s stan-
dardBigInteger type. The representation takes a number of bits proportional
to log(z), which isn log(j). The process of extracting the actual test case from
its index takesn steps of length proportional tolog(j). Note that the process of
generating and running a test case for BE and R also takes timeproportional ton.

5 The Effect of Increasing Test Case Length

We have shown that R is better than BE except at low failure densities. Here we
show that there is a simple technique for increasing the failure density, namely to
run longer test cases. We also show that not only do longer test cases yield higher
failure density, but often yield more cost-effective testing.

5.1 Calculating Failure Density

Our previous work [2] suggests that feasible test case lengths for R can be as many
as 100,000 method calls (depending on the cost of each methodcall).

Assume we have a test contextK. Let the total number of distinct method calls
that could be made at any step bej, and let our test cases be of lengthn, yieldingjn
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possible test cases. Assume further that there is a failing sequence of method calls,
of lengthk. We defineΦ(j, k, n) as the number of test cases that fail, out of thejn

possible test cases. We can calculateΦ(j, k, n), but only under some assumptions.
We will state these assumptions first, and then discuss the implications of dropping
the assumptions. The assumptions are:

• There is only one failing sequence of method calls.

• There is no sequenceu of method calls such that the failing sequence both
starts and ends withu, unlessu is the empty sequence or the whole failing
sequence. This assumption holds, for instance, if the failing sequence starts
with a constructor call which is not repeated elsewhere in the sequence.

• The failure can be detected whenever the failing sequence isin the test case.
This is the case if, for instance, the unit under test is surrounded by a test
wrapper that catches and processes expected exceptions andthrows unex-
pected ones, which is a standard way of implementing high-pass test oracles
used in explorative strategies.

Under these assumptions, we can calculateΦ(j, k, n), the number of failing
test cases, as the following:

Φ(j, k, n) =



















0 if n < k
1 if n = k

(

j · Φ(j, k, n − 1)
+jn−k − Φ(j, k, n − k)

)

if n > k

The first term in the third case of this equation (i.e.,j · Φ(j, k, n − 1)) represents
the number of test cases of lengthn that have the failing sequence within the first
n − 1 method calls. The second term (i.e.,jn−k) represents the number of test
cases that have the failing sequence at the end, i.e. that start with n − k arbitrary
method calls and end with the unique failing sequence. However, some of the latter
test cases already have the failing sequence within the firstn − k method calls, so
we have to subtract the number of such test cases, yielding the third term (i.e.,
−Φ(j, k, n − k)).

Φ(j, k, n) therefore corresponds to a recurrence relation. The computer alge-
bra tool Maple does not yield a simpler equation for this recurrence relation, but
we implemented an infinite-precision calculator for it in Java using the standard
BigDecimal class.

Given values ofj, k andn, we define thefailure density FD of the search
space as the fraction of test cases that contain the failing sequence. This can be
calculated asFD(j, k, n) = Φ(j, k, n)/(jn). It is clear that for a givenj andk,
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asn increases, the failure density approaches 1. This is because as the test case
increases in length, the probability of it containing the failing sequence approaches
certainty (analogously, the probability of a given finite sequence of digits being
somewhere in an infinite random sequence of digits is 1).

5.2 Calculating Failure Density Per Method Call

The previous subsection shows that we can arbitrarily increase the failure density
of a testing task by increasing the length of the test cases. However, this is counter-
balanced by the fact that running a long test case is expensive. The more important
question is howcost-effective different test case lengths are.

For instance, givenn, we can ask: is it more cost-effective to run the random-
ized testing strategy R(n, 2), with 2 test cases of lengthn, or strategy R(2n, 1),
with one test case of length2n? If the failure density at length2n is more than
twice that at lengthn, then R(2n, 1) will be more cost-effective. (The same rea-
soning applies to BE, since the failure density of the searchspace is the same.) We
explored related issues empirically in an earlier publication [2]. Here we offer a
computational analysis.

Given j, k, and n, we define thefailure density per method call, or
FDpmc(j, k, n), asFD(j, k, n)/n. Given j andk, we would like to choosen
so thatFDpmc(j, k, n) is as high as possible, because this yields a higher proba-
bility that each additional method call executed will fail.We wrote a Java program
using the standard Java classBigDecimal in order to calculateFDpmc(j, k, n)
for many different values ofj, k, andn. By increasingn and noting when the
value began to decline, we were able to find the value ofn having the first local
maximumFDpmc – that is, the point at which explorative testing is more cost-
effective than for all previous values ofn, but not more cost-effective than for the
next value.

We found that for all but the shortest failing test sequences(1 method call), the
optimal test case lengthn is greater than the number of possible method callsj,
and the optimal length increases dramatically ask increases.

Note that these are reasonable values fork andn, but very low values forj;
for more realistic values ofj, the most cost-effective value ofn is almost always
greater than 1000. This in turn indicates that for all but themost trivial units under
test and the most trivial faults (resulting in failing sequences of length 1), it is
always more cost-effective to run test cases of length 1000 or more.

5.3 Dropping the Assumptions

Recall our assumptions:
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• There is only one failing sequence of method calls.

• There is no sequenceu of method calls such that the failing sequence both
starts and ends withu, unlessu is the empty sequence or the whole failing
sequence.

• The failure can be detected whenever the failing sequence isin the test case.

If there is not only one failing sequence of method calls, then the failure densi-
ties will increase, but in a way that is more difficult to calculate.

However, it should be noted that even if there is only one failing sequence of
length k, as test case length increases, it will be common for there tobe more
failing sequences of lengthk + 1 and more. This is because there are often method
calls such that, if they are inserted into the failing sequence, will not affect the
failure of the rest of the sequence. We expect that this effect will tend to increase
the failure density at lengthn beyond our calculated value ofFD(j, k, n).

Most failing sequences will start with one or more constructor calls which are
never repeated through the rest of the sequence, since a failure will generally hap-
pen when a constructed object has been subjected to a series of operations that
have changed its internal state. However, it is possible fora failing sequence to
start instead with a call to a static method, or for constructor code to interact with
other objects in such a way as to produce a subsequence that both starts and ends
the failing sequence. In this case, the failure density calculated byFD(j, k, n) will
be an overestimate. We do not expect this situation to occur very often.

If failure is equated to throwing an uncaught exception, as in Section 2, then
any execution of the failing sequence will result in detection of the failure. It is not
always the case that failure is detected in this way, however; in some situations,
the oracle (test result evaluation) is expensive and is deferred until the end of the
test case. In such situations, the effects of later method calls can mask failures,
so failure densities will not be as high in long sequences as our calculation of
FD(j, k, n) predicts.

In summary, it is not clear whether, in real-world units, theincrease in failure
density caused by dropping the first assumption is balanced out by a decrease in
failure density caused by dropping the second and third assumption. It is therefore
important to consider our calculation ofFD(j, k, n) as a simplified estimate, and
to collect empirical data that will confirm or deny the trendsthat it shows.

6 Experimental Comparison of Strategies

In order to ground the above theory in empirical study, we implemented BE, R,
and BOBW, and we ran experiments to compare their performance directly on real
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Mutants Mutants
Unit SLOC Compiled Non-Equiv.
ArrayList 150 100 47
EnumMap 239 100 0
HashMap 360 100 29
HashSet 46 41 6
Hashtable 355 100 45
IHashMap 392 100 30
LHashMap 103 74 5
LHashSet 9 0 0
LinkedList 227 100 44
PQueue 203 100 38
Properties 249 100 1
Stack 17 33 28
TreeMap 562 100 24
TreeSet 62 45 8
Vector 200 100 92
WHashMap 338 100 38

Total 3512 1293 435

Figure 3: Data concerning experimental subjects.

units, and to measure the failure density of those units.

6.1 Subject Units

Our experimental subject was a set of heavily-used data structure units: the 16 units
in java.util version 1.5 which inherit from theCollection andMap interfaces.
These subjects contain a total of 3512 SLOC (lines of code notcounting comments
or whitespace).

6.2 Experimental Preparation

We generated mutants of the source files to act as faulty versions. Previous stud-
ies [1] have indicated that mutants can be good stand-ins foractual faults when
assessing the effectiveness of testing techniques. We generated them using the
same mutant generator as in [1], which generates mutants based on four classes
of changes: “replace operator”, “replace constant”, “negate decision” and “delete
statement”.
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In order to simplify the experimental infrastructure, for each of the
java.util classes, we also generated a “wrapper” class that instantiated the
generic type parameters toInteger. Each wrapper class contained the same set
of methods as the correspondingjava.util class, but with the generic type pa-
rameters and the corresponding method parameters instantiated toInteger. For
eachjava.util class, we selected asMC (the methods to be called) all the
methods in the class, and asTI (the types of interest) all the types of all the method
parameters, targets and return values.

We implemented the BE and R algorithms in Java. Each algorithm took as
parameters a depth bound and two objects representing the test context. One of the
text context objects referred to the original, “gold” implementation of the class and
its methods. The other referred to a mutant implementation.

The test context that we used was one in which all primitive type value pools
had two members and all class value pools had one member, and in which the
primitive type value pools were initialized with distinct constants (e.g., 0 and 100
for the integer value pool).

For detecting the failure of a mutant, we implemented an approximation of
what a test engineer with access to a good oracle would implement. Each algo-
rithm generated and ran test cases on both the gold and the mutant version. Any
exceptions thrown as a result of the method calls were storedin a list. At the end
of the run of both test cases, the size of the exception list and the values in the
primitive-type value pools were compared directly. If the size of the exception list
was different or the values in the value pools were different, we judged that we had
found a failure in the mutant unit (killed the mutant).

6.3 Experimental Procedure

The experiment proceeded in two phases. In the first phase, weidentified which
mutants were equivalent and which were non-equivalent. In the second phase,
we measured failure densities and compared the strategies on the non-equivalent
mutants.

For identifying which mutants were equivalent, we first ran strategy R(10,
1000), then R(100, 1000), then R(1000, 1000); that is, 1000 test cases of length
10, 100, and 1000. We did this first because we believed that R would be the best
way to quickly identify failing test cases. In order not to bias our experiment in
favour of R, we also ran BE testing with 3, 4, and 5 method callsper test case, until
we either detected a failure or 30 minutes of clock time had passed.

For comparing strategies and measuring failure density, wefirst ran R(n, 1000),
starting withn = 1 and increasing by 1 untiln = 8, and then doublingn until
n = 1024. On each run, we recorded how long R took to find its first failure (in
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Figure 4: Failure densities forjava.utilmutants, by test case length.

CPU time and number of test cases), and how many of the test cases failed. We use
E(n) to stand for the index of the earliest failure at lengthn.

Running BE for a complete run for all but the shortest lengthswas infeasible.
We therefore ran BE(n) for n = 1 to 8, stopping as soon as a failure was found or
E(n) test cases were run. We collected information on whether a failure was found
by BE, how many test cases were run, and how much total CPU timewas needed.

6.4 Results

In the first phase of the experiment (identifying equivalentmutants), we found that
435 mutants over alljava.util classes were non-equivalent; that is, that either
R or BE could find a failing test case for 435 of the mutants. 434of them were
found by runs of R; only one (a mutant ofHashtable) was found by BE but not
by R. This mutant was one which changed the order of entries inthe hash table,
causing itstoStringmethod to return a different string from the gold version.

In the second phase, the data we extracted allowed us to measure failure den-
sity. Figure 4 shows the failure density for thejava.util units, averaged over
all non-equivalent mutants of all subject units, as computed from the data from the
runs ofR. Consistent with our analysis, the failure density climbs steadily asn
increases.

In order to examine whether the clustering of failing test cases mentioned in
Section 4 occurs in practice, we examined the situations in which R(n, 1000) could
kill a mutant (i.e., find a failing test case for the mutant) and BE(n) could kill
the mutant in fewer test cases. If failures are evenly spreadthroughout the search
space, or clustered in a way that favours BE, we would expect that BE would kill
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Figure 5: Percentage of cases in which BE(n) killed mutants in fewer test cases
than R(n), for cases in whichR could kill a mutant in fewer than 1000 test cases.

50% or more of the mutants more quickly than R. BE has the further advantage of
not repeating test cases, which should give it the edge when failure densities are
low, as explained in Section 4. Only if failures are clustered to BE’s disadvantage
should we see BE taking a larger number of test cases to kill mutants over 50% of
the time.

Figure 5 shows the results of this comparison. BE indeed sometimes kills over
50% of the mutants in fewer test cases than R. However, this occurs only for short
test case lengths (n = 1, 2, and 3), which as explained in Section 4 is where we
expect the lowest failure densities. Atn = 4 and higher, BE does not break even,
indicating that the combination of higher failure density and failure clustering has
rendered R more effective5.

We also studied the total amount of CPU time taken by the runs performed in
Phase 2. The statistic of interest here is number of failuresfound per CPU second.
R achieved its lowest number of failures per CPU second (3.70) at n = 1. By
n = 8, where the comparison to BE ended, it was achieving 15.44 failures per
CPU second. In contrast, BE achieved its highest number of failures per CPU
second (0.0014) atn = 2, and decreased consistently to a low of 0.00018 atn = 8.
The poor performance of BE here is despite the fact that it rana strictly smaller
number of test cases than R. We should note, however, that optimizations such as
symmetry breaking [14] would erase this advantage if they can make BE 2000 or

5Note that this graph must be interpreted carefully: it does not show that BE finds fewer failures
than R, since we have restricted ourselves to mutants for which R finds failures in 1000 test cases or
fewer. It therefore does not contradict the fact that a full run of BE for a given test case length will
find failures that R will not find when running the same number of test cases.
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more times faster.
Finally, we compared the number of mutants killed by our implementations of

the R and BOBW strategies. The results are in Figure 6. It is clear that our BOBW
implementation usually does not do as well as R, and in fact virtually “flatlines”
after a test case length of 8.

Our interpretation of these results is as follows. We implemented BOBW by
choosing a large prime numberp and generating the next test case index by adding
p moduloz. Givenz, our implementation will result in a full period (all test indices
from 0 toz − 1 eventually chosen); however, ifz is close to a multiple ofp or vice
versa, then there will be a (possibly small) finite number of points in the search
space sampled, and then the next test cases will be very closeto the previous ones.

Furthermore, whenz is much larger thanp, as happens very quickly whenn
increases, we explore only the initial part of the search space. The “flatlining” is
due to the fact that the index generated determines first the initial method calls in
the sequence; whenn is large enough, the set of test cases executed for lengthn
are identical to those generated forn − 1, except that an extra index-0 method call
is tacked on the end of each one.

Clearly, the choice of constants in our implementation of BOBW did not
achieve the desired properties of a pseudorandom number generator. We are ex-
ploring other ways of implementing it.
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7 Threats to Validity

We here summarize the threats to the validity of our experimental procedures.
Threats to internal validity would come only from bad development procedure

or mistakes in data collection. We have guarded against themas much as pos-
sible, and have excluded from this paper any data that we are still reviewing for
correctness.

Threats to construct validity would come from using inaccurate measures.
We use mutant-killing ability as a measure of testing effectiveness; this is an
increasingly-used practice but not without detractors. Wehave detected failures
of the units under test by comparison to the gold version of the unit; this obviously
does not reflect industrial practice, but is used here because we believe that the gold
versions of the units that we studied are reliable. Also, we chose one particular test
context to run, one with relatively small value pools. We canthink of no reason
why this would bias the experiment in favour of one particular testing strategy, but
the possibility exists.

Threats to external validity would come from not drawing samples from a rep-
resentative enough set of units. We indeed wish to run the experiments on a larger
sample of units, in more languages. However, thejava.util classes are a re-
alistic, widely-used set of subject units which are often used in experiments. We
believe that they are sufficient for the purpose of corroborating the results that we
obtained first by analysis.

8 Discussion and Related Work

8.1 BE or R?

Our analysis and experiments here do not resolve the question of whether some
particular, optimized implementation of BE would perform better or worse than
some particular, optimized implementation of R on a particular unit under test.
They attempt instead to abstract away from particular toolsand implementations
and study the mathematical structures underlying the questions. However, we can
make some general observations.

We have shown that (naive) BE performs better than R (with replacement)
when failure densities are low, and/or when failures are spread evenly over the
whole search tree. The only possible source of this better performance is the re-
running of previously used test cases by R, since the two strategies execute test
cases from exactly the same search space.

Eliminating this re-running by using the BOBW strategy of generating all test
case indices exactly once in a pseudo-random order will eliminate any difference
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between the two strategies, unless other optimizations performed by some imple-
mentation are subverted by BOBW (we are unaware of any such optimizations).
We can view the improvements brought by BOBW as either makingBE less naive,
or eliminating replacement from R; the effect is the same.

For very large search spaces, such as those that result from adopting large value
pools and long test runs, it may not be realistic to perform a complete run of BE or
BOBW (i.e., the running of all test cases), because the run would simply take too
long. However, as the number of test cases run falls to a smaller and smaller frac-
tion of z, R executes fewer and fewer duplicate test cases, and it becomes more and
more likely that the overhead of BOBW (the large-integer arithmetic operations)
will outweigh the benefit over R. Since BOBW will on average outperform BE in
number of test cases run, this implies that in these situations R is the best strategy.

8.2 Related Work

Boyapati et al.’s system Korat performed BE testing [6, 14],where the bound
(“scope”) was defined as the size of input data structures accepted. Here we make
a more general definition (length of sequence of method calls), and consider not
only data structure testing, but unit testing in general. Boyapati et al. compared BE
testing to random testing, finding that random search was usually not better than
BE search. However, the depth bound for BE that they used in their experiments
was just large enough to kill all mutants of the data structure code, and the depth
bound for R was just one greater. This may have led to a situation in which the
failure density was low, the situation in which BE performs better than R. As we
show in this paper, the failure density can be increased simply by running longer
sequences, and this increase in failure density is also cost-effective.

Coppit et al. [7] also studied BE testing, in the context of a case study of apply-
ing the tool TestEra to a complex fault-tree analysis tool. The authors concluded
that BE was not able to generate inputs to meaningful bounds without refactoring
the specification, but that when this refactoring was performed, BE testing found
non-trivial faults.

Visser et al. found random testing competitive (in terms of coverage, execution
time, and memory used) with model checking methods that in practice performed
similarly to BE, and with various variations with and without state matching, sym-
bolic execution, and abstraction of states [17, 16]. Explicit-state model checking
with Java Pathfinder or SPIN provides an alternative explorative method, not con-
sidered in this paper because it is considerably more difficult to apply to many pro-
grams than BE or RT. Holzmann et al. give a survey of the most recent advances in
this area [12].

In our own previous work [2], we found that the choice of test length did impact
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the effectiveness of random testing, and that the number of failures per method call
did rise to a maximum at long test case lengths. This work in part motivated the
present paper.

The work that comes closest to implementing the BOBW strategy described
here is the work by Pacheco et al. on the Randoop system [15]. Pacheco et al.
generate random test cases, and avoid duplicate test cases by comparing the state of
previously-run test cases. However, Randoop’s strategy isoptimized for generating
short test cases, rather than the long test cases that we showin this paper are more
cost-effective. Furthermore, instead of generating test cases that are guaranteed to
not duplicate earlier ones, Randoop generates new test cases and then checks to see
if they have been executed before; this will lead to more and more discarded test
cases as the run proceeds.

A persistent problem in the research about random testing isthe inconsistent
definition of random testing. Arcuri et al., for instance [5], point out that many
previous studies comparing a particular testing techniqueto random testing adopt
a definition of random testing that inherently biases experiments against it. Our
approach is similar in that it attempts to define randomized testing precisely, in
order to compare it more precisely to competing approaches.

9 Conclusions and Future Work

We have shown, through a mixture of analytical and empiricalmethods, that ran-
domized testing finds failures in less time and with a smallernumber of test cases
than naively-implemented bounded-exhaustive testing, unless failure densities are
low. We have also shown that failure densities can be increased, partly negating the
advantage of bounded-exhaustive, by increasing test case lengths. However, we
have also shown that explorative testing can be implementedin a way that com-
bines the advantages of both random and bounded-exhaustivestrategies. These
results help to clarify more precisely how, when and why randomized strategies
can be useful in unit testing, and thus they may be useful for people implementing
model checkers and other testing tools having an element of randomness.

In order to show the above, we defined a notion of equivalence of unit tests, and
showed that all Java unit test cases can be transformed to an equivalent canonical
form that can be generated easily. This led to a homogeneous definition of explo-
rative test strategy that was used as the basis of the analytical and experimental
comparison. These theoretical foundations may be useful inother contexts.

We are currently in the midst of extending the experiments reported on here to
get more complete data comparing the three strategies proposed.
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A Proof of Canonical Form Theorems

In this Appendix, we prove that every Java unit test case can be converted to canon-
ical forms 1, 2 and 3.
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A.1 Assumptions and Scope

We make the following initial assumptions in order to simplify the proofs. For each
assumption, there are well-known or straightforward transformations on test case
or UUT code that would transform it into code conforming withthe assumption.

• T contains no direct references or assignments to object fields with field
access expressions such asx.f; instead, it accesses object fields using getter
and setter methods, which are correctly implemented.

• T contains no references to inner classes inside other classes.

• Each case in aswitch statement is terminated by abreak statement, and
there are no otherbreak statements inT .

• There are nocontinue statements inT .

• T is not recursive, i.e. the test code is not in a method that ultimately calls
itself.

• Everyif statement inT contains anelse clause.

• Every if clause,else clause,while body, etc., is enclosed by braces
{...}, even if the clause or body contains a single statement.

• There are no compound-assignment statements inT , i.e. statements involv-
ing operators like “+=”.

• There are no variable assignment expressions inT , i.e. instances of
(x = e) embedded in other expressions.

• There are no increment (“++”) or decrement (“--”) operators inT .

• There are no anonymous class objects created inT .

• There are no local class declarations insideT .

• The arithmetic operations that appear inT do not themselves cause excep-
tions or errors to be thrown. Exceptions and errors can be thrown in called
methods, and assertions inT can causeAssertionErrors to be thrown,
but the code ofT does not do such things as dividing by zero.

We restrict the scope of our claims for simplicity, but we believe that our model
is sufficiently general to be useful.
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• We do not consider the fact that an object of a subclass can be passed to a
superclass parameter.

• We assumeT contains nofinally clauses intry statements.

• We assumeT does not raise out-of-memory conditions arising from a com-
bination of test case code heap usage and UUT heap usage.

• We assumeT does not contain the keywordsthis or super.

Note thatfinally, this andsuper can appear in the unit under test, just not
in the test case code itself. Subclass parameters can be accounted for, with some
loss of simplicity, by extending superclass value pools with elements that contain
copies of subclass value pool elements.

A.2 Canonical Form 1

Intuitively, to convert a unit test to canonical form 1, we break all complex ex-
pressions out of their enclosing expressions or statementswhenever possible, and
simplify conditional statements according to how they are executed in the actual
run of the unit test.

We define asimple expression as a variable or a constant. We say that a Java
unit testT is in canonical form 1 if it has the following properties:

• Every expression inT is either a simple expression, a unary operator applied
to a simple expression, a binary arithmetic operator applied to two simple ex-
pressions, or a method or constructor call whose arguments are all variables.
(For simplicity, we here consider an array element selection expression of the
form x[e1, . . . , ek] to be a pseudo-method callx.elementAt(e1, . . . , ek).)

• Every statement inT is either of the formx = e, wherex is a variable
ande is a simple expression, or of the formassert e wheree is a sim-
ple expression, or a method call whose arguments are all variables, or a
try...catch block in which both thetry block and thecatch block
consist of these kinds of statements. (For simplicity, we here consider an
array element assignment statement of the formx[e1, . . . , ek] = e to be a
pseudo-method callx.set(e1, . . . , ek, e).)

• Every declaration inT is of the formtype var, i.e. it contains no assignment.

Theorem 2. Let T be a Java unit test. Then there is a Java unit test T ′ which is
u-equivalent to T , and is in canonical form 1.
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Proof. We state and (for non-trivial proofs) prove the following propositions about
u-equivalence. Each proposition about a statementS1 being equivalent toS2 in-
duces a transformation from a unit test containingS1 to the corresponding unit test
with S1 replaced byS2. We can therefore view these propositions equivalently as
steps in a transformation process.

1. Let s be a statement inT of the form “while (e) { S }”, and let s
be not enclosed within any other loop construct. Thens is u-equivalent to
“boolean b; b = e;”, whereb is a new variable (variable not appear-
ing in T ), followed by zero or more repetitions of “S; b = e;”.

Proof: sinces is not enclosed in any other loop,s as a whole will be executed
0 or 1 time (depending on whether it is enclosed in a statementsuch as an
if,case ortry...catch, and depending on the branch of that statement
taken). If it is not executed, then the new code acts the same as the old code.
If the while loop is executed, then the loop contents will be executedn times,
n ≥ 0. It is therefore equivalent to an initial evaluation of the loop decision
e followed by n repetitions of the loop contentsS, each followed by a re-
evaluation of the loop decision.

2. Lets be a statement inT which is some other looping construct (e.g., afor
or do...while loop) not inside any other loop construct. Thens can be
transformed in a similar way to awhile loop.

* After a finite number of repetitions of steps 1-2, we can assume that there
are no loops inT . We will assume this from now on.

3. Let s be a statement of the form “if (e) {S1} else {S2}”,
where e is not a variable. Then s is u-equivalent to
“boolean b; b = e; if (b) {S1} else {S2}”.

4. Let s be a statement of the form “switch (e) {...}”,
where e is not a variable. Then s is u-equivalent to
“T x; x = e; switch (x) {...}”, where T is the appropri-
ate type.

5. Lets be a statement of the form “if (x) {S1} else {S2}”, wherex
is a variable. Thens is u-equivalent to eitherS1 or S2.

Proof: in the actual execution of theif, either one branch or the other will
be taken.

6. Let s be a statement of the form “switch (x) {...}”, wherex is a
variable. Thens is u-equivalent to onecase inside theswitch.
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* After a finite number of repetitions of steps 3-6, we can assume that there
are noifs orswitches. We will assume this from now on.

7. Lets be a statement of the form “assert e;”, wheree is not a variable.
Thens is u-equivalent to “boolean x; x=e; assert x;”.

8. Let s be a statement involving a method call at its top level, of oneof the
following forms:
e.m1(...).m2(...);
y = e.m1(...).m2(...);
wheree is an expression. That is,s involves a method call followed by
another method call on the result of the first call. Thens is u-equivalent to the
following (respectively), wherez is a new variable andT is the appropriate
type:
T z; z = e.m1(...); z.m2(...);
T z; z = e.m1(...); y = z.m2(...);

9. Lets be a statement of the form “e;” or “x = e;”, wheree is a method or
constructor call of one of the following forms:
m(x1, ..., xk, e’, ..., xn)
C.m(x1, ..., xk, e’, ..., xn)
new C(x1, ..., xk, e’, ..., xn)
y.m(x1, ..., xk, e’, ..., xn)
where eachx parameter is a variable, ande’ is not a variable. Thens is
u-equivalent to “T w; w = e’; s′”, wheres′ is s with the occurrence of
e’ replaced byw.

10. Let s be a statement of the form “x = e1 op e2;”, where op is the
operator “&&” or “||”. Then s is u-equivalent either to “x = e1;” or
“x = e1; x = e2;”.

Proof: by Java’s short-circuit (McCarthy) evaluation, ifop is “&&” (resp.
“||”), then evaluation will end if the left-hand operand evaluates to false
(resp. true). If the left-hand operand evaluates to true (resp. false), then both
operands will be evaluated, and the value of the whole expression will be the
value of the right-hand operand.

11. Lets be a statement of one of the following forms:
x = e1 op e2;
x = op e1;
wheree1 is not a variable, andop is an operator but not “&&” or “||”. Then
s is u-equivalent to the following respective form:
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T y; y = e1; x = y op e2;
T y; y = e1; x = op y;

12. Let s be a statement of the form “x = y op e2;”, wherex andy are
variables,e2 is not a variable, andop is an operator but not “&&” or “||”.
Thens is u-equivalent to “T z; z = e2; x = y op z;”.

13. Let s be a statement of the form “x = (e1 ? e2 : e3);”. Then
s is u-equivalent either to “boolean y; y = e1; x = e2;” or
“boolean y; y = e1; x = e3;”.

* After a finite number of repetitions of steps 7-13, we can assume that
all assignment statements inT are of the form “x = e;”, “ x = op z;”,
“x = y op z;”, or “x = m(y1, ..., yn);” (or its class, non-static
and constructor variants), wherex and all operands are variables, ande is
either a constant or a variable. We can also assume that all method call state-
ments are of the form “m(y1, ..., yn);”, “ C.m(y1, ..., yn);”,
or “x.m(y1, ..., yn);”, where all theys are variables. We will as-
sume this from now on.

14. Lets be a statement of the form “try { S } catch (T1 x) { S1 }
... catch (Tn x) { Sn }”. Then s is u-equivalent toS, or to

“try { S } catch (Ti x) { Si }”, for somei.

Proof: in the actual execution, zero or one of thecatch blocks will be
executed.

15. Lets be a statement of the form
“try { S1 ; S2 } catch (T x) { S3 }”. Then s is u-
equivalent either to “try { S1 } catch (T x) { S3 }”,
or to “S1; try { S2 } catch (T x) { S3 }”.

Proof: If S1 ; S2 raises aThrowable, then either it will do so inS1
or in S2. If S1 raises aThrowable which is an instance of typeT, then
S2 will not be executed andS3 will be executed. IfS1 does not raise a
Throwable at all, then its execution will be identical to as if it were not in
thetry clause. IfS1 raises aThrowablewhich is not an instance of type
T, then neitherS2 nor S3 will be executed, which again is identical to the
situation where it is not in thetry block at all.

After a finite number of repetitions of all of the transformations induced by the
above equivalences, the test case will be in canonical form 1.

31



A.3 Canonical Form 2

It is reasonable to assume that a unit testT does not contain uses of variables that
have not been assigned a value, and also that the arithmetic operators inT do not
cause exceptions to be thrown. (The methods thatT calls may do these things, but
the code ofT itself does not.) Under these assumptions, we can further simplify a
unit test to canonical form 2, in which no arithmetic calculations are done.

We say that a Java unit testT is in canonical form 2 if it is in canonical form 1,
and in addition all assignment statements are of the formx = e, wheree is either
a constant or a method or constructor call.

Theorem 3. Let T be a Java unit test in which every variable which is used in an
expression has previously been assigned a value, and whose arithmetic expressions
do not throw exceptions. Then there is a Java unit test T ′ which is u-equivalent to
T , and is in canonical form 2.

Proof. By the previous Theorem, we can convertT to a unit testT ′′ in canoni-
cal form 1. Every statement inT ′′ of the formx = e wheree is an arithmetic
expression terminates successfully, yielding a deterministic valuee′, without any
methods or constructors being called. We can therefore replace the statement by
x = e′. Every statement inT ′′ of the formx = y wherey is a variable can be
eliminated if later references tox are replaced by references toy until x receives
another value. The result will be a unit testT ′ in canonical form 2.

A.4 Canonical Form 3

Recall Theorem 1:Let T be a Java unit test in which every variable which is
used in an expression has previously been assigned a value, and whose arithmetic
expressions do not throw exceptions. Then there is a Java unit test T ′ which is
u-equivalent to T , and is in canonical form 3.

Proof. By the previous Theorem, we can convertT to a unit testT ′′ in canonical
form 2.

All assertions inT ′′ are of the formassert x, wherex is a variable. We can
eliminate all of the assertions for whichx evaluates to true, and eliminate all of the
statements following the first assertion wherex evaluates to false.

For every typet in the unit test, we can count the numberut of separate vari-
ables of that type, and the numberwt of constants of that type used inT ′′. Let the
numberut + wt be called thevalue pool size of t, abbreviatedvps(t).

For a given typet, let Vt be the name of the value pool fort. We can convert
T ′′ to canonical form 3 by the following transformations.
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• Replace each reference tovi, theith variable of typet (counting from 0) by
the expressionVt[i].

• Replace each reference tocj , thejth constant of typet (counting from 0) by
the expressionVt[k], wherek is ut + j.

• Precede the transformed statements ofT ′′ by one block of statements for
each typet mentioned inT . The block of statements for a given typet has
the form:
t[ ] Vt;
Vt = new t[vps(t)];
Vt[ut] = c0;
Vt[ut+1] = c1;
. . .
Vt[ut + wt−1] = cwt−1

;

The final unit test will be in canonical form 3.
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